首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The kinetics of changes in photosystem I (PSI), photosystemII (PSII), and whole chain (PSII and PSI) electron transport,chlorophyll fluorescence parameters, the capacity to bind atrazineand the polypeptide profiles of thylakoids isolated from wheatleaves on exposure to a photon flux density of 2000 µmolm–2 s–1 were determined. Severe and similar levelsof photo-inhibitory damage to both PSII and whole chain electrontransport occurred and were correlated with decreases in theratio of variable to maximal fluorescence, the proportionalcontribution of the rapid a phase of the fluorescence kineticsand the capacity to bind atrazine. Severe photo-inhibition ofelectron transport was not associated with a major loss of chlorophyllor total thylakoid protein. However, a small decrease in a 70kDa polypeptide together with increases in a number of low molecularmass polypeptides (8–24 kDa) occurred. Phosphorylation of thylakoid polypeptides alleviated photo-inhibitionof PSII electron transport but stimulated photoinhibitory damageto whole chain electron transport. The consequences of suchphosphorylation-induced effects on photoinhibition in vivo areconsidered. Key words: Chlorophyll fluorescence, electron transport, photo-inhibition, protein phosphorylation, thylakoid membranes, wheat (Triticum aestivum)  相似文献   

2.
Light-harvesting capacities of photosystem I (PSI) and photosystemII (PSII) in a wild-type and three chlorophyll b-deficient mutantstrains of rice were determined by measuring the initial slopeof light-response curve of PSI and PSII electron transport andkinetics of light-induced redox changes of P-700 and QA, respectively.The light-harvesting capacity of PSI determined by the two methodswas only moderately reduced by chlorophyll b-deficiency. Analysisof the fluorescence induction that monitors time course of QAphotoreduction showed that both relative abundance and antennasize of PSIIa decrease with increasing deficiency of chlorophyllb and there is only PSII in chlorina 2 which totallylacks chlorophyll b. The numbers of antenna chlorophyll moleculesassociated with the mutant PSII centers were, therefore, threeto five times smaller than that of PSIIa in the wild type rice.Rates of PSII electron transport determined on the basis ofPSII centers in the three mutants were 60–70% of thatin the normal plant at all photon flux densities examined, indicatingthat substantial portions of the mutant PSII centers are inactivein electron transport. The initial slopes of light-responsecurves of PSII electron transport revealed that the functionalantenna sizes of the active populations of PSII centers in themutants correspond to about half that of PSII in the wild typerice. Thus, the numbers of chlorophyll molecules that serveas antenna of the oxygen-evolving PSII centers in the mutantsare significantly larger than those that are actually associatedwith each PSII center. It is proposed that the inactive PSIIserves as an antenna of the active PSII in the three chlorophyllb-deficient mutants of rice. In spite of the reduced antennasize of PSII, therefore, the total light-harvesting capacityof PSII approximately matches that of PSI in the mutants. (Received July 29, 1994; Accepted February 7, 1996)  相似文献   

3.
The site of photoinhibition at low temperatures in leaves ofa chilling-sensitive plant, cucumber, is photosystem I [Terashimaet al. (1994) Planta 193: 300]. As described herein, selectivephotoinhibition of PSI can also be induced in isolated thylakoidmembranes in vitro. Inhibition was observed both at chillingtemperatures and at 25°C, and not only in the thylakoidmembranes isolated from cucumber, but also in those isolatedfrom a chilling-tolerant plant, spinach. Comparison of theseobservations in vitro to the earlier results in vivo indicatesthat (1) photoinhibition of PSI is a universal phenomenon; (2)a mechanism exists to protect PSI in vivo; and (3) the protectivemechanism is chilling-sensitive in cucumber. The chilling-sensitivecomponent seems to be lost during the isolation of thylakoidmembranes. Very weak light (10–20µmol m-2 s-1) wassufficient to cause the inhibition of PSI. About 80% of theoxygen-evolving activity by PSII was maintained even after theactivity of PSI had decreased by more than 70%. This is thefirst report of the selective photoinhibition of PSI in vitro. (Received March 1, 1995; Accepted April 26, 1995)  相似文献   

