首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microbial growth on water-insoluble carbon sources such as hydrocarbons is accompanied by metabolic and structural alterations of the cell. The appearance of surface-active compounds (biosurfactants) in the culture medium or attached to the cell boundaries is often regarded as a prerequisite for initial interactions of hydrocarbons with the microbial cell. Under this point of view, biosurfactants produced by hydrocarbon-utilizing microorganisms, their structures and physico-chemical properties are reviewed. The production of such compounds is mostly connected with growth limitation in the late logarithmic and the stationary growth phase, in which specific enzymes are induced or derepressed. Addition of purified biosurfactants to microbial cultures resulted in inhibitory as well as in stimulatory effects on growth. Therefore, a more differentiated view of microbial production of surface-active compounds is proposed. Biosurfactants should not only be regarded as prerequisites of hydrocarbon uptake, but also as secondary metabolic products.  相似文献   

2.
Twenty pure cultures isolated from formation waters of the Daqing oil field were studied with respect to their capacity to produce surface-active compounds in media with individual hydrocarbons, lower alcohols, and fatty acids. Aerobic saprotrophic bacteria belonging to the genera Bacillus, Brevibacillus, Rhodococcus, Dietzia, Kocuria, Gordonia, Cellulomonas, Clavibacter, Pseudomonas, and Acinetobacter decreased the surface tension of cultivation media from 55-63 to 28-44 mN/m. Strains of Bacillus cereus, Rhodococcus ruber, and Bacillus licheniformis produced biosurfactants most actively. Bacteria of the genera Rhodococcus, Dietzia, Kocuria, and Gordonia produced exopolysaccharides in media with hydrocarbons. Culture liquids of the strains of R. ruber and B. licheniformis exhibited oil-releasing effect. Thus, the Daqing oil field is inhabited by aerobic bacteria capable of producing effective oil-releasing agents.  相似文献   

3.
Observation of both tensio-active and emulsifying activities indicated that biosurfactants were produced by the newly isolated and promising strain Pseudomonas putida 21BN. The biosurfactants were identified as rhamnolipids, the amphiphilic surface-active glycolipids usually secreted by Pseudomonas spp. Their production was observed when the strain was grown on soluble substrates, such as glucose or on poorly soluble substrates, such as hexadecane, reaching values of 1.2 g l(-1). When grown on hexadecane as the sole carbon source the biosurfactant lowered the surface tension of the medium to 29 mN m(-1) and formed stable and compact emulsions with emulsifying activity of 69%.  相似文献   

4.
Summary Several Torulopsis yeasts were screened for production of extracellular surface-active compounds. One strain, Torulopsis apicola IMET 43747, was studied in greater detail. Both on nalkanes and on carbohydrates it produced a mixture of water-soluble biosurfactants with remarkable interfacial activities and surface-tension values around 30 mN m-1 and interfacial tension below 1 mN m-1. Most of the biosurfactants are produced in the late exponential and in the early stationary growth phase. Production was increased by using hydrophobic compounds as the carbon source. The yields on n-alkanes were influenced by the concentrations of both the carbon source and the yeast extract. The effects of one purified biosurfactant on microbial growth on nalkanes and its antibacterial and antiphagal activities reveal new physiological aspects of biosurfactant generation by T. apicola.  相似文献   

5.
Biosurfactants: moving towards industrial application.   总被引:2,自引:0,他引:2  
Chemically synthesized surface-active compounds are widely used in the pharmaceutical, cosmetic, petroleum and food industries. However, with the advantages of biodegradability, and production on renewable-resource substrates, biosurfactants may eventually replace their chemically synthesized counterparts. So far, the use of biosurfactants has been limited to a few specialized applications because biosurfactants have been economically uncompetitive. There is a need to gain a greater understanding of the physiology, genetics and biochemistry of biosurfactant-producing strains, and to improve process technology to reduce production costs.  相似文献   

