首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: The power of microarray analyses to detect differential gene expression strongly depends on the statistical and bioinformatical approaches used for data analysis. Moreover, the simultaneous testing of tens of thousands of genes for differential expression raises the 'multiple testing problem', increasing the probability of obtaining false positive test results. To achieve more reliable results, it is, therefore, necessary to apply adjustment procedures to restrict the family-wise type I error rate (FWE) or the false discovery rate. However, for the biologist the statistical power of such procedures often remains abstract, unless validated by an alternative experimental approach. RESULTS: In the present study, we discuss a multiplicity adjustment procedure applied to classical univariate as well as to recently proposed multivariate gene-expression scores. All procedures strictly control the FWE. We demonstrate that the use of multivariate scores leads to a more efficient identification of differentially expressed genes than the widely used MAS5 approach provided by the Affymetrix software tools (Affymetrix Microarray Suite 5 or GeneChip Operating Software). The practical importance of this finding is successfully validated using real time quantitative PCR and data from spike-in experiments. AVAILABILITY: The R-code of the statistical routines can be obtained from the corresponding author. CONTACT: Schuster@imise.uni-leipzig.de  相似文献   

2.
3.
Adjustment of systematic microarray data biases   总被引:6,自引:0,他引:6  
MOTIVATION: Systematic differences due to experimental features of microarray experiments are present in most large microarray data sets. Many different experimental features can cause biases including different sources of RNA, different production lots of microarrays or different microarray platforms. These systematic effects present a substantial hurdle to the analysis of microarray data. RESULTS: We present here a new method for the identification and adjustment of systematic biases that are present within microarray data sets. Our approach is based on modern statistical discrimination methods and is shown to be very effective in removing systematic biases present in a previously published breast tumor cDNA microarray data set. The new method of 'Distance Weighted Discrimination (DWD)' is shown to be better than Support Vector Machines and Singular Value Decomposition for the adjustment of systematic microarray effects. In addition, it is shown to be of general use as a tool for the discrimination of systematic problems present in microarray data sets, including the merging of two breast tumor data sets completed on different microarray platforms. AVAILABILITY: Matlab software to perform DWD can be retrieved from https://genome.unc.edu/pubsup/dwd/  相似文献   

4.
MOTIVATION: The biologic significance of results obtained through cluster analyses of gene expression data generated in microarray experiments have been demonstrated in many studies. In this article we focus on the development of a clustering procedure based on the concept of Bayesian model-averaging and a precise statistical model of expression data. RESULTS: We developed a clustering procedure based on the Bayesian infinite mixture model and applied it to clustering gene expression profiles. Clusters of genes with similar expression patterns are identified from the posterior distribution of clusterings defined implicitly by the stochastic data-generation model. The posterior distribution of clusterings is estimated by a Gibbs sampler. We summarized the posterior distribution of clusterings by calculating posterior pairwise probabilities of co-expression and used the complete linkage principle to create clusters. This approach has several advantages over usual clustering procedures. The analysis allows for incorporation of a reasonable probabilistic model for generating data. The method does not require specifying the number of clusters and resulting optimal clustering is obtained by averaging over models with all possible numbers of clusters. Expression profiles that are not similar to any other profile are automatically detected, the method incorporates experimental replicates, and it can be extended to accommodate missing data. This approach represents a qualitative shift in the model-based cluster analysis of expression data because it allows for incorporation of uncertainties involved in the model selection in the final assessment of confidence in similarities of expression profiles. We also demonstrated the importance of incorporating the information on experimental variability into the clustering model. AVAILABILITY: The MS Windows(TM) based program implementing the Gibbs sampler and supplemental material is available at http://homepages.uc.edu/~medvedm/BioinformaticsSupplement.htm CONTACT: medvedm@email.uc.edu  相似文献   

5.
PURPOSE OF REVIEW: To highlight the development in microarray data analysis for the identification of differentially expressed genes, particularly via control of false discovery rate. RECENT FINDINGS: The emergence of high-throughput technology such as microarrays raises two fundamental statistical issues: multiplicity and sensitivity. We focus on the biological problem of identifying differentially expressed genes. First, multiplicity arises due to testing tens of thousands of hypotheses, rendering the standard P value meaningless. Second, known optimal single-test procedures such as the t-test perform poorly in the context of highly multiple tests. The standard approach of dealing with multiplicity is too conservative in the microarray context. The false discovery rate concept is fast becoming the key statistical assessment tool replacing the P value. We review the false discovery rate approach and argue that it is more sensible for microarray data. We also discuss some methods to take into account additional information from the microarrays to improve the false discovery rate. SUMMARY: There is growing consensus on how to analyse microarray data using the false discovery rate framework in place of the classical P value. Further research is needed on the preprocessing of the raw data, such as the normalization step and filtering, and on finding the most sensitive test procedure.  相似文献   