4.
Tg737orpk mice have defects in cilia assembly and develop hydrocephalus in the perinatal period of life. Hydrocephalus is progressive and is thought to be initiated by abnormal ion and water transport across the choroid plexus epithelium. The pathology is further aggravated by the slow and disorganized beating of motile cilia on ependymal cells that contribute to decreased cerebrospinal fluid movement through the ventricles. Previously, we demonstrated that the hydrocephalus phenotype is associated with a marked increase in intracellular cAMP levels in choroid plexus epithelium, which is known to have regulatory effects on ion and fluid movement in many secretory epithelia. To evaluate whether the hydrocephalus in Tg737orpk mutants is associated with defects in ion transport, we compared the steady-state pHi and Na+-dependent transport activities of isolated choroid plexus epithelium tissue from Tg737orpk mutant and wild-type mice. The data indicate that Tg737orpk mutant choroid plexus epithelium have lower pHi and higher Na+-dependent HCO3 transport activity compared with wild-type choroid plexus epithelium. In addition, wild-type choroid plexus epithelium could be converted to a mutant phenotype with regard to the activity of Na+-dependent HCO3 transport by addition of dibutyryl-cAMP and mutant choroid plexus epithelium toward the wild-type phenotype by inhibiting PKA activity with H-89. Together, these data suggest that cilia have an important role in regulating normal physiology of choroid plexus epithelium and that ciliary dysfunction in Tg737orpk mutants disrupts a signaling pathway leading to elevated intracellular cAMP levels and aberrant regulation of pHi and ion transport activity. cAMP; ion transport  相似文献   

5.
A comparison of photosynthesis-irradiance response curves (PEresponse curves) obtained through fast repetition rate (FRR)fluorometry and radiocarbon (14C) tracer method was made inthe chlorophyte, Dunaliella tertiolecta, grown under differentirradiance conditions. In FRR-based PE response curveexperiments, actinic light provided by white light-emittingdiodes (LEDs) was increased gradually from 0 to 1500 µmolquanta m–2 s–1 and the rate of photosyntheticelectron transport was determined at each light level. Short-termexperiments (20 min) of 14C-based PE response curvewere carried out with an improved photosynthetron, which containswhite LEDs as the light source. Irrespective of growth irradiance,the ratios of FRR to 14C-based initial slopes were almost uniform.The ratios of FRR- to 14C-based maximum rates were 25–36%higher than those of FRR- to 14C-based initial slopes. The relationshipbetween electron transport and carbon assimilation was non-linearwith increasing discrepancy towards high actinic light. Thisnon-linear relationship between FRR- and 14C-based estimatesis primarily due to the effect of physiological processes stimulatedat high levels of light, such as cyclic electron flow and theMehler reaction. The results of this study indicate that theFRR fluorometry can be used as a good indicator of photosyntheticrates from low to middle light levels, but becomes increasinglyquestionable as the maximum photosynthetic rate is approached.The degree to which this relationship is further affected bynutrient-status warrants investigation.  相似文献   

6.
The features of the two types of short-term light-adaptations of photosynthetic apparatus, State 1/State 2 transitions, and non-photochemical fluorescence quenching of phycobilisomes (PBS) by orange carotene-protein (OCP) were compared in the cyanobacterium Synechocystis sp. PCC 6803 wild type, CK pigment mutant lacking phycocyanin, and PAL mutant totally devoid of phycobiliproteins. The permanent presence of PBS-specific peaks in the in situ action spectra of photosystem I (PSI) and photosystem II (PSII), as well as in the 77 K fluorescence excitation spectra for chlorophyll emission at 690 nm (PSII) and 725 nm (PSI) showed that PBS are constitutive antenna complexes of both photosystems. The mutant strains compensated the lack of phycobiliproteins by higher PSII content and by intensification of photosynthetic linear electron transfer. The detectable changes of energy migration from PBS to the PSI and PSII in the Synechocystis wild type and the CK mutant in State 1 and State 2 according to the fluorescence excitation spectra measurements were not registered. The constant level of fluorescence emission of PSI during State 1/State 2 transitions and simultaneous increase of chlorophyll fluorescence emission of PSII in State 1 in Synechocystis PAL mutant allowed to propose that spillover is an unlikely mechanism of state transitions. Blue–green light absorbed by OCP diminished the rout of energy from PBS to PSI while energy migration from PBS to PSII was less influenced. Therefore, the main role of OCP-induced quenching of PBS is the limitation of PSI activity and cyclic electron transport under relatively high light conditions.  相似文献   

