首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Lugo MR  Sharom FJ 《Biochemistry》2005,44(42):14020-14029
The P-glycoprotein efflux pump, an ABC superfamily member, can export a wide variety of hydrophobic drugs, natural products, and peptides from cells, powered by the energy of ATP hydrolysis. Transport substrates appear to first partition into the membrane and then interact with the protein within the cytoplasmic leaflet. Two drug binding sites within P-glycoprotein have been described which interact allosterically, the H-site (binds Hoechst 33342) and the R-site (binds rhodamine 123); however, the structural and functional relationship between the various binding sites appears complex. In this work, we have used fluorescence spectroscopic approaches to characterize the interaction of the transporter with LDS-751 and rhodamine 123, both of which are believed to bind to the putative R-site based on functional transport studies. By carrying out single and sequential dual fluorescence titrations of purified P-glycoprotein with the two substrates, we observed that bound LDS-751 interacted with bound rhodamine 123. Rhodamine 123 and LDS-751 showed a reciprocal negative interaction, each reducing the binding affinity of the other by 5-fold, indicating that the two compounds were simultaneously bound to the protein to form a ternary complex. Fitting of the dependence of the apparent Kd for LDS-751 binding on rhodamine 123 concentration suggested that the two compounds interacted noncompetitively. We conclude that the two-site drug binding model for P-glycoprotein requires modification. The putative R-site appears large enough to accommodate two compounds simultaneously. The locations where LDS-751 and rhodamine 123 bind are likely adjacent to each other, possibly overlapping, and may be within a hydrophobic pocket.  相似文献   

2.
Qu Q  Sharom FJ 《Biochemistry》2002,41(14):4744-4752
The P-glycoprotein multidrug transporter carries out ATP-driven cellular efflux of a wide variety of hydrophobic drugs, natural products, and peptides. Multiple binding sites for substrates appear to exist, most likely within the hydrophobic membrane spanning regions of the protein. Since ATP hydrolysis is coupled to drug transport, the spatial relationship of the drug binding sites relative to the ATPase catalytic sites is of considerable interest. We have used a fluorescence resonance energy transfer (FRET) approach to estimate the distance between a bound substrate and the catalytic sites in purified P-glycoprotein. The fluorescent dye Hoechst 33342 (H33342), a high-affinity P-glycoprotein substrate, bound to the transporter and acted as a FRET donor. H33342 showed greatly enhanced fluorescence emission when bound to P-glycoprotein, together with a substantial blue shift, indicating that the drug binding site is located in a nonpolar environment. Cys428 and Cys1071 within the catalytic sites of P-glycoprotein were covalently labeled with the acceptor fluorophore NBD-Cl (7-chloro-4-nitrobenz-2-oxa-1,3-diazole). H33342 fluorescence was highly quenched when bound to NBD-labeled P-glycoprotein relative to unlabeled protein, indicating that FRET takes place from the bound dye to NBD. The distance separating the bound dye from the NBD acceptor was estimated to be approximately 38 A. Transition-state P-glycoprotein with the complex ADP*orthovanadate*Co2+ stably trapped at one catalytic site bound H33342 with similar affinity, and FRET measurements led to a similar separation distance estimate of 34 A. Since previous FRET studies indicated that a fluorophore bound within the catalytic site was positioned 31-35 A from the interfacial region of the bilayer, the H33342 binding site is likely located 10-14 A below the membrane surface, within the cytoplasmic leaflet of the membrane, in both resting-state and transition-state P-glycoprotein.  相似文献   

