首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
To examine the genetic basis of age-related macular degeneration (ARMD), a degenerative disease of the retinal pigment epithelium and neurosensory retina, we conducted a genomewide scan in 34 extended families (297 individuals, 349 sib pairs) ascertained through index cases with neovascular disease or geographic atrophy. Family and medical history was obtained from index cases and family members. Fundus photographs were taken of all participating family members, and these were graded for severity by use of a quantitative scale. Model-free linkage analysis was performed, and tests of heterogeneity and epistasis were conducted. We have evidence of a major locus on chromosome 15q (GATA50C03 multipoint P=1.98x10-7; empirical P< or =1.0x10-5; single-point P=3.6x10-7). This locus was present as a weak linkage signal in our previous genome scan for ARMD, in the Beaver Dam Eye Study sample (D15S659, multipoint P=.047), but is otherwise novel. In this genome scan, we observed a total of 13 regions on 11 chromosomes (1q31, 2p21, 4p16, 5q34, 9p24, 9q31, 10q26, 12q13, 12q23, 15q21, 16p12, 18p11, and 20q13), with a nominal multipoint significance level of P< or =.01 or LOD > or =1.18. Family-by-family analysis of the data, performed using model-free linkage methods, suggests that there is evidence of heterogeneity in these families. For example, a single family (family 460) individually shows linkage evidence at 8 loci, at the level of P<.0001. We conducted tests for heterogeneity, which suggest that ARMD susceptibility loci on chromosomes 9p24, 10q26, and 15q21 are not present in all families. We tested for mutations in linked families and examined SNPs in two candidate genes, hemicentin-1 and EFEMP1, in subsamples (145 and 189 sib pairs, respectively) of the data. Mutations were not observed in any of the 11 exons of EFEMP1 nor in exon 104 of hemicentin-1. The SNP analysis for hemicentin-1 on 1q31 suggests that variants within or in very close proximity to this gene cause ARMD pathogenesis. In summary, we have evidence for a major ARMD locus on 15q21, which, coupled with numerous other loci segregating in these families, suggests complex oligogenic patterns of inheritance for ARMD.  相似文献   

2.
Since little is known about chromosomal locations harboring type 2 diabetes-susceptibility genes, we conducted a genomewide scan for such genes in a Mexican American population. We used data from 27 low-income extended Mexican American pedigrees consisting of 440 individuals for whom genotypic data are available for 379 markers. We used a variance-components technique to conduct multipoint linkage analyses for two phenotypes: type 2 diabetes (a discrete trait) and age at onset of diabetes (a truncated quantitative trait). For the multipoint analyses, a subset of 295 markers was selected on the basis of optimal spacing and informativeness. We found significant evidence that a susceptibility locus near the marker D10S587 on chromosome 10q influences age at onset of diabetes (LOD score 3.75) and is also linked with type 2 diabetes itself (LOD score 2.88). This susceptibility locus explains 63.8%+/-9.9% (P=. 000016) of the total phenotypic variation in age at onset of diabetes and 65.7%+/-10.9% (P=.000135) of the total variation in liability to type 2 diabetes. Weaker evidence was found for linkage of diabetes and of age at onset to regions on chromosomes 3p, 4q, and 9p. In conclusion, our strongest evidence for linkage to both age at onset of diabetes and type 2 diabetes itself in the Mexican American population was for a region on chromosome 10q.  相似文献   