7.
The influence of the endogenous micronutrient chelator, nicotianamine(NA), and of Cu nutrition on the distribution of Cu, Fe, Mn,Zn, and NA was investigated in eight different shoot organs,roots, and in xylem exudates of the NA-containing tomato wildtype Lycopersicon esculentum Mill. cv. Bonner Beste and itsNA-less mutant chloronerva. Contrary to the other heavy metals, copper transport in thexylem was inefficient in the mutant and was enhanced by an applicationof NA to the roots or leaves in proportion to the applied NAconcentration. Also, with NA application, the Cu concentrationin mutant roots decreased significantly, and increased in theshoot. Fe and Mn transport in the xylem was greater in the mutantthan in the wild type, and was decreased in the mutant by theapplication of NA to the leaves. Zn transport in the xylem wasthe same in both genotypes and was unaffected by NA application.After application of NA to leaves and roots of the mutant itwas possible to detect NA in the xylem exudate (up to 2nmolNA(g–1 root FWh–1). High Cu supply (3 µM) resulted in higher Cu and Mn concentrationsin all organs of the wild type as compared to mutant organs,but Fe concentrations were not influenced. Under high Cu supply(3µM) the NA concentrations of roots and the three youngestleaves of the wild type were higher than under normal Cu supply(0.3 µM). The highest concentrations were found in theshoot apex under both Cu conditions (up to 361 nmol NAg–1FW). It is concluded from our experiments and from the high stabilityconstant of the NA-Cu-complex (log K= 18.6) that NA is involvedin Cu translocation whereas for the translocation of Fe, Mn,and Zn, NA is not essential. Key words: Copper transport, micronutrients, mobilization, nicotianamine, xylem  相似文献   

8.
A His-tagged PSII core complex was purified from recombinantChlamydomonas reinhardtii D2-H thylakoids by single-step Ni2+-affinitycolumn chromatography and its properties were partially characterizedin terms of their PSII functions and chemical compositions.The PSII core complex that has a His-tag extension at the C-terminusof the D2 protein evolved oxygen at a high rate of 2,400 µmol(mg Chl)–1h–1 at the optimum pH of 6.5 with ferricyanideand 2,6-dichlorobenzoquinone as electron acceptors in the presenceof Ca2+ as an essential cofactor, and approximately 90% of theactivity was blocked by 10 µM DCMU. The core complex exhibitedthe thermoluminescence Q-band but not the B-band regardlessof the presence or absence of DCMU, although both bands wereobserved in the His-tagged thylakoids. The core complex wasfree from PSI and contained one YD, Tyr 160 of the D2 protein,four Mn atoms, two cytochrome b-559, about 46 Chl a molecules,and probably one QA, the primary acceptor quinone of PSII. Itwas inferred from these results that His-tagging at the C-terminusof the D2 protein does not affect the functional and structuralintegrity of the PSII core complex, and that the ‘His-tagstrategy’ is highly useful for biochemical, physicochemical,and structural studies of Chlamydomonas PSII. (Received October 22, 1998; Accepted December 25, 1998)  相似文献   