3.
Romsicki Y  Sharom FJ 《Biochemistry》2001,40(23):6937-6947
The P-glycoprotein multidrug transporter acts as an ATP-powered efflux pump for a large variety of hydrophobic drugs, natural products, and peptides. The protein is proposed to interact with its substrates within the hydrophobic interior of the membrane. There is indirect evidence to suggest that P-glycoprotein can also transport, or "flip", short chain fluorescent lipids between leaflets of the membrane. In this study, we use a fluorescence quenching technique to directly show that P-glycoprotein reconstituted into proteoliposomes translocates a wide variety of NBD lipids from the outer to the inner leaflet of the bilayer. Flippase activity depended on ATP hydrolysis at the outer surface of the proteoliposome, and was inhibited by vanadate. P-Glycoprotein exhibited a broad specificity for phospholipids, and translocated phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin. Lipid derivatives that were flipped included molecules with long, short, unsaturated, and saturated acyl chains and species with the NBD group covalently linked to either acyl chains or the headgroup. The extent of lipid translocation from the outer to the inner leaflet in a 20 min period at 37 degrees C was directly estimated, and fell in the range of 0.36-1.83 nmol/mg of protein. Phospholipid flipping was inhibited in a concentration-dependent, saturable fashion by various substrates and modulators, including vinblastine, verapamil, and cyclosporin A, and the efficiency of inhibition correlated well with the affinity of binding to Pgp. Taken together, these results suggest that P-glycoprotein carries out both lipid translocation and drug transport by the same path. The transporter may be a generic flippase for hydrophobic molecules with the correct steric attributes that are present within the membrane interior.  相似文献   

4.
P-glycoprotein (Pgp; ABCB1), a member of the ATP-binding cassette (ABC) superfamily, exports structurally diverse hydrophobic compounds from the cell, driven by ATP hydrolysis. Pgp expression has been linked to the efflux of chemotherapeutic drugs in human cancers, leading to multidrug resistance (MDR). The protein also plays an important physiological role in limiting drug uptake in the gut and entry into the brain. Substrates partition into the lipid bilayer before interacting with Pgp, which has been proposed to function as a hydrophobic vacuum cleaner. Low- and medium-resolution structural models of Pgp suggest that the 2 nucleotide-binding domains are closely associated to form a nucleotide sandwich dimer. Pgp is an outwardly directed flippase for fluorescent phospholipid and glycosphingolipid derivatives, which suggests that it may also translocate drug molecules from the inner to the outer membrane leaflet. The ATPase catalytic cycle of the protein is thought to proceed via an alternating site mechanism, although the details are not understood. The lipid bilayer plays an important role in Pgp function, and may regulate both the binding and transport of drugs. This review focuses on the structure and function of Pgp, and highlights the importance of fluorescence spectroscopic techniques in exploring the molecular details of this enigmatic transporter.  相似文献   

5.
Pgp (P-glycoprotein) (ABCB1) is an ATP-powered efflux pump which can transport hundreds of structurally unrelated hydrophobic amphipathic compounds, including therapeutic drugs, peptides and lipid-like compounds. This 170 kDa polypeptide plays a crucial physiological role in protecting tissues from toxic xenobiotics and endogenous metabolites, and also affects the uptake and distribution of many clinically important drugs. It forms a major component of the blood-brain barrier and restricts the uptake of drugs from the intestine. The protein is also expressed in many human cancers, where it probably contributes to resistance to chemotherapy treatment. Many chemical modulators have been identified that block the action of Pgp, and may have clinical applications in improving drug delivery and treating cancer. Pgp substrates are generally lipid-soluble, and partition into the membrane before the transporter expels them into the aqueous phase, much like a 'hydrophobic vacuum cleaner'. The transporter may also act as a 'flippase', moving its substrates from the inner to the outer membrane leaflet. An X-ray crystal structure shows that drugs interact with Pgp within the transmembrane regions by fitting into a large flexible binding pocket, which can accommodate several substrate molecules simultaneously. The nucleotide-binding domains of Pgp appear to hydrolyse ATP in an alternating manner; however, it is still not clear whether transport is driven by ATP hydrolysis or ATP binding. Details of the steps involved in the drug-transport process, and how it is coupled to ATP hydrolysis, remain the object of intensive study.  相似文献   