6.
Bias in the estimation of false discovery rate in microarray studies   总被引:4,自引:0,他引:4  
MOTIVATION: The false discovery rate (FDR) provides a key statistical assessment for microarray studies. Its value depends on the proportion pi(0) of non-differentially expressed (non-DE) genes. In most microarray studies, many genes have small effects not easily separable from non-DE genes. As a result, current methods often overestimate pi(0) and FDR, leading to unnecessary loss of power in the overall analysis. METHODS: For the common two-sample comparison we derive a natural mixture model of the test statistic and an explicit bias formula in the standard estimation of pi(0). We suggest an improved estimation of pi(0) based on the mixture model and describe a practical likelihood-based procedure for this purpose. RESULTS: The analysis shows that a large bias occurs when pi(0) is far from 1 and when the non-centrality parameters of the distribution of the test statistic are near zero. The theoretical result also explains substantial discrepancies between non-parametric and model-based estimates of pi(0). Simulation studies indicate mixture-model estimates are less biased than standard estimates. The method is applied to breast cancer and lymphoma data examples. AVAILABILITY: An R-package OCplus containing functions to compute pi(0) based on the mixture model, the resulting FDR and other operating characteristics of microarray data, is freely available at http://www.meb.ki.se/~yudpaw CONTACT: yudi.pawitan@meb.ki.se and alexander.ploner@meb.ki.se.  相似文献   

7.
Microarray technology is rapidly emerging for genome-wide screening of differentially expressed genes between clinical subtypes or different conditions of human diseases. Traditional statistical testing approaches, such as the two-sample t-test or Wilcoxon test, are frequently used for evaluating statistical significance of informative expressions but require adjustment for large-scale multiplicity. Due to its simplicity, Bonferroni adjustment has been widely used to circumvent this problem. It is well known, however, that the standard Bonferroni test is often very conservative. In the present paper, we compare three multiple testing procedures in the microarray context: the original Bonferroni method, a Bonferroni-type improved single-step method and a step-down method. The latter two methods are based on nonparametric resampling, by which the null distribution can be derived with the dependency structure among gene expressions preserved and the family-wise error rate accurately controlled at the desired level. We also present a sample size calculation method for designing microarray studies. Through simulations and data analyses, we find that the proposed methods for testing and sample size calculation are computationally fast and control error and power precisely.  相似文献   

8.
One of multiple testing problems in drug finding experiments is the comparison of several treatments with one control. In this paper we discuss a particular situation of such an experiment, i.e., a microarray setting, where the many-to-one comparisons need to be addressed for thousands of genes simultaneously. For a gene-specific analysis, Dunnett's single step procedure is considered within gene tests, while the FDR controlling procedures such as Significance Analysis of Microarrays (SAM) and Benjamini and Hochberg (BH) False Discovery Rate (FDR) adjustment are applied to control the error rate across genes. The method is applied to a microarray experiment with four treatment groups (three microarrays in each group) and 16,998 genes. Simulation studies are conducted to investigate the performance of the SAM method and the BH-FDR procedure with regard to controlling the FDR, and to investigate the effect of small-variance genes on the FDR in the SAM procedure.  相似文献   

9.
MOTIVATION: Gene expression profile data are rapidly accumulating due to advances in microarray techniques. The abundant data are analyzed by clustering procedures to extract the useful information about the genes inherent in the data. In the clustering analyses, the systematic determination of the boundaries of gene clusters, instead of by visual inspection and biological knowledge, still remains challenging. RESULTS: We propose a statistical procedure to estimate the number of clusters in the hierarchical clustering of the expression profiles. Following the hierarchical clustering, the statistical property of the profiles at the node in the dendrogram is evaluated by a statistics-based value: the variance inflation factor in the multiple regression analysis. The evaluation leads to an automatic determination of the cluster boundaries without any additional analyses and any biological knowledge of the measured genes. The performance of the present procedure is demonstrated on the profiles of 2467 yeast genes, with very promising results. AVAILABILITY: A set of programs will be electronically sent upon request. CONTACT: horimoto@post.saga-med.ac.jp; toh@beri.co.jp  相似文献   

10.
In the analysis of data from proteomic mass spectrometry experiments, an important issue is determining which of the observed peptide spectrum matches (PSMs) represent true positives. We view this problem through a multiple testing framework and develop procedures for deciding true PSMs. A key feature that makes the problem relative unique to the differential expression problem in microarray analysis is that the null distribution can potentially be estimated from the data. However, this renders much of the asymptotic results from the statistical literature to be invalid. We prove some new key results for this problem using empirical process theory. We also develop a new multiple testing procedure that employs multivariate information from the peptide sequence searches. The proposed methods are studied using a real data set as well as simulated data.  相似文献   