6.
Several microorganisms are known to produce a wide variety of surface-active substances, which are referred to as biosurfactants. Interesting examples for biosurfactants are rhamnolipids, glycolipids mainly known from Pseudomonas aeruginosa produced during cultivation on different substrates like vegetable oils, sugars, glycerol or hydrocarbons. However, besides costs for downstream processing of rhamnolipids, relatively high raw-material prices and low productivities currently inhibit potential economical production of rhamnolipids on an industrial scale. This review focuses on cost-effective and sustainable production of rhamnolipids by introducing new possibilities and strategies regarding renewable substrates. Additionally, past and recent production strategies using alternative substrates such as agro-industrial byproducts or wastes are summarized. Requirements and concepts for next-generation rhamnolipid producing strains are discussed and potential targets for strain-engineering are presented. The discussion of potential new strategies is supported by an analysis of the metabolism of different Pseudomonas species. According to calculations of theoretical substrate-to-product conversion yields and current world-market price analysis, different renewable substrates are compared and discussed from an economical point of view. A next-generation rhamnolipid producing strain, as proposed within this review, may be engineered towards reduced formation of byproducts, increased metabolic spectrum, broadened substrate spectrum and controlled regulation for the induction of rhamnolipid synthesis.  相似文献   

7.
The study deals with a comparative analysis of the relative abundances of the carbon isotopes 12C and 13C in the metabolites and biomass of the Burkholderia sp. BS3702 and Pseudomonas putida BS202-p strains capable of utilizing aliphatic (n-hexadecane) and aromatic (naphthalene) hydrocarbons as sources of carbon and energy. The isotope composition of the carbon dioxide, biomass, and exometabolites produced during the growth of Burkholderia sp. BS3702 on n-hexadecane (delta 13C = -44.6 +/- 0.2@1000) were characterized by the isotope effects delta 13CCO2 = -50.2 +/- 0.4@1000, delta 13Cbiom = -46.6 +/- 0.4@1000 and delta 13Cexo = -41.5 +/- 0.4@1000, respectively. The isotope composition of the carbon dioxide, biomass, and exometabolites produced during the growth of the same bacterial strain on naphthalene (delta 13C = -21 +/- 0.4@1000) were characterized by the isotope effects delta 13CCO2 = -24.1 +/- 0.4@1000, delta 13Cbiom = -19.2 +/- 0.4@1000 and delta 13Cexo = -19.1 +/- 0.4@1000, respectively. The possibility of using the isotope composition of metabolic carbon dioxide for the rapid monitoring of the microbial degradation of petroleum hydrocarbons in the enviroment is discussed.  相似文献   

8.
Gordonia sp. BS29 is a hydrocarbon-degrading bacterium isolated from a site chronically contaminated by diesel. The strain produces extracellular bioemulsifiers, able to produce stable emulsions, and cell-bound glycolipid biosurfactants, able to reduce surface tension. The aims of this work were to investigate the cultural factors affecting the production of the cell-bound biosurfactants by Gordonia sp. BS29 and to find the optimal composition of growth medium for the production. The cultural factors which have a significant influence on surfactant biosynthesis, identified by a two level 2(8-2) Fractional Factorial Design, were the type and concentration of the carbon source, the concentrations of phosphates and sodium chloride, and the interactions among these factors. On these factors, a flask-scale optimisation of cultural conditions was carried out. Then, a steepest ascent procedure and a Central Composite Design were applied to obtain a second order polynomial function fitting the experimental data near the optimum. In the optimised cultural condition we obtained a 5-fold increase in the biosurfactant concentration compared to the un-optimised medium (26.00), reaching a Critical Micelle Dilution value (129.43) among the highest in literature. The optimisation procedure did not change the number and type of the glycolipid biosurfactants produced by Gordonia sp. BS29.  相似文献   

9.
Microbial surfactants are environmentally friendly products with amazing properties and spectrum of applications. It is therefore, not surprising that research has increased in recent time with the objectives of sourcing for novel surface-active compounds with dual functions in oil and pharmaceutical industries. Evaluation of hydrocarbon degrading potentials and emulsifying activities indicated that biosurfactants were produced by two newly isolated and promising yeast strains, Saccharomyces cerevisiae and Candida albicans, obtained from a polluted lagoon water. Both strains were able to grow effectively on crude oil and diesel as sole sources of carbon and energy. Growth curves on diesel were obtained to establish the relation between cell growth and biosurfactant production. The growth peak was on the 8th day while the specific growth rate ranged insignificantly (P < 0.05) between 0.46 and 0.48 day−1. Interestingly, biosurfactant was detected on the 2nd day when growth was almost inexistent, with maximal production obtained at stationary/death phase of growth. The partially-purified biosurfactants exhibited antimicrobial activities by completely inhibiting the growth of clinical strains of Escherichia coli and Staphylococcus aureus at all concentrations tested. Although C. albicans appeared to be a better diesel-utilizer and biosurfactant-producer (E24 = 64.2%), the potency of its surfactant was smaller than that of S. cerevisiae. These strains represent a new class of biosurfactant producers that have potential for use in a variety of biotechnological and industrial processes particularly in the pharmaceutical industry.  相似文献   