6.
The P-glycoprotein multidrug transporter (Pgp; ABCB1) is an ATP-binding cassette (ABC) protein that has been implicated in the multidrug resistance of human cancers. Pgp couples ATP hydrolysis to active extrusion from the cell of a broad array of amphipathic compounds via an ill-defined mechanism. Substrates are believed to interact with Pgp within the membrane. Reconstituted Pgp functions as an ATP-dependent flippase for a variety of fluorescently labelled membrane lipids. The protein may also function as a drug 'flippase', moving its substrates from the inner to the outer leaflet of the bilayer. We show that lipid-based anti-cancer drugs, such as miltefosine, and signaling molecules, such as platelet-activating factors, bind saturably to Pgp with Kd values in the low micromolar range, and modulate its ATPase activity. These compounds also inhibit Pgp-mediated flipping of fluorescent lipids and transport of Hoechst 33342 and tetramethylrosamine, which occupy different subsites in the drug-binding pocket. Bacterial lipid A modulates Pgp ATPase activity, and glycolipid flipping is inhibited by unlabelled glucosylceramide, suggesting that these lipids also interact with the transporter. These results indicate that Pgp treats a variety of lipid-based molecules as substrates, and likely interacts with lipids and drugs in the same manner.  相似文献   

7.
The P-glycoprotein multidrug transporter is a 170-kDa efflux pump which exports a diverse group of natural products, chemotherapeutic drugs, and hydrophobic peptides across the plasma membrane, driven by ATP hydrolysis. The transporter has been proposed to interact with its drug substrates within the membrane environment; however, much remains to be learned about the nature and number of the drug binding site(s). The two nucleotide binding domains are responsible for ATP binding and hydrolysis, which is coupled to drug movement across the membrane. In recent years, P-glycoprotein has been purified and functionally reconstituted in amounts large enough to allow biophysical studies. The use of spectroscopic techniques has led to insights into both its secondary and tertiary structure, and its interaction with nucleotides and drugs. In this review, we will summarise what has been learned by application to purified P-glycoprotein of fluorescence spectroscopy, circular dichroism spectroscopy and infra-red spectroscopy.  相似文献   

8.
Qu Q  Chu JW  Sharom FJ 《Biochemistry》2003,42(5):1345-1353
The P-glycoprotein multidrug transporter is a plasma membrane efflux pump for hydrophobic natural products, drugs, and peptides, driven by ATP hydrolysis. Determination of the details of the catalytic cycle of P-glycoprotein is critical if we are to understand the mechanism of drug transport and design ways to inhibit it. It has been proposed that the vanadate-trapped transition state of P-glycoprotein (Pgp x ADP x V(i) x M(2+), where M(2+) is a divalent metal ion) has a very low affinity for drugs compared to resting state protein, thus leading to binding of substrate on the cytoplasmic side of the membrane and release of substrate to the extracellular medium (or the extracellular membrane leaflet). We have used several different fluorescence spectroscopic approaches to show that isolated purified P-glycoprotein, when trapped in a stable transition state with vanadate and either Co(2+)or Mg(2+), binds drugs with high affinity. For vinblastine, colchicine, rhodamine 123, and doxorubicin, the affinity of the vanadate-trapped transition state for drugs was only very slightly (less than 2-fold) lower than the binding affinity of resting state Pgp, whereas for the modulators cyclosporin A and verapamil and the substrate Hoechst 33342, the binding affinity was very similar for the two states. The drug binding affinity of the ADP-bound form of the transporter was also comparable to that of the unoccupied transporter. These results suggest that release of drug from the transporter during the catalytic cycle precedes formation of the transition state.  相似文献   

9.
The MDR1 P-glycoprotein, an ATP-binding cassette (ABC) superfamily member that functions as an ATP-driven drug efflux pump, has been linked to resistance of human tumors to multiple chemotherapeutic agents. P-glycoprotein binds and actively transports a large variety of hydrophobic drugs and peptides. P-glycoprotein in reconstituted proteoliposomes is also an outwardly directed flippase for membrane phospholipids and simple glycosphinglipids. This review focuses on recent advances in our understanding of P-glycoprotein structure and function, particularly through the use of fluorescence spectroscopic approaches. Progress is being made towards understanding the structure of the transporter, especially the spatial relationship between the two nucleotide-binding domains. Exploration of the P-glycoprotein catalytic cycle using vanadate-trapped complexes has revealed that drug transport likely takes place by concerted conformational changes linked to relaxation of a high energy intermediate. Low resolution mapping of the protein using fluorescence resonance energy transfer showed that both the H and R drug-binding sites are located within the cytoplasmic leaflet. Two drugs can bind to the R-site simultaneously, suggesting that the protein contains a large flexible binding region.  相似文献   

