首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Retinal degeneration in untreated, female Sprague-Dawley rats was studied by electron microscopy and horseradish peroxidase tracer technique. The degeneration appeared to have started at a very young age. The severity of the defect varied from a decrease of photoreceptor nuclei to total loss of receptor cells and the pigment epithelium. In mild degeneration some regions of the retinal pigment epithelium became bilayered and the basal plasma membrane became flattened or formed elaborate infoldings. Breaks in Bruch's membrane occurred in severe degeneration. Degeneration of the pigment epithelium allowed permeation of tracer material from the choroid into the retina.  相似文献   

2.
Elastic fibers are composed of a central core of elastin that is amorphous and electron-lucent in conventional transmission electron micrographs and peripheral microfibrils. A complex infrastructure within the amorphous elastin of mature rat aorta is made visible by fixation and staining with a glutaraldehyde-ruthenium red mixture in phosphate buffer or osmium-ruthenium red in cacodylate buffer. The infrastructure is composed of at least two interlacing but distinct elastic structural components; a framework of circumferentially orientated microfibrils and a three-dimensional meshwork of filaments that permeate the fiber. The latter resembles a reticulum that has previously been observed in freeze-fractured and negatively stained elastin and attributed to the supramolecular organization of elastin. Microfibrils also extend from the core of the elastic fiber into the surrounding matrix where they appear to function as anchoring fibers. These observations indicate that the elastic properties of the arterial wall are an integrated function of both elastin and microfibrils.  相似文献   

3.
取老年猫(12龄,2.5~3 kg)和青年猫(1~3龄,2~2.5 kg)各4只的视网膜,经4%多聚甲醛处理后用H.E染色以显示视网膜和脉络膜的结构。光学显微镜下观察感光细胞层、玻璃膜(Bruch’s membrane)结构的变化,计数色素上皮层(retinal pigment epithelium,RPE)细胞数、脉络膜毛细血管数,测量玻璃膜、脉络膜厚度,脉络膜毛细血管之间的距离。结果显示,与青年猫比较,老年猫视网膜感光细胞层结构杂乱;色素上皮细胞数显著下降;玻璃膜厚度无显著变化,出现较多碎片;脉络膜厚度明显变薄,脉络膜毛细血管数显著减小,脉络膜毛细血管之间的距离显著增大。推测老年猫脉络膜的退化可能是导致玻璃膜、色素上皮层的退化,进而导致感光细胞的功能衰退的重要原因。  相似文献   

4.
Microfibrils are striated tubules that play a role in the formation of elastin fibers by providing a scaffold upon which newly synthesized elastin is deposited. Ultrastructural and staining studies also demonstrate microfibrils that terminate where elastin is sparse or absent in basal laminae, plasma membranes, and the collagenous matrix. The most striking accumulation of microfibrils is found in the zonule of Zinn, the transparent and elastic suspensory ligament of the lens, which contains no elastin. Application of immunocytochemical staining with a peroxidase-antiperoxidase (PAP) procedure demonstrates that fibronectin is associated with the microfibrils of the zonule and aorta. Aggregates of microfibrils are identical to oxytalan ('acid enduring') fibers that have been described in peridontal membranes and other sites subject to mechanical stress and they can be found in sites as disparate as the rabbit zonule, rat hepatic stroma and human cardiac papillary muscle, indicating that microfibrils are a widely distributed connective tissue element with a function that extends beyond elastogenesis; their association with fibronectin and localization suggests that they serve as an elastic anchoring component of the extracellular matrix.  相似文献   

5.
Age-related macular degeneration (ARMD) with abnormal deposit formation under the retinal pigment epithelium (RPE) is the major cause of blindness in the Western world. basal laminar deposits are found in early ARMD and are composed of excess basement membrane material produced by the RPE. Here, we demonstrate that mice lacking the basement membrane component collagen XVIII/endostatin have massive accumulation of sub-RPE deposits with striking similarities to basal laminar deposits, abnormal RPE, and age-dependent loss of vision. The progressive attenuation of visual function results from decreased retinal rhodopsin content as a consequence of abnormal vitamin A metabolism in the RPE. In addition, aged mutant mice show photoreceptor abnormalities and increased expression of glial fibrillary acidic protein in the neural retina. Our data demonstrate that collagen XVIII/endostatin is essential for RPE function, and suggest an important role of this collagen in Bruch's membrane. Consistent with such a role, the ultrastructural organization of collagen XVIII/endostatin in basement membranes, including Bruch's membrane, shows that it is part of basement membrane molecular networks.  相似文献   