11.
The number of methods for pre-processing and analysis of gene expression data continues to increase, often making it difficult to select the most appropriate approach. We present a simple procedure for comparative estimation of a variety of methods for microarray data pre-processing and analysis. Our approach is based on the use of real microarray data in which controlled fold changes are introduced into 20% of the data to provide a metric for comparison with the unmodified data. The data modifications can be easily applied to raw data measured with any technological platform and retains all the complex structures and statistical characteristics of the real-world data. The power of the method is illustrated by its application to the quantitative comparison of different methods of normalization and analysis of microarray data. Our results demonstrate that the method of controlled modifications of real experimental data provides a simple tool for assessing the performance of data preprocessing and analysis methods.  相似文献   

12.
MOTIVATION: Many standard statistical techniques are effective on data that are normally distributed with constant variance. Microarray data typically violate these assumptions since they come from non-Gaussian distributions with a non-trivial mean-variance relationship. Several methods have been proposed that transform microarray data to stabilize variance and draw its distribution towards the Gaussian. Some methods, such as log or generalized log, rely on an underlying model for the data. Others, such as the spread-versus-level plot, do not. We propose an alternative data-driven multiscale approach, called the Data-Driven Haar-Fisz for microarrays (DDHFm) with replicates. DDHFm has the advantage of being 'distribution-free' in the sense that no parametric model for the underlying microarray data is required to be specified or estimated; hence, DDHFm can be applied very generally, not just to microarray data. RESULTS: DDHFm achieves very good variance stabilization of microarray data with replicates and produces transformed intensities that are approximately normally distributed. Simulation studies show that it performs better than other existing methods. Application of DDHFm to real one-color cDNA data validates these results. AVAILABILITY: The R package of the Data-Driven Haar-Fisz transform (DDHFm) for microarrays is available in Bioconductor and CRAN.  相似文献   

13.
MOTIVATION: One particular application of microarray data, is to uncover the molecular variation among cancers. One feature of microarray studies is the fact that the number n of samples collected is relatively small compared to the number p of genes per sample which are usually in the thousands. In statistical terms this very large number of predictors compared to a small number of samples or observations makes the classification problem difficult. An efficient way to solve this problem is by using dimension reduction statistical techniques in conjunction with nonparametric discriminant procedures. RESULTS: We view the classification problem as a regression problem with few observations and many predictor variables. We use an adaptive dimension reduction method for generalized semi-parametric regression models that allows us to solve the 'curse of dimensionality problem' arising in the context of expression data. The predictive performance of the resulting classification rule is illustrated on two well know data sets in the microarray literature: the leukemia data that is known to contain classes that are easy 'separable' and the colon data set.  相似文献   

14.
Landgrebe J  Wurst W  Welzl G 《Genome biology》2002,3(4):research0019.1-research001911

Background  

In microarray data analysis, the comparison of gene-expression profiles with respect to different conditions and the selection of biologically interesting genes are crucial tasks. Multivariate statistical methods have been applied to analyze these large datasets. Less work has been published concerning the assessment of the reliability of gene-selection procedures. Here we describe a method to assess reliability in multivariate microarray data analysis using permutation-validated principal components analysis (PCA). The approach is designed for microarray data with a group structure.  相似文献   

15.
As the number of users of microarray technology continues to grow, so does the importance of platform assessments and comparisons. Spike-in experiments have been successfully used for internal technology assessments by microarray manufacturers and for comparisons of competing data analysis approaches. The microarray literature is saturated with statistical assessments based on spike-in experiment data. Unfortunately, the statistical assessments vary widely and are applicable only in specific cases. This has introduced confusion into the debate over best practices with regards to which platform, protocols and data analysis tools are best. Furthermore, cross-platform comparisons have proven difficult because reported concentrations are not comparable. In this article, we introduce two new spike-in experiments, present a novel statistical solution that enables cross-platform comparisons, and propose a comprehensive procedure for assessments based on spike-in experiments. The ideas are implemented in a user friendly Bioconductor package: spkTools. We demonstrated the utility of our tools by presenting the first spike-in-based comparison of the three major platforms–Affymetrix, Agilent and Illumina.  相似文献   

16.
Two-color DNA microarrays are commonly used for the analysis of global gene expression. They provide information on relative abundance of thousands of mRNAs. However, the generated data need to be normalized to minimize systematic variations so that biologically significant differences can be more easily identified. A large number of normalization procedures have been proposed and many softwares for microarray data analysis are available. Here, we have applied two normalization methods (median and loess) from two packages of microarray data analysis softwares. They were examined using a sample data set. We found that the number of genes identified as differentially expressed varied significantly depending on the method applied. The obtained results, i.e. lists of differentially expressed genes, were consistent only when we used median normalization methods. Loess normalization implemented in the two software packages provided less coherent and for some probes even contradictory results. In general, our results provide an additional piece of evidence that the normalization method can profoundly influence final results of DNA microarray-based analysis. The impact of the normalization method depends greatly on the algorithm employed. Consequently, the normalization procedure must be carefully considered and optimized for each individual data set.  相似文献   