3.
Migraine headaches are a common comorbidity in Rolandic epilepsy (RE) and familial aggregation of migraine in RE families suggests a genetic basis not mediated by seizures. We performed a genome‐wide linkage analysis of the migraine phenotype in 38 families with RE to localize potential genetic contribution, with a follow‐up in an additional 21 families at linked loci. We used two‐point and multipoint LOD (logarithm of the odds) score methods for linkage, maximized over genetic models. We found evidence of linkage to migraine at chromosome 17q12‐22 [multipoint HLOD (heterogeneity LOD) 4.40, recessive, 99% penetrance], replicated in the second dataset (HLOD 2.61), and suggestive evidence at 1q23.1‐23.2, centering over the FHM2 locus (two‐point LOD 3.00 and MP HLOD 2.52). Sanger sequencing in 14 migraine‐affected individuals found no coding mutations in the FHM2 gene ATP1A2. There was no evidence of pleiotropy for migraine and either reading or speech disorder, or the electroencephalographic endophenotype of RE when the affected definition was redefined as those with migraine or the comorbid phenotype, and pedigrees were reanalyzed for linkage. In summary, we report a novel migraine susceptibility locus at 17q12‐22, and a second locus that may contribute to migraine in the general population at 1q23.1‐23.2. Comorbid migraine in RE appears genetically influenced, but we did not obtain evidence that the identified susceptibility loci are consistent with pleiotropic effects on other comorbidities in RE. Loci identified here should be fine‐mapped in individuals from RE families with migraine, and prioritized for analysis in other types of epilepsy‐associated migraine.  相似文献   

4.
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by both population and phenotypic heterogeneity. Our group previously identified linkage to SLE at 4p16 in European Americans (EA). In the present study we replicate this linkage effect in a new cohort of 76 EA families multiplex for SLE by model-free linkage analysis. Using densely spaced microsatellite markers in the linkage region, we have localized the potential SLE susceptibility gene(s) to be telomeric to the marker D4S2928 by haplotype construction. In addition, marker D4S394 showed marginal evidence of linkage disequilibrium with the putative disease locus by the transmission disequilibrium test and significant evidence of association using a family-based association approach as implemented in the program ASSOC. We also performed both two-point and multipoint model-based analyses to characterize the genetic model of the potential SLE susceptibility gene(s), and the lod scores both maximized under a recessive model with penetrances of 0.8. Finally, we performed a genome-wide scan of the total 153 EA pedigrees and evaluated the possibility of interaction between linkage signals at 4p16 and other regions in the genome. Fourteen regions on 11 chromosomes (1q24, 1q42, 2p11, 2q32, 3p14.2, 4p16, 5p15, 7p21, 8p22, 10q22, 12p11, 12q24, 14q12, 19q13) showed evidence of linkage, among which, signals at 2p11, 12q24 and 19q13 also showed evidence of interaction with that at 4p16. These results provide important additional information about the SLE linkage effect at 4p16 and offer a unique approach to uncovering susceptibility loci involved in complex human diseases.  相似文献   

5.
Psoriasis is a common skin disorder of multifactorial origin. Genomewide scans for disease susceptibility have repeatedly demonstrated the existence of a major locus, PSORS1 (psoriasis susceptibility 1), contained within the major histocompatibility complex (MHC), on chromosome 6p21. Subsequent refinement studies have highlighted linkage disequilibrium (LD) with psoriasis, along a 150-kb segment that includes at least three candidate genes (encoding human leukocyte antigen-C [HLA-C], alpha-helix-coiled-coil-rod homologue, and corneodesmosin), each of which has been shown to harbor disease-associated alleles. However, the boundaries of the minimal PSORS1 region remain poorly defined. Moreover, interpretations of allelic association with psoriasis are compounded by limited insight of LD conservation within MHC class I interval. To address these issues, we have pursued a high-resolution genetic characterization of the PSORS1 locus. We resequenced genomic segments along a 220-kb region at chromosome 6p21 and identified a total of 119 high-frequency SNPs. Using 59 SNPs (18 coding and 41 noncoding SNPs) whose position was representative of the overall marker distribution, we genotyped a data set of 171 independently ascertained parent-affected offspring trios. Family-based association analysis of this cohort highlighted two SNPs (n.7 and n.9) respectively lying 7 and 4 kb proximal to HLA-C. These markers generated highly significant evidence of disease association (P<10-9), several orders of magnitude greater than the observed significance displayed by any other SNP that has previously been associated with disease susceptibility. This observation was replicated in a Gujarati Indian case/control data set. Haplotype-based analysis detected overtransmission of a cluster of chromosomes, which probably originated by ancestral mutation of a common disease-bearing haplotype. The only markers exclusive to the overtransmitted chromosomes are SNPs n.7 and n.9, which define a 10-kb PSORS1 core risk haplotype. These data demonstrate the power of SNP haplotype-based association analyses and provide high-resolution dissection of genetic variation across the PSORS1 interval, the major susceptibility locus for psoriasis.  相似文献   