9.
Changes in photosystem stoichiometry in response to shift ofenvironments for cell growth other than light regime were studiedwith the cyanophyte Synechocystis PCC 6714 in relation to thechange induced by light-quality shift. Following two environment-shiftswere examined: the shift of molecular form of inorganic carbonsource for photosynthesis from CO2 to HCO3 (CO2 stress)and the increase in salinity of the medium with NaCl (0.5 M)(Na+ stress). Both CO2 and Na+ stresses induced the increasein PSI abundance resulting in a higher PSI/PSII stoichiometry.CO2 stress was found to elevate simultaneously Cyt c oxidaseactivity (Vmax). The feature was the same as that caused bylight-quality shift from preferential excitation of PSI to PSII(light stress) though the enhancement by either stress was smallerthan that by light stress. Under our experimental conditions,PSI/PSII stoichiometry appeared to increase at a fairly constantrate to the basal level even when the basal level had been differentlydetermined by the light-quality. Enhancing rates for PSI/PSIIstoichiometry and for Cyt c oxidase activity were also similarto each other. Since the two stresses affect the thylakoid electrontransport similarly to the shift of light-quality, we interpretedour results as follows: three environmental stresses, CO2, Na+,and light stresses, cause changes in electron turnover capacityof PSI and Cyt c oxidase under a similar, probably a common,mechanism for monitoring redox state of thylakoid electron transportsystem. 1On leave from Department of Biology, College of Natural Science,Kyngpook National University, Taegu 702-701, Korea. 2Present address: Department of Marine Bioscience, Fukui Pre-fecturalUniversity, Obama, Fukui, 917 Japan.  相似文献   

10.
Munné-Bosch S  Shikanai T  Asada K 《Planta》2005,222(3):502-511
Dissipation mechanisms of excess photon energy under water stress were studied in ndhB-inactivated tobacco (Nicotiana tabacum cv. Xanthi) mutants, which are impaired in NAD(P)H dehydrogenase-dependent cyclic electron flow around PSI. Relative leaf water content and net CO2 assimilation decreased to 30% and almost zero, respectively, after 11-day water stress in the mutant and wild type plants. Similar reductions in PSII activity (by ca. 75%), and increases in malondialdehyde (by ca. 45%), an indicator of lipid peroxidation, were observed in both the plant groups when subjected to water stress. The stressed mutant and wild type plants showed similar P700 redox kinetics, but only the stressed mutant demonstrated an enhanced operation of the antimycin A-sensitive, ferredoxin-dependent cyclic electron flow around PSI, as indicated by a transient increase in chlorophyll fluorescence after turning off of actinic light. Further, the stressed mutant showed higher oxidation of -tocopherol to -tocopherol quinone, as compared with that in the stressed wild type. Thus, a deficiency in NAD(P)H dehydrogenase-dependent cyclic electron flow around PSI does not lead to oxidative damage because the mutant compensates for this deficiency by activating alternative dissipating routes of excess photon energy, such as up-regulation of ferredoxin-dependent cyclic electron flow around PSI and increased accumulation of -tocopherol quinone.  相似文献   

11.
Continuous wetness of leaves in the light causes a reductionin the carbon exchange rate (CER) in Phaseolus vulgaris L. [Ishibashiand Terashima (1995) Plant Cell Environ. 18: 431]. In this study,we investigated the initial cause of photoinhibition upon applicationof water, designated rain treatment, and we found a large decreasein the rate of electron transport through the whole chain fromwater to methyl viologen via PSII and PSI. In spite of the decreasein the rate of electron transport, there was no decrease inthe activity of either PSI or PSII when these activities weremeasured separately. The intactness of PSI was also confirmedby the absence of any change in the pho-tooxidizable amountof P-700, the reaction centre of PSI, and the intactness ofPSII was confirmed by measurements of Chi fluorescence. Theresults suggest that the inhibition by the rain treatment, whichoccurs at the site between PSI and PSII, might be a novel typeof photoinhibition, unlike the conventional types of photoinhibitionthat involve PSI and PSII. (Received July 29, 1996; Accepted November 28, 1996)  相似文献   