17.
SpotWhatR is a user-friendly microarray data analysis tool that runs under a widely and freely available R statistical language (http://www.r-project.org) for Windows and Linux operational systems. The aim of SpotWhatR is to help the researcher to analyze microarray data by providing basic tools for data visualization, normalization, determination of differentially expressed genes, summarization by Gene Ontology terms, and clustering analysis. SpotWhatR allows researchers who are not familiar with computational programming to choose the most suitable analysis for their microarray dataset. Along with well-known procedures used in microarray data analysis, we have introduced a stand-alone implementation of the HTself method, especially designed to find differentially expressed genes in low-replication contexts. This approach is more compatible with our local reality than the usual statistical methods. We provide several examples derived from the Blastocladiella emersonii and Xylella fastidiosa Microarray Projects. SpotWhatR is freely available at http://blasto.iq.usp.br/~tkoide/SpotWhatR, in English and Portuguese versions. In addition, the user can choose between "single experiment" and "batch processing" versions.  相似文献   

18.
MOTIVATION: Multi-series time-course microarray experiments are useful approaches for exploring biological processes. In this type of experiments, the researcher is frequently interested in studying gene expression changes along time and in evaluating trend differences between the various experimental groups. The large amount of data, multiplicity of experimental conditions and the dynamic nature of the experiments poses great challenges to data analysis. RESULTS: In this work, we propose a statistical procedure to identify genes that show different gene expression profiles across analytical groups in time-course experiments. The method is a two-regression step approach where the experimental groups are identified by dummy variables. The procedure first adjusts a global regression model with all the defined variables to identify differentially expressed genes, and in second a variable selection strategy is applied to study differences between groups and to find statistically significant different profiles. The methodology is illustrated on both a real and a simulated microarray dataset.  相似文献   

19.
MOTIVATION: One important application of gene expression microarray data is classification of samples into categories, such as the type of tumor. The use of microarrays allows simultaneous monitoring of thousands of genes expressions per sample. This ability to measure gene expression en masse has resulted in data with the number of variables p(genes) far exceeding the number of samples N. Standard statistical methodologies in classification and prediction do not work well or even at all when N < p. Modification of existing statistical methodologies or development of new methodologies is needed for the analysis of microarray data. RESULTS: We propose a novel analysis procedure for classifying (predicting) human tumor samples based on microarray gene expressions. This procedure involves dimension reduction using Partial Least Squares (PLS) and classification using Logistic Discrimination (LD) and Quadratic Discriminant Analysis (QDA). We compare PLS to the well known dimension reduction method of Principal Components Analysis (PCA). Under many circumstances PLS proves superior; we illustrate a condition when PCA particularly fails to predict well relative to PLS. The proposed methods were applied to five different microarray data sets involving various human tumor samples: (1) normal versus ovarian tumor; (2) Acute Myeloid Leukemia (AML) versus Acute Lymphoblastic Leukemia (ALL); (3) Diffuse Large B-cell Lymphoma (DLBCLL) versus B-cell Chronic Lymphocytic Leukemia (BCLL); (4) normal versus colon tumor; and (5) Non-Small-Cell-Lung-Carcinoma (NSCLC) versus renal samples. Stability of classification results and methods were further assessed by re-randomization studies.  相似文献   

20.
Multivariate exploratory tools for microarray data analysis   总被引:2,自引:0,他引:2  
The ultimate success of microarray technology in basic and applied biological sciences depends critically on the development of statistical methods for gene expression data analysis. The most widely used tests for differential expression of genes are essentially univariate. Such tests disregard the multidimensional structure of microarray data. Multivariate methods are needed to utilize the information hidden in gene interactions and hence to provide more powerful and biologically meaningful methods for finding subsets of differentially expressed genes. The objective of this paper is to develop methods of multidimensional search for biologically significant genes, considering expression signals as mutually dependent random variables. To attain these ends, we consider the utility of a pertinent distance between random vectors and its empirical counterpart constructed from gene expression data. The distance furnishes exploratory procedures aimed at finding a target subset of differentially expressed genes. To determine the size of the target subset, we resort to successive elimination of smaller subsets resulting from each step of a random search algorithm based on maximization of the proposed distance. Different stopping rules associated with this procedure are evaluated. The usefulness of the proposed approach is illustrated with an application to the analysis of two sets of gene expression data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号