6.
Microfibrils are the insoluble, 10- to 12-nm components of the extracellular matrix that are involved in elastogenesis. Reports of their ultrastructure vary: they have been described as tubular and beaded and as nontubular filaments that are devoid of any periodicity. Ultrastructurally, microfibrils resemble oxytalan fibers that have been observed in peridontal membranes, skin, and other locations. Whether microfibrils have the staining characteristics of oxytalan is difficult to determine in tissues because available light microscopic stains also stain elastin. Calf aortic smooth muscle cells grown in media without added ascorbate provide a unique model for examining the ultrastructure and staining characteristics of chemically defined microfibrils. Microfibrils are the predominant insoluble extracellular protein in such cultures, which do not deposit collagen or elastin. These studies demonstrate that microfibrils are tubular structures with 10- and 12-nm striations and have the same staining characteristics as oxytalan, reacting with aldehyde fuchsin and orcein after oxidation. Microfibrillar protein is enriched in glutamic and aspartic acids and the electron density of microfibrils is enhanced by fixation in the presence of cationic dyes. In such preparation, microfibrils are made visible within the core of amorphous elastin as well as in regions that are free of elastin. The widespread distribution of microfibrils (oxytalan) indicates that their function extends beyond elastogenesis. Their localization within tissues suggests that they serve as an elastic attachment protein in sites that are subject to mechanical stress.  相似文献   

7.
Choroidal melanocytes and the retinal pigmented epithelium (RPE) were studied morphologically and histochemically in the Smyth chicken, an avian model for human vitiligo. The sequence of cytological events occurring in the ocular tissue of minimally depigmented Smyth birds was determined. Abnormalities of melanocytes and the associated inflammation was least severe in peripheral areas of the choroid and most pronounced in the back of the eye at the base of the optic nerve head. In the peripheral choroid, morphologically normal melanocytes and an occasional mononuclear leukocyte were observed. However, some of these morphologically normal melanocytes histochemically demonstrated atypical tyrosinase activity at the trans area of the Golgi apparatus. Toward the back of the eye, the melanocytes first appeared swollen and had retracting dendrites. Ultrastructurally these melanocytes demonstrated an increase in extramelanosomal cytoplasm. Later, melanocytes became spherical and had membrane bound, autophagosome-like compartments of pigment granules. As the melanocyte injury progressed, macrophages invaded the tissue and phagocytized melanocytic dendrites. These were followed by numerous plasma cells. Eventually, the back of the eye contained no pigment and was infiltrated with numerous mononuclear inflammatory cells. The retinal pigment epithelium also demonstrated a gradient in the degree of destruction, related to its topography. These cytological features consisted of the retraction of apical RPE processes, the disappearance of the basal plasma membrane infoldings, and the replacement of Bruch's membrane by collagen-like fibrils. These results demonstrate that the uveitis which develops in vitiligo appears to be a consequence of an inherent choroidal melanocyte defect.  相似文献   

8.
The location and chemical composition of anionic sites in Bruch's membrane (BM) were examined using cationic probe molecules demonstrable in electron microscopic preparations and tissue digestion with specific degradative enzymes. Ruthenium red and native lysozyme revealed densities distributed at regular intervals in two major components of BM: the basal laminae of the retinal pigment epithelium (RPE) and choriocapillary endothelium (EN). Staining was not observed with succinylated lysozyme (anionic). Colloidal iron also failed to stain BM components. Following crude heparinase treatment at 43 degrees C (specific for heparan sulfate) anionic sites in the RPE basal lamina were not demonstrable with either ruthenium red or native lysozyme. Sites in the EN basal lamina were not affected. Chondroitinase treatment removed almost all of the ruthenium red-positive material in the EN basal lamina; lysozyme binding here was markedly reduced. No changes were observed in the RPE basal lamina after chondroitinase digestion. There was no morphological evidence for site removal by either neuraminidase or leech hyaluronidase, although a detachment of the RPE from BM often occurred after incubation of eye tissue in the latter. Pronase E removed all stainable material. These findings indicate that anionic sites in BM consist to a large extent of chondroitin sulfates and heparan sulfate.  相似文献   