12.
Photoinhibition is light-induced inactivation of PSII. Hypothesesabout the photoreceptor(s) of photoinhibition include the Chlantenna of PSII, manganese of the oxygen-evolving complex (OEC),uncoupled Chl and iron–sulfur centres. We measured theaction spectrum of photoinhibition in vivo from wild-type Arabidopsisthaliana L. and from the npq1-2 and npq4-1 mutants defectivein non-photochemical quenching (NPQ) of excitations of the PSIIantenna. The in vivo action spectrum was found to resemble closelythe in vitro action spectra published for photoinhibition. Wecompared the action spectrum with absorbance spectra of modelcompounds of the OEC complex and other potential photoreceptorsof photoinhibition. The comparison suggests that both manganeseand Chl function as photoreceptors in photoinhibition. In accordancewith the function of two types of photoreceptors in photoinhibition,NPQ was found to offer only partial protection against photoinhibitionat visible wavelengths. The low protective efficiency of NPQsupports the conclusion that the Chl antenna of PSII is notthe only photoreceptor of photoinhibition. Comparison of theaction spectrum of photoinhibition with the emission spectrumof sunlight shows that the UV part of sunlight is responsiblefor the major part of photoinhibition under natural conditions. (Received September 7, 2005; Accepted January 4, 2006)  相似文献   

13.
Mutant strains of the unicellular cyanobacterium Synechocystissp. PCC 6803, in which the psaK gene was insertionally inactivatedby targeted mutagenesis, were constructed. The gene is one ofthe two potential PsaK-coding genes which have been found asa result of the genome project with this cyanobacterium. Oneof the mutants was characterized in detail. A monocistronic,480-nucleotide mRNA of psaK was absent in total RNA from themutant cells. Inactivation of psaK had little effect on theaccumulation of polypeptides in the isolated PSI complexes exceptfor a polypeptide with an apparent molecular mass of 4.6 kDawhich was absent in the mutant. The amino-terminal amino acidsequence of the 4.6-kDa polypeptide confirmed that it was thetranslation product of psaK and further revealed a presequenceof PsaK. Characteristics of photoautotrophic growth at differenttemperatures, the amount of chlorophyll per cell, photosyntheticelectron transport rates with various electron acceptors, thekinetics of charge recombination between P700+ and reduced FA/FB,and the molar ratio of chlorophyll to P700, of the mutant werenot significantly different from those of the wild type. Furthermore,the trimer to monomer ratio of the PSI complexes isolated fromthe mutant was similar to that isolated from the wild type. (Received July 27, 1998; Accepted October 13, 1998)  相似文献   

14.
Effects of photoinhibition on the redox properties of Cyt b-559were studied with NH2OH treated PSII membranes, which are depletedof the water-oxidizing complex. The membranes contained threeredox forms (HP-, IP- and LP-forms) of Cyt b-559, with Em valuesof +435, +237 and +45 mV, respectively. A novel intermediate-potentialform of Cyt b-559 was generated during photoinhibition on thedonor side of PSII: photoinhibitory illumination (7,000 µEm–2 s–1) for 1 min induced a 30% decrease in thelevel of the HP-form, with concomitant generation of the intermediate-potential(IP-) form whose Em value was about +350mV. Prolonged illumination(10 min) resulted in complete loss of the HP-form and an apparentincrease in the level of the IPform. After further photoinhibitorytreatment (60 min), complete loss of the IP'-form was observedand levels of the IP- and LP-forms each increased to about 50%of the total amount of Cyt b-559. Kinetic analysis of thesedata led to the conclusion that the HP-form is converted tothe LP-form via two intermediate-potential forms (IP' and IP),and that IP'-form appears only at the early phase of photoinhibition. (Received March 30, 1994; Accepted February 27, 1995)  相似文献   