10.
Lactococcus lactis possesses an ATP-dependent drug extrusion system which shares functional properties with the mammalian multidrug resistance (MDR) transporter P-glycoprotein. One of the intriguing aspects of both transporters is their ability to interact with a broad range of structurally unrelated amphiphilic compounds. It has been suggested that P-glycoprotein removes drugs directly from the membrane. Evidence is presented that this model is correct for the lactococcal multidrug transporter through studies of the extrusion mechanism of BCECF-AM and cationic diphenylhexatriene (DPH) derivatives from the membrane. The non-fluorescent probe BCECF-AM can be converted intracellularly into its fluorescent derivative, BCECF, by non-specific esterase activities. The development of fluorescence was decreased upon energization of the cells. These and kinetic studies showed that BCECF-AM is actively extruded from the membrane before it can be hydrolysed intracellularly. The increase in fluorescence intensity due to the distribution of TMA-DPH into the phospholipid bilayer is a biphasic process. This behaviour reflects the fast entry of TMA-DPH into the outer leaflet followed by a slower transbilayer movement to the inner leaflet of the membrane. The initial rate of TMA-DPH extrusion correlates with the amount of probe associated with the inner leaflet. Taken together, these results demonstrate that the lactococcal MDR transporter functions as a 'hydrophobic vacuum cleaner', expelling drugs from the inner leaflet of the lipid bilayer. Thus, the ability of amphiphilic substrates to partition in the inner leaflet of the membrane is a prerequisite for recognition by multidrug transporters.  相似文献   

11.
Liu R  Siemiarczuk A  Sharom FJ 《Biochemistry》2000,39(48):14927-14938
P-glycoprotein is a member of the ATP binding cassette family of membrane proteins, and acts as an ATP-driven efflux pump for a diverse group of hydrophobic drugs, natural products, and peptides. The side chains of aromatic amino acids have been proposed to play an important role in recognition and binding of substrates by P-glycoprotein. Steady-state and lifetime fluorescence techniques were used to probe the environment of the 11 tryptophan residues within purified functional P-glycoprotein, and their response to binding of nucleotides and substrates. The emission spectrum of P-glycoprotein indicated that these residues are present in a relatively nonpolar environment, and time-resolved experiments showed the existence of at least two lifetimes. Quenching studies with acrylamide and iodide indicated that those tryptophan residues predominantly contributing to fluorescence emission are buried within the protein structure. Only small differences in Stern-Volmer quenching constants were noted on binding of nucleotides and drugs, arguing against large changes in tryptophan accessibility following substrate binding. P-glycoprotein fluorescence was highly quenched on binding of fluorescent nucleotides, and moderately quenched by ATP, ADP, and AMP-PNP, suggesting that the site for nucleotide binding is located relatively close to tryptophan residues. Drugs, modulators, hydrophobic peptides, and nucleotides quenched the fluorescence of P-glycoprotein in a saturable fashion, allowing estimation of dissociation constants. Many compounds exhibited biphasic quenching, suggesting the existence of multiple drug binding sites. The quenching observed for many substrates was attributable largely to resonance energy transfer, indicating that these compounds may be located close to tryptophan residues within, or adjacent to, the membrane-bound domains. Thus, the regions of P-glycoprotein involved in nucleotide and drug binding appear to be packed together compactly, which would facilitate coupling of ATP hydrolysis to drug transport.  相似文献   