10.
We characterized a newly isolated bacterium, designated as IR1, with respect to its ability to degrade polycyclic aromatic hydrocarbons (PAHs) and to produce biosurfactants. Isolated IR1 was identified as Pseudomonas putida by analysis of 16S rRNA sequences (99.6% homology). It was capable of utilizing two-, three- and four-ring PAHs but not hexadecane and octadecane as a sole carbon and energy source. PCR and DNA hybridization studies showed that enzymes involved in PAH metabolism were related to the naphthalene dioxygenase pathway. Observation of both tensio-active and emulsifying activities indicated that biosurfactants were produced by IR1 during growth on both water miscible and immiscible substrates. The biosurfactants lowered the surface tension of medium from 54.9 dN cm(-1) to 35.4 dN cm(-1) and formed a stable and compact emulsion with an emulsifying activity of 74% with diesel oil, when grown on dextrose. These findings indicate that this isolate may be useful for bioremediation of sites contaminated with aromatic hydrocarbons.  相似文献   

11.
Fifty-seven bacterial strains were isolated from PAH-contaminated soils using PAH-amended minimal medium. The isolates were screened for their production of biosurfactants and bioemulsifiers when grown in liquid media containing selected PAHs. The results suggest that many, but not all, of the isolates are able to produce biosurfactants or bioemulsifiers under the experimental conditions. The majority of the strains isolated on phenanthrene, pyrene, and fluoranthene were better emulsifiers than surface tension reducers and the stability of the formed emulsions was in general high. The strains isolated on anthracene were in general better in lowering the surface tension than in forming emulsions. In all strains, reduction of surface tension and emulsion formation did not correlate. However, in the majority of strains the two factors were associated with the bacterial cell surfaces, rather than the culture supernatants. Nevertheless, supernatants from selected surfactant-producing anthracene isolates increased the aqueous solubility of anthracene. Although a significant potential for surfactant and emulsifier production in the microbiota of the PAH-contaminated soils was found in this study, the ability of individual strains to mineralize PAHs did not coincide with production of surface-active compounds.  相似文献   

12.
Nazina  T. N.  Sokolova  D. Sh.  Grigor'yan  A. A.  Xue  Y.-F.  Belyaev  S. S.  Ivanov  M. V. 《Microbiology》2003,72(2):173-178
Twenty pure cultures isolated from formation waters of the Daqing oil field were studied with respect to their capacity to produce surface-active compounds in media with individual hydrocarbons, lower alcohols, and fatty acids. Aerobic saprotrophic bacteria belonging to the genera Bacillus, Brevibacillus, Rhodococcus, Dietzia, Kocuria, Gordonia, Cellulomonas, Clavibacter, Pseudomonas, and Acinetobacter decreased the surface tension of cultivation media from 55–63 to 28–44 mN/m. Strains of Bacillus cereus, Rhodococcus ruber, andBacillus licheniformis produced biosurfactants most actively. Bacteria of the genera Rhodococcus, Dietzia, Kocuria, and Gordonia produced exopolysaccharides in media with hydrocarbons. Culture liquids of the strains of R. ruberand B. licheniformis exhibited an oil-releasing effect. Thus, the Daqing oil field is inhabited by aerobic bacteria capable of producing effective oil-releasing agents.  相似文献   

13.
Brazil is one of the main producers of palm oil (Ellaus guineeusis). It is a low-cost product that has some interesting industrial qualities, such as its use as the raw material for the production of glycerin and soap as well as its use in the preparation of food. Some renewable sources and agroindustrial wastes have been used extensively in research on the production of biosurfactants of the Pseudomonas strains. However, to our knowledge, no studies have been published on the use of palm oil as a substrate for the synthesis of biosurfactants by Pseudomonas alcaligenes. This paper describes the production and characterization of biosurfactants synthesized by a strain of P. alcaligenes PCL previously isolated from soil that was contaminated with crude-oil. Furthermore, the paper presents the optimization of the production of biological surface-active compounds by applying experimental design tools and their capacity to emulsify hydrocarbons.  相似文献   