15.
Neill, S. J., McGaw, B. A. and Horgan, R. 1986. Ethylene and1-aminocyclopropane-l-carboxylic acid production in flacca,a wilty mutant of tomato, subjected to water deficiency andpretreatment with abscisic acid —J. exp. Bot. 37: 535–541. Plants of Lycoperstcon esculentum Mill. cv. Ailsa Craig wildtype and flacca (flc) were sprayed daily with H2O or 2?10–2mol m–3 abscisic acid (ABA). ABA treatment effected apartial phenotypic reversion of flc shoots; leaf areas wereincreased and transpiration rates decreased. Leaf expansionof wild type shoots was inhibited by ABA. Indoleacetic acid (IAA), ABA and l-aminocyclopropane-l-carboxylicacid (ACC) concentrations were determined by combined gas chromatography-massspectrometry using deuterium-labelled internal standards ABAtreatment for 30 d resulted in greatly elevated internal ABAlevels, increasing from 1?0 to 4?3 and from 0?45 to 4?9 nmolg–1 fr. wt. in wild type and flc leaves respectively.Endogenous IAA and ACC concentrations were much lower than thoseof ABA. IAA content ranged from 0?05 to 0?1 nmol g–1 andACC content from 0?07 to 0?24 nmol g–1 Ethylene emanationrates were similar for wild type and flc shoots. Wilting of detached leaves induced a substantial increase inethylene and ACC accumulation in all plants, regardless of treatmentor type. Ethylene and ACC levels were no greater in flc leavescompared to the wild type. ABA pretreatment did not preventthe wilting-induced increase in ACC and ethylene synthesis. Key words: ABA, ACC, ethylene, wilting, wilty mutants  相似文献   

16.
Stoichiometries of photosystem I (PSI) and photosystem II (PSII)reaction centers in a cultivar of rice, Norin No. 8, and threechlorophyll b-deficient mutants derived from the cultivar wereinvestigated. Quantitation of PSI by photooxidation of P-700and chromatographic assay of vitamin K1 showed that, on thebasis of chlorophyll, the mutants have higher concentrationsof PSI than the wildtype rice. Greater increases were observedin the PSII contents measured by photoreduction of QA, bindingof a radioactive herbicide and atomic absorption spectroscopyof Mn. Consequently, the PSII to PSI ratio increased from 1.1–1.3in the wild-type rice to 1.8 in chlorina 2, which contains noChl b, and to 2.0–3.3 in chlorina 11 and chlorina 14,which have chlorophyll a/b ratios of 9 and 13, respectively.Measurement of oxygen evolution with saturating single-turnoverflashes revealed that, whereas at most 20% of PSII centers areinactive in oxygen evolution in the wildtype rice, the non-functionalPSII centers amount to about 50% in the three mutant strains.The fluorescence induction kinetics was also analyzed to estimateproportions of the inactive PSII in the mutants. The data obtainedsuggest that plants have an ability to adjust the stoichiometryof the two photosystems and the functional organization of PSIIin response to the genetically induced deficiency of chlorophyllb. (Received July 29, 1994; Accepted February 7, 1996)  相似文献   

17.
The effects of phosphate concentration on plant growth and photosyntheticprocesses in primary leaves of young sunflower (Helianthus annuusL.) plants were examined. Plants were grown for 3 weeks on half-strengthHoagland's solution containing 0, 0.1, 0.5, 1.0, and 3.0 molm–3 orthophosphate (Pi). It was shown that optimal photosynthesisand the highest light utilization capacity were achieved at0.5 mol m–3 Pi in the growth medium, which was in goodagreement with the maximum content of organic phosphorus inthe leaves. Low phosphate in the medium inhibited plant growthrate. Phosphate deficiency appreciably decreased photosyntheticoxygen evolution by leaves, the efficiency of photosystem two(PSII) photochemistry and quantum efficiency of PSII electrontransport. High oxidation state of PSII primary electron acceptorQA, at 0.1 mol m–3 Pi, however, indicates that photosyntheticelectron transport through PSII did not limit photosynthesisin Pi-deficient leaves. The results indicate that diminishedphotosynthesis under sub- and supra-optimal Pi was caused mainlyby a reduced efficiency of ribulose 1, 5-bisphosphate (RuBP)regeneration at high light intensities. These results suggestthat, under non-limiting C02 and irradiance, photosynthesisof the first pair of leaves could be diminished by both sub-and supra-optimal phosphorus nutrition of sunflower plants. Key words: Helianthus annuus L, phosphate nutrition, photosynthesis, photochemical efficiency  相似文献   