9.
Age-related macular degeneration (AMD) is a complex disease. Genetic studies have found strong associations between AMD and variants of several complement pathway-associated genes. The regulation of the complement cascade seems to be critical in the pathogenesis of AMD. In 45 human donor eyes immunohistochemistry was performed using antibodies directed against major regulators of the complement system: complement factor H (CFH), decay accelerating factor (DAF/CD55), complement receptor 1 (CR1/CD35), and membrane cofactor protein (MCP/CD46). All eyes were classified in AMD and controls. 11 eyes were graded as early AMD. 34 eyes were controls. In all eyes staining was found in intercapillary pillars of choroid adjacent to Bruch's membrane for CFH, at the basal surface of RPE cells for MCP, and at the apical side of the retinal pigment epithelium for CR1. DAF immunoreactivity was increased along the inner segments of rod and cone photoreceptor cells at the level of the external limiting membrane Labeling of soft drusen was found for CFH and CR1. In addition, DAF and CR1 showed staining of ganglion cells in all eyes. CFH and particularly MCP showed decreased or absent staining in eyes with early AMD adjacent to Bruch's membrane. The overlapping expression of regulators at the level of Bruch's membrane and the retinal pigment epithelium shows the importance of this site for control of the complement system. Decreased and therefore unbalanced expression of regulators, as shown in this study for CFH and MCP, may ultimately lead to AMD.  相似文献   

10.
As part of a comparative morphological study, the fine structure of the retinal pigment epithelium (RPE), the choriocapillaris and Bruch's membrane (complexus basalis) has been investigated by light and electron microscopy in the mallard (Anas platyrhynchos). In this species the RPE consists of a single layer of cuboidal cells which display numerous very deep basal (scleral) infoldings and extensive apical (vitreal) processes which enclose photoreceptor outer segments. The RPE cells are joined laterally by prominent basally-located tight junctions. Internally smooth endoplasmic reticulum is the most abundant cell organelle with only small amounts of rough endoplasmic reticulum present. Polysomes are abundant as are basally-located mitochondria which often displayed a ring-shaped profile. The cell nucleus is large and vesicular. Melanosomes are plentiful only within the apical processes of the RPE cells in the light-adapted state. Myeloid bodies are large and numerous and very often have ribosomes on their outer surface. Bruch's membrane (complexus basalis) shows a pentalaminate structure but with only a poorly represented central elastic lamina. Profiles of the choriocapillaris are relatively small and the endothelium of these capillaries while extremely thin facing the retinal epithelium is but minimally fenestrated.  相似文献   

11.
In early age-related macular degeneration (AMD), lipid-containing deposits (drusen) accumulate in Bruch's membrane underlying the retinal pigment epithelium (RPE). Recent studies indicate that apolipoprotein E (apoE) may play a role in lipid trafficking in AMD. Compared with the apoE3 allele, the apoE4 and apoE2 alleles are associated with decreased and increased risk for AMD, respectively; drusen contain high levels of apoE, and apoE null mice develop lipid deposits in Bruch's membrane similar to those observed in AMD. Primary cultures of human RPE cells expressing the apoE3 allele were grown on Transwell culture plates. Western blotting, ELISA assay, and mass spectrometry confirmed that apoE3 was secreted into the apical and basal chambers and that secretion was upregulated by thyroid hormone, 9-cis-retinoic acid, and 22(R)-hydroxycholesterol. In addition, basally secreted apoE associated with exogenously added HDL. These results indicate that apoE secretion can be regulated by specific hormones and that apoE associates with HDL. The findings are consistent with a role for apoE in lipid trafficking through Bruch's membrane and may be relevant to AMD.  相似文献   