14.
This research was conducted to identify culturable surfactant-producing bacterial species that inhabit the 40,000-year-old natural asphalt seep at the Rancho La Brea Tar Pits in Los Angeles, CA. Using phenanthrene, monocyclic aromatic hydrocarbons, and tryptic soy broth as growth substrates, culturable bacteria from the tar pits yielded ten isolates, of which three species of gamma-proteobacteria produced biosurfactants that accumulated in spent culture medium. Partially purified biosurfactants produced by these strains lowered the surface tension of water from 70 to 35?C55 mN/m and two of the biosurfactants produced ??dark halos?? with the atomized oil assay, a phenomenon previously observed only with synthetic surfactants. Key findings include the isolation of culturable biosurfactant-producing bacteria that comprise a relatively small fraction of the petroleum-degrading community in the asphalt.  相似文献   

15.
Thermophilic bacterial cultures were isolated from a hot spring environment on hydrocarbon containing mineral salts media. One strain identified as Pseudomonas aeruginosa AP02-1 was tested for the ability to utilize a range of hydrocarbons both n-alkanes and polycyclic aromatic hydrocarbons as sole carbon source. Strain AP02-1 had an optimum growth temperature of 45°C and degraded 99% of crude oil 1% (v/v) and diesel oil 2% (v/v) when added to a basal mineral medium within 7 days of incubation. Surface activity measurements indicated that biosurfactants, mainly glycolipid in nature, were produced during the microbial growth on hydrocarbons as well as on both water-soluble and insoluble substrates. Mass spectrometry analysis showed different types of rhamnolipid production depending on the carbon substrate and culture conditions. Grown on glycerol, P. aeruginosa AP02-1 produced a mixture of ten rhamnolipid homologues, of which Rha-Rha-C10-C10 and Rha-C10-C10 were predominant. Rhamnolipid-containing culture broths reduced the surface tension to ≈28 mN and gave stable emulsions with a number of hydrocarbons and remained effective after sterilization. Microscopic observations of the emulsions suggested that hydrophobic cells acted as emulsion-stabilizing agents.  相似文献   

16.
Surface-active lipids in rhodococci   总被引:15,自引:0,他引:15  
Like other hydrocarbon-oxidising bacteria, rhodococci respond to the presence of alkanes by producing biosurfactant molecules to improve their ability to utilise these hydrophobic compounds as growth substrates. In the rhodococci these surfactants are predominantly glycolipids, the majority of which remain cell-bound during unrestricted growth. Most work has been done on the trehalose mycolates formed by Rhodococcus erythropolis, but nitrogen- limited conditions lead to the production of anionic trehalose tetraesters also.As surfactants, these compounds, whether purified or in crude form, are able to reduce the surface tension of water from 72 mN m-1 to a low of 26, thus making them among the most potent biosurfactants known. They are also able to reduce the interfacial tension between water and a hydrophobic phase (e.g. n- hexadecane) from 43 mN m-1 to values less than one (Table 1). Biosurfactants have about a ten- to 40-fold lower critical micelle concentration than synthetic surfactants. Such properties suggest a range of industrial applications, where a variety of surface-active characteristics are appropriate. Interest in biosurfactants as industrial chemicals results from the toxicity of many petrochemical-derived surfactants. Currently world-wide surfactant production is on a very large scale, and the demand for them is increasing. However, the drive towards less environmentally damaging chemicals makes biosurfactants attractive as they have lower toxicity.The reason they have not achieved a significant market share is the cost of production, which is considerably higher than for synthetic surfactants. This problem is being addressed using several strategies. An approach where there is great scope for improvement with the rhodococci is an understanding of the genetic basis of glycolipid production, which is largely unknown. They may find applications in the near future in the environmental remediation industries, where the requirement for purified molecules is of less importance.This review summarises knowledge of the chemistry, biochemistry and production of Rhodococcus surface-active lipids. Where they have been used, or there is potential for use, in industrial applications is discussed.  相似文献   

17.
一株高效降解芘的细菌分离、鉴定及其降解效果   总被引:2,自引:0,他引:2  
摘要:【目的】获得高效降解高分子量多环芳烃的细菌,并研究其对多环芳烃的降解能力。【方法】利用富集培养和芘升华平板方法,从焦化厂污染土壤中分离多环芳烃降解细菌,对分离菌株通过形态特征、16S rRNA基因和gyrb基因序列相似性分析进行鉴定,并研究该菌对高分子量多环芳烃(HMW-PAHs)的降解效果。【结果】筛选到一株能以芘、苯并蒽、屈、苯并芘、茚并芘、苯并苝、荧恩为碳源和能源生长并降解这些底物的菌株HBS1,该菌株的16S rRNA基因和gyrb基因序列与Gordonia amicalis的相应基因的相似  相似文献   