12.
P-glycoprotein (Pgp, ABCB1) is an ATP-Binding Cassette (ABC) transporter that is associated with the development of multidrug resistance in cancer cells. Pgp transports a variety of chemically dissimilar amphipathic compounds using the energy from ATP hydrolysis. In the present study, to elucidate the binding sites on Pgp for substrates and modulators, we employed site-directed mutagenesis, cell- and membrane-based assays, molecular modeling and docking. We generated single, double and triple mutants with substitutions of the Y307, F343, Q725, F728, F978 and V982 residues at the proposed drug-binding site with cys in a cysless Pgp, and expressed them in insect and mammalian cells using a baculovirus expression system. All the mutant proteins were expressed at the cell surface to the same extent as the cysless wild-type Pgp. With substitution of three residues of the pocket (Y307, Q725 and V982) with cysteine in a cysless Pgp, QZ59S-SSS, cyclosporine A, tariquidar, valinomycin and FSBA lose the ability to inhibit the labeling of Pgp with a transport substrate, [125I]-Iodoarylazidoprazosin, indicating these drugs cannot bind at their primary binding sites. However, the drugs can modulate the ATP hydrolysis of the mutant Pgps, demonstrating that they bind at secondary sites. In addition, the transport of six fluorescent substrates in HeLa cells expressing triple mutant (Y307C/Q725C/V982C) Pgp is also not significantly altered, showing that substrates bound at secondary sites are still transported. The homology modeling of human Pgp and substrate and modulator docking studies support the biochemical and transport data. In aggregate, our results demonstrate that a large flexible pocket in the Pgp transmembrane domains is able to bind chemically diverse compounds. When residues of the primary drug-binding site are mutated, substrates and modulators bind to secondary sites on the transporter and more than one transport-active binding site is available for each substrate.  相似文献   

13.
Druley TE  Stein WD  Roninson IB 《Biochemistry》2001,40(14):4312-4322
The reactivity of the ATP-dependent multidrug transporter P-glycoprotein (Pgp) with the conformation-sensitive monoclonal antibody UIC2 is increased in the presence of Pgp transport substrates, ATP-depleting agents, or mutations that reduce the level of nucleotide binding by Pgp. We have investigated the effects of nucleotides and vinblastine, a Pgp transport substrate, on the UIC2 reactivity of Pgp in cells permeabilized by Staphylococcus aureus alpha-toxin. ATP, ADP, and nonhydrolyzable ATP analogues decreased the UIC2 reactivity; this effect was potentiated by vanadate, a nucleotide-trapping agent. The Hill number for the nucleotide-induced conformational transition was 2 for ATP and ADP but 1 for nonhydrolyzable ATP analogues. The Hill numbers for ATP and ADP were decreased to 1 by mutations in one of the two nucleotide binding sites of Pgp, whereas mutation of both sites greatly diminished the overall effect of nucleotides. Vinblastine reversed the decrease in the UIC2 reactivity brought about by all the nucleotides, including nonhydrolyzable analogues; this effect of vinblastine was blocked by vanadate. These data indicate that UIC2-detectable conformational changes of Pgp are driven by binding and debinding of nucleotides, that nucleotide hydrolysis affects the Hill number for its Pgp interactions, and that Pgp transport substrates promote nucleotide dissociation from Pgp. These findings are consistent with a conventional E1/E2 model that explains conformational transitions of a transporter protein through a series of linked equilibria.  相似文献   

14.
Drug–drug interactions (DDIs) and associated toxicity from cardiovascular drugs represents a major problem for effective co-administration of cardiovascular therapeutics. A significant amount of drug toxicity from DDIs occurs because of drug interactions and multiple cardiovascular drug binding to the efflux transporter P-glycoprotein (Pgp), which is particularly problematic for cardiovascular drugs because of their relatively low therapeutic indexes. The calcium channel antagonist, verapamil and the cardiac glycoside, digoxin, exhibit DDIs with Pgp through non-competitive inhibition of digoxin transport, which leads to elevated digoxin plasma concentrations and digoxin toxicity. In the present study, verapamil-induced ATPase activation kinetics were biphasic implying at least two verapamil-binding sites on Pgp, whereas monophasic digoxin activation of Pgp-coupled ATPase kinetics suggested a single digoxin-binding site. Using intrinsic protein fluorescence and the saturation transfer double difference (STDD) NMR techniques to probe drug–Pgp interactions, verapamil was found to have little effect on digoxin–Pgp interactions at low concentrations of verapamil, which is consistent with simultaneous binding of the drugs and non-competitive inhibition. Higher concentrations of verapamil caused significant disruption of digoxin–Pgp interactions that suggested overlapping and competing drug-binding sites. These interactions correlated to drug-induced conformational changes deduced from acrylamide quenching of Pgp tryptophan fluorescence. Also, Pgp-coupled ATPase activity kinetics measured with a range of verapamil and digoxin concentrations fit well to a DDI model encompassing non-competitive and competitive inhibition of digoxin by verapamil. The results and previous transport studies were combined into a comprehensive model of verapamil–digoxin DDIs encompassing drug binding, ATP hydrolysis, transport and conformational changes.  相似文献   