12.
Summary The present study shows that pigmented epithelium of tadpoles and adult frogs ofXenopus laevis, like that of the other Anurans and the Cyprinid fishes, cannot transform into retina without the action of retinal factors. Transformation of pigmented epithelium into retina occurs when a sheet of it is implanted into the lensless eye. Transformation of pigmented epithelium also occurs when a sheet of it is wrapped in Bruch's membrane of the adult frog and afterwards implanted into a lensless eye, thus suggesting that Bruch's membrane is permeable to the inducing factors. Bruch's membrane was shown to play a polarizing role in the newly formed retina. Artificial transformation is based on a mechanism involving both the elimination of the repressive action of membranes adjacent to pigmented epithelium and the influence of retinal factors.  相似文献   

13.
The retinal pigment epithelium (RPE), the choriocapillaris and Bruch's membrane (complexus basalis) have been studied by light and electron microscopy in the bobtail goanna (Tiliqua rugosa) an Australian diurnal lizard. The RPE consists of a single layer of cuboidal cells which display very deep and tortuous basal (choroidal) infoldings as well as numerous apical (vitreal) processes which interdigitate with the photoreceptor cells. The lateral cell borders are relatively smooth and joined by basally located tight junctions. Internally smooth endoplasmic reticulum is abundant while rough endoplasmic reticulum is not. The RPE cell nucleus is large and vesicular and basally located in the light-adapted state. Polysomes, mitochondria and myeloid bodies are present and widely distributed. Melanosomes are plentiful in the apical region of the epithelial cells in light-adaptation. Bruch's membrane is pentalaminate with the basal lamina of the choriocapillaris being exceptionally thick. The choriocapillaris is a single layer of large-caliber capillaries with thin but only moderately fenestrated endothelium. Numerous dense granules are always present within these endothelial cells.  相似文献   

14.
A A Sologub 《Ontogenez》1975,6(6):563-571
The pigment epithelium of the tadpoles and adults X. laevis, as well as of other anurans and cyprinids, is not capable of transformation into the retina without the special influences of agents produced by the retina. When implanting a layer of pigmented epithelium of tadpoles with the Bruch's membrane into the cavity of lensless eye of a tadpole, the transformation of pigment epithelium into retina proceeded in 40% of cases and when implanting the pigment epithelium of adults without the Bruch's membrane, the transformation proceeded in 68% of cases. The lens regeneration from the cornea which proceeds simultaneously under the retina influence exerted no effect upon the metaplasia of pigmented epithelium.  相似文献   

15.
Summary In order to determine if there are biochemical changes in plasma-membrane oligosaccharides of regenerating retinal pigment epithelium, the binding of colloidal iron oxide at low pH and ferritin-conjugated wheat germ agglutinin — probes of sialic acid and N-acetylglucosamine on the cell surface — was examined electron-microscopically. An animal model of retinal pigment epithelium regeneration — rabbits with sodium iodate induced retinopathy — was used. In this model, large expanses of regenerating pigment epithelium are present for comparison with zones of spared pgiment epithelium in the same animals. In thin sections examined by transmission electron microscopy, ferritin-conjugated wheat germ agglutinin appeared to bind more intensely to the exposed plasma membrane of regenerating retinal pigment epithelium than to spared pigment epithelium, or that of normal rabbits. Morphometry verified this. Colloidal iron oxide intensely labelled the plasma membranes of regenerating, spared, and normal pigment epithelium, and was visibly reduced after exposure of tissue to neuraminidase. The observations indicate that the plasma membrane of regenerating retinal pigment epithelium bears sialic acid and N-acetylglucosamine residues as in normal retinal pigment epithelium. However, the amount of plasma membrane bearing exposed N-acetylglucosamine increases during regeneration.  相似文献   

16.
Elastic fibers provide recoil to tissues that undergo repeated stretch, such as the large arteries and lung. These large extracellular matrix (ECM) structures contain numerous components, and our understanding of elastic fiber assembly is changing as we learn more about the various molecules associated with the assembly process. The main components of elastic fibers are elastin and microfibrils. Elastin makes up the bulk of the mature fiber and is encoded by a single gene. Microfibrils consist mainly of fibrillin, but also contain or associate with proteins such as microfibril associated glycoproteins (MAGPs), fibulins, and EMILIN-1. Microfibrils were thought to facilitate alignment of elastin monomers prior to cross-linking by lysyl oxidase (LOX). We now know that their role, as well as the overall assembly process, is more complex. Elastic fiber formation involves elaborate spatial and temporal regulation of all of the involved proteins and is difficult to recapitulate in adult tissues. This report summarizes the known interactions between elastin and the microfibrillar proteins and their role in elastic fiber assembly based on in vitro studies and evidence from knockout mice. We also propose a model of elastic fiber assembly based on the current data that incorporates interactions between elastin, LOXs, fibulins and the microfibril, as well as the pivotal role played by cells in structuring the final functional fiber.  相似文献   