18.
Pseudomonas putida strain PCL1445 was isolated from roots of plants, grown on a site polluted with polycyclic aromatic hydrocarbons. PCL1445 produces biosurfactant activity at the end of the exponential growth phase. High-performance liquid chromatography (HPLC) analysis of supernatant extracts of PCL1445 showed two peaks with surface-tension reducing activity, tentatively assigned as biosurfactants putisolvin I and putisolvin II and was followed by structural analyses. A transposon mutant of PCL1445, strain PCL1436, which lacks the two surface-active peaks appeared to be mutated in an open reading frame (ORF) with amino acid homology to various lipopeptide synthetases. Structural analyses of the two biosurfactants of PCL1445 revealed that both are novel cyclic lipodepsipeptides with a hexanoic lipid chain connected to the N-terminus of a 12-amino-acid peptide moiety, in which the C-terminal carboxylic acid group forms an ester with the hydroxyl side-chain of Ser9. The difference between the two structures is located in the second amino acid from the C-terminus, being valine for putisolvin I, and leucine/isoleucine for putisolvin II. We show that these novel compounds lower the surface tension and influence the biofilm development on polyvinyl chloride (PVC). Biofilm formation of the bio-synthetic mutant PCL1436 was strongly increased containing more cells, which formed aggregates earlier as compared with wild-type PCL1445 biofilms. Using purified putisolvin I and II it was shown that biofilm formation of different Pseudomonas strains was inhibited and most interestingly, that both putisolvins are also able to break down existing Pseudomonas biofilms.  相似文献   

19.
The roles of the extracellular biosurfactants produced by two bacterial strains, Pseudomonas aeruginosa GL1 and Rhodococcus equi Ou2, in hexadecane uptake and biodegradation were compared. For this purpose, cell hydrophobicity and production of glycolipidic biosurfactants were evaluated during bacterial growth on hexadecane, as well the effects of these biosurfactants on culture supernatants properties i.e., surface and interfacial tensions, and emulsification and pseudosolubilization capacities. The results showed that the role of biosurfactants was different in these two strains and was directly related to the hydrophobicity of the bacterial cells concerned. Extracellular biosurfactants produced by strain R. equi Ou2 had only a minor role in hexadecane degradation. Direct interfacial accession appeared to be the main mechanism for hexadecane uptake by the hydrophobic cells of strain R. equi Ou2. On the contrary, the biosurfactants produced by P. aeruginosa GL1 were required for growth on hexadecane, and their pseudosolubilization capacity rather than their emulsification capacity was involved in substrate degradation, allowing uptake from hexadecane micelles by the hydrophilic cells of this bacterium. The roles of biosurfactants thus differ widely among bacteria degrading hydrophobic compounds. J.-P. Vandecasteele—in retirement  相似文献   

20.
具杀线虫活性植物内生细菌的筛选和活性产物   总被引:1,自引:0,他引:1  
【目的】植物寄生线虫是危害植物的重要病原物,为了筛选到能在植物体内稳定定殖并且对植物寄生线虫具有较高杀线虫活性的植物内生细菌生防菌。【方法】以松材线虫为靶标,用直接触杀法进行筛选。对高活性菌株采用正交实验优化发酵条件,测定发酵液杀线虫活性的稳定性,并对菌株进行鉴定。【结果】从6种植物中分离筛选出13株对松材线虫具有较高杀线虫活性的植物内生细菌菌株,这些菌株的发酵上清液对松材线虫处理24h杀线虫率均达到了100%;其中BCM2、SZ5、CCM7和DP1这4个菌株的杀线虫活性较高,发酵上清液稀释3倍处理24h杀线虫率均达到95%以上,DP1和SZ5菌株达到了100%;并发现部分菌株发酵液能使线虫虫体发生渗漏或消解。发酵条件优化后能使发酵液杀线虫效果提高4倍。4株高活性菌株产生的杀线虫物质均对蛋白酶稳定、耐热不耐酸碱且长时间保藏活性不下降。经过鉴定DP1和CCM7是枯草芽孢杆菌(Bacillus subtilis),BCM2和SZ5是蜡样芽孢杆菌(Bacillus cereus)。【结论】经济作物体内存在一定数量的能产生杀线虫活性物质的内生细菌,其中一些细菌产生的杀线虫物质具有较强的稳定性。认为杀线虫活性的植物内生细菌具有很大的生防潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号