15.
The P-glycoprotein multidrug transporter (Pgp) is an active efflux pump for chemotherapeutic drugs, natural products and hydrophobic peptides. Pgp is envisaged as a 'hydrophobic vacuum cleaner', and drugs are believed to gain access to the substrate binding sites from within the membrane, rather than from the aqueous phase. The intimate association of both Pgp and its substrates with the membrane suggests that its function may be regulated by the biophysical properties of the lipid bilayer. Using the high affinity fluorescent substrate tetramethylrosamine (TMR), we have monitored, in real time, transport in proteoliposomes containing reconstituted Pgp. The TMR concentration gradient generated by Pgp was collapsed by the addition of either the ATPase inhibitor, vanadate, or Pgp modulators. TMR transport by Pgp obeyed Michaelis--Menten kinetics with respect to both of its substrates. The Km for ATP was 0.48 mM, close to the K(m) for ATP hydrolysis, and the K(m) for TMR was 0.3 microM. TMR transport was inhibited in a concentration-dependent fashion by verapamil and cyclosporin A, and activated (probably by a positive allosteric effect) by the transport substrate colchicine. TMR transport by Pgp reconstituted into proteoliposomes composed of two synthetic phosphatidylcholines showed a highly unusual biphasic temperature dependence. The rate of TMR transport was relatively high in the rigid gel phase, reached a maximum at the melting temperature of the bilayer, and then decreased in the fluid liquid crystalline phase. This pattern of temperature dependence suggests that the rate of drug transport by Pgp may be dominated by partitioning of drug into the bilayer.  相似文献   

16.
P-glycoprotein expressed in Pichia pastoris was used to study the drug binding sites of different benzodiazepines. The effect of bromazepam, chlordiazepoxide, diazepam and flurazepam on P-glycoprotein structure was investigated by measuring the intrinsic fluorescence of the transporter tryptophan residues. Purified mouse mdr1a transporter in mixed micelles of 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonic acid and 1,2-dimiristoyl-sn-glycerol-3-phosphocholine emitted fluorescence at 340 nm indicative of the fluorophores in a relatively apolar environment. Acrylamide and iodide ion were used as collisional quenchers toward distinct regions of the transporter, the protein and the interface protein-surface, respectively. Binding of ATP induced conformational changes at the protein surface level in accordance with the location of the nucleotide binding sites. Bromazepam interaction with the transporter was located at the protein-surface interface, diazepam at the membrane region and chlordiazepoxide at the protein surface. Only the flurazepam interaction site was not detected by the quenchers used. All benzodiazepines were able to elicit reorientation of the protein fluorophores on the P-glycoprotein—ATP complex.  相似文献   

17.
Broad substrate specificity of human P-glycoprotein (ABCB1) is an essential feature of multidrug resistance. Transport substrates of P-glycoprotein are mostly hydrophobic and many of them have net positive charge. These compounds partition into the membrane. Utilizing the energy of ATP hydrolysis, P-glycoprotein is thought to take up substrates from the cytoplasmic leaflet of the plasma membrane and to transport them to the outside of the cell. We examined this model by molecular dynamics simulation of the lipid bilayer, in the presence of transport substrates together with an atomic resolution structural model of P-glycoprotein. Taken together with previous electron paramagnetic resonance studies, the results suggest that most transported drugs are concentrated near the surface zone of the inner leaflet of the plasma membrane. Here the drugs can easily diffuse laterally into the drug-binding site of P-glycoprotein through an open cleft. It was concluded that the initial high-affinity drug-binding site was located in the interfacial surface area of P-glycoprotein in contact with the membrane interface. Based on these results and our recent kinetic studies, a “solvation exchange” drug transport mechanism of P-glycoprotein is discussed. A molecular basis for the improved colchicine transport efficiency by the much-studied colchicine-resistance G185V mutant human P-glycoprotein is also provided.  相似文献   