17.
Albino mice were bled through the hearts and 1/3 ml of blood withdrawn from each animal. The choriocapillaries and the pigment epithelia of the eyes were selected for observations using the electron microscope. Morphological changes were apparent during the first 72 h after bleeding. Increase of vesicles in both the endothelial cells and the basal infoldings of pigment cells were features. Thickening of basal infoldings, thinning out of Bruch's membrane (with decrease content of fibrillary substances) as well as a transient disappearance of the diaphragms of pores of endothelial cells were also observed. Trypan blue dye was also found to have diffused into the retina in the first 24 h after bleeding. These processes appeared to augment the decreased nutrient supply to the retina after blood loss.  相似文献   

18.
When silver nitrate is administered to rats in their drinking water for many months, they develop a generalized argyria. In the central nervous system, the deposition of silver follows the pattern of the so called hematoencephalic barrier (Wislocki and Leduc, (2); Dempsey and Wislocki, (3)). The present observations concern the deposition of silver in the rat's eye, investigated by both light microscopy and the electron microscope. In the eye, silver is not detected in the specific neural elements of the retina. Instead, it is heavily deposited in the basement membrane of the epithelium of the ciliary processes and in Bruch's basal membrane between the choriocapillary layer and the retinal epithelium. Traces of silver are visible in the basement membranes of the retinal capillaries with the electron microscope, but cannot be identified with the light microscope. In all of these respects, the pattern of the silver resembles the mode of its deposition in the brain. The heavy accumulation of metal in Bruch's membrane and the ciliary processes is analogous to that observed in the chorioid plexuses, and the traces encountered in the walls of the retinal capillaries correspond to traces observed in the basement membranes of the cerebral capillaries. Hence, with respect to silver, the eye possesses a blood-ocular barrier similar to the hematoencephalic barrier. Silver appears to be restrained from entering the aqueous humor by a barrier in the basement membrane of the ciliary processes, from reaching the photoreceptor elements of the retina by Bruch's basal membrane, and from penetrating the inner layers of the retina by a barrier in the basement membrane surrounding the retinal capillaries.  相似文献   

19.
Age-related changes of retinal pigment epithelium of the Japanese quail, which at present is a promising experimental model of accelerated aging, were studied by electron microscopy using morphometric analysis. It was established that, along with accumulation of lipofuscin granules and ultrastructural changes of the Bruch’s membrane, changes in the shape of nuclei and mitochondria (increase in the portion of ring-shaped and dumbbell-like mitochondria), decrease in the amount of myeloid bodies, and disorganization of basal infoldings are also aging markers of retinal pigment epithelium.  相似文献   

20.
Summary The choriocapillaris is the fenestrated capillary network that supplies a large portion of the nutrients required by the retinal pigment epithelium, photoreceptor cells, and other cells of the outer neural retina. The permeability of these capillaries was investigated in the rat by the use of ferritin (mol. wt. approx. 480,000; mol. diam. 110Å) as a tracer. Ninety minutes after intravascular ferritin administration, a high concentration of tracer particles was distributed uniformly in the capillary lumina but few particles were present in Bruch's membrane, the multilayered basement membrane that separates the choriocapillary endothelium from the retinal pigment epithelium. The bulk of the tracer remained in the capillary lumina with a definite blockage seen at fenestral, channel, and vesicle diaphragms. These results indicate that the rat choriocapillary endothelium, unlike the fenestrated endothelia lining other capillary beds, constitutes an important barrier to the passage of ferritin and presumably of circulating native molecules of similar size.Supported by NIH grants EY 01889 and EY 07034 from the National Eye Institute and a grant-in-aid from Fight for Sight, Inc., of New York City  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号