18.
Using well plates of Phaeocystis pouchetii colonies isolatedfrom experimental mesocosms in western Norway, increases incolony size and division were documented. Median longest lineardimensions increased 0–7 µm h–1; literaturePhaeocystis globosa values are 0.9–4.7 µm h–1.Ten to twelve percent of colonies divided at rates of 0.21–0.28divisions day–1. Daughter colonies were 100 µm smallerthan mother colonies. Colonies delayed 3.5–4.9 days tofirst division, compared with literature values of 4–5days for P. globosa. This study provides the first experimentalevidence for colony division of wild P. pouchetii.  相似文献   

19.
Mistletoes usually have slower rates of photosynthesis thantheir hosts. This study examines CO2assimilation, chlorophyllfluorescence and the chlorophyll content of temperate host–parasitepairs (nine hosts parasitized by Ileostylus micranthus and Carpodetusserratus parasitized by Tupeia antarctica). The hosts of I.micranthus had higher mean annual CO2assimilation (3.59 ±0.41 µmol m-2 s-1) than I. micranthus(2.42 ± 0.20µmol m-2 s-1), and C. serratus(2.41 ± 0.43 µmolm-2 s-1) showed higher CO2assimilation than T. antarctica(0.67± 0.64 µmol m-2 s-1). Hosts saturated at significantlyhigher electron transport rates (ETR) and light levels thanmistletoes. The positive relationship between CO2assimilationand electron transport suggests that the lower CO2assimilationrates in mistletoes are a consequence of lower electron transportrates. When photosynthetic rates, ETR and chlorophyll a /b ratioswere adjusted for photosynthetically active radiation, hostsdid not have significantly higher CO2assimilation (3.21 ±0.37 µmol m-2 s-1) than mistletoes (2.54 ± 0.41µmol m-2 s-1), but still had significantly higher ETRand chlorophyll a / b ratios. The electron transport rates,saturating light and chlorophyll a / b ratios of sun leavesfrom mistletoes were similar to host shade leaves. These responsesindicate that in comparison with their hosts, mistletoe leaveshave the photosynthetic characteristics of the leaves of shadeplants. Copyright 2000 Annals of Botany Company CO2assimilation, photosynthetic active radiation (PAR), chlorophyll fluorescence, electron transport rate (ETR), photochemical quenching (qp), non-photochemical quenching (qn), sun and shade leaves, chlorophyll content, Ileostylus micranthus, Tupeia antarctica, New Zealand  相似文献   

20.
《BBA》2020,1861(3):148154
Avoidance of photoinhibition at photosystem (PS)I is based on synchronized function of PSII, PSI, Cytochrome b6f and stromal electron acceptors. Here, we used a special light regime, PSI photoinhibition treatment (PIT), in order to specifically inhibit PSI by accumulating excess electrons at the photosystem (Tikkanen and Grebe, 2018). In the analysis, Arabidopsis thaliana WT was compared to the pgr5 and ndho mutants, deficient in one of the two main cyclic electron transfer pathways described to function as protective alternative electron acceptors of PSI. The aim was to investigate whether the PGR5 (pgr5) and the type I NADH dehydrogenase (NDH-1) (ndho) systems protect PSI from excess electron stress and whether they help plants to cope with the consequences of PSI photoinhibition. First, our data reveals that neither PGR5 nor NDH-1 system protects PSI from a sudden burst of electrons. This strongly suggests that these systems in Arabidopsis thaliana do not function as direct acceptors of electrons delivered from PSII to PSI – contrasting with the flavodiiron proteins that were found to make Physcomitrella patens PSI resistant to the PIT. Second, it is demonstrated that under light-limiting conditions, the electron transfer rate at PSII is linearly dependent on the amount of functional PSI in all genotypes, while under excess light, the PGR5-dependent control of electron flow at the Cytochrome b6f complex overrides the effect of PSI inhibition. Finally, the PIT is shown to increase the amount of PGR5 and NDH-1 as well as of PTOX, suggesting that they mitigate further damage to PSI after photoinhibition rather than protect against it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号