18.
We studied the effects of four commonly used insecticides (methylparathion, endosulfan, cypermethrin and fenvalerate) on P-glycoprotein isolated from multidrug-resistant cells. All the pesticides stimulated P-glycoprotein ATPase activity, with maximum stimulation of up to 213% in a detergent-solubilized preparation, and up to 227% in reconstituted liposomes. The ATPase stimulation profiles were biphasic, displaying lower stimulation, and in the case of methylparathion, inhibition of activity, at higher insecticide concentrations. Quenching of the intrinsic Trp fluorescence of purified P-glycoprotein was used to quantitate insecticide binding; the estimated K(d) values fell in the range 4-6 microM. Transport of the fluorescent substrate tetramethylrosamine (TMR) into proteoliposomes containing P-glycoprotein was monitored in real time. The TMR concentration gradient generated by the transporter was collapsed by the addition of insecticides, and prior addition of these compounds prevented its formation. The rate of TMR transport was inhibited in a saturable fashion by all the compounds, indicating that they compete with the substrate for membrane translocation. Taken together, these data suggest that the insecticides bind to Pgp with high affinity and effectively block drug transport. Inhibition of Pgp by pesticides may compromise its ability to clear xenobiotics from the body, leading to a higher risk of toxicity.  相似文献   

19.
A mechanistic understanding of how P-glycoprotein (Pgp) is able to bind and transport its astonishing range of substrates remains elusive. Pharmacological data demonstrated the presence of at least four distinct binding sites, but their locations have not been fully elucidated. The combination of biochemical and structural data suggests that initial binding may occur in the central cavity or at the lipid-protein interface. Our objective was to define the binding sites for two transported substrates of Pgp; the anticancer drug vinblastine and the fluorescent probe rhodamine 123. A series of mutations was generated in positions proximal to previously defined drug-interacting residues on Pgp. The protein was purified and reconstituted into styrene-maleic acid lipid particles (SMALPs) to measure the apparent drug binding constant or into liposomes for assessment of drug-stimulated ATP hydrolysis. The biochemical data were reconciled with structural models of Pgp using molecular docking. The data indicated that the binding of rhodamine 123 occurred predominantly within the central cavity of Pgp. In contrast, the significantly more hydrophobic vinblastine bound to both the lipid-protein interface and within the central cavity. The data suggest that the initial interaction of vinca alkaloids with Pgp occurs at the lipid interface followed by internalisation into the central cavity, which also provides the transport conduit. This model is supported by recent structural observations with Pgp and early biophysical and cross-linking approaches. Moreover, the proposed model illustrates that the broad substrate profile for Pgp is underpinned by a combination of multiple initial interaction sites and an accommodating transport conduit.  相似文献   

20.
A vital, nucleic acid stain (LDS-751) was used to discriminate intact from damaged cells in a flow cytometer even after the samples had been fixed with paraformaldehyde. Three major cell populations with different fluorescence properties with LDS-751 were found in the fixed samples. Cells not staining or only dimly staining with LDS-751 were identified as erythrocytes and platelets, respectively. Cells staining with intermediate amounts of LDS-751 were found to be intact cells, while cells intensively stained were identified as damaged cells. Confirmation of the identity of the populations was obtained by light microscopic examination of the sorted populations and by correlating the fluorescent signals of FDA and LDS-751 in nonfixed cell preparations. Agglutinated cells could also be identified by the increased fluorescent signal in the LDS-751 channel as compared with single cells. The spectral properties of this dye permit excitation at 488 nm with emission in the far red portion of the spectrum. This allowed two-color immunofluorescence to be combined with the intact/damaged cell discrimination on fixed samples. Therefore, intact single cells could be distinguished during flow cytometric analysis, increasing the accuracy of the immunofluorescence measurements. The visualization of the multidimensional data was facilitated using color to discriminate cell populations depicted in multiple perspectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号