6.
In this paper, we applied the nonparametric linkage regression approach to the Caucasian genome scan data from the Collaborative Study on the Genetics of Alcoholism to search for regions of the genome that exhibit evidence for linkage to putative alcoholism-predisposing genes. The multipoint single-locus model identified four regions of the genome with LOD scores greater than one. These regions were on 7p near D7S1790 (LOD = 1.31), two regions on 7q near D7S1870 (LOD = 1.15) and D7S1799 (LOD = 1.13) and 21q near D21S1440 and D21S1446 (LOD = 1.78). Jointly modeling these loci provided stronger evidence for linkage in each of these regions (LOD = 1.58 on 7q11, LOD = 1.61 on 11q23, and LOD = 1.95 on 21q22). The evidence for linkage tended to increase among pedigrees with earlier mean age of onset at 8q23 (p = 0.0016), 14q21 (p = 0.0079), and 18p12 (p = 0.0021) and with later mean age of onset at 4q35 (p = 0.0067) and 9p22 (p = 0.0008).  相似文献   

7.
Insulin-dependent diabetes mellitus (IDDM) has a complex pattern of genetic inheritance. In addition to genes mapping to the major histocompatibility complex (MHC), several lines of evidence point to the existence of other genetic susceptibility factors. Recent studies of the nonobese diabetic mouse (NOD) model of IDDM have suggested the presence, on mouse chromosome 9, of a susceptibility gene linked to the locus encoding the T-cell antigen, Thy-1. A region on human chromosome 11q is syntenic to this region on mouse chromosome 9. We have used a set of polymorphic DNA markers from chromosome 11q to investigate this region for linkage to a susceptibility gene in 81 multiplex diabetic pedigrees. The data were investigated by maximization of lod scores over genetic models and by multiple-locus affected-sib-pair analysis. We were able to exclude the presence of a susceptibility gene (location scores less than -2) throughout greater than 90% of the chromosome 11q homology region, under the assumption that the susceptibility factor would cause greater than 50% of affected sib pairs to share two alleles identical by descent. Theoretical estimates of the power to map susceptibility genes with a high-resolution map of linked markers in a candidate region were made, using HLA as a model locus. This result illustrates the feasibility that IDDM linkage studies using mapped sets of polymorphic DNA markers have, both for other areas of the genome in IDDM and for other polygenic diseases. The analytic approaches introduced here will be useful for affected-sib-pair studies of other complex phenotypes.  相似文献   

8.
9.
Despite recent advances in the molecular genetics of type 2 diabetes, the majority of susceptibility genes in humans remain to be identified. We therefore conducted a 10-cM genomewide search (401 microsatellite markers) for type 2 diabetes-related traits in 637 members of 143 French pedigrees ascertained through multiple diabetic siblings, to map such genes in the white population. Nonparametric two-point and multipoint linkage analyzes-using the MAPMAKER-SIBS (MLS) and MAXIMUM-BINOMIAL-LIKELIHOOD (MLB) programs for autosomal markers and the ASPEX program for chromosome X markers-were performed with six diabetic phenotypes: diabetes and diabetes or glucose intolerance (GI), as well as with each of the two phenotypes associated with normal body weight (body-mass index<27 kg/m(2)) or early age at diagnosis (<45 years). In a second step, high-resolution genetic mapping ( approximately 2 cM) was performed in regions on chromosomes 1 and 3 loci showing the strongest linkage to diabetic traits. We found evidence for linkage with diabetes or GI diagnosed at age <45 years in 92 affected sib pairs from 55 families at the D3S1580 locus on chromosome 3q27-qter using MAPMAKER-SIBS (MLS = 4.67, P=.000004), supported by the MLB statistic (MLB-LOD=3.43, P=.00003). We also found suggestive linkage between the lean diabetic status and markers APOA2-D1S484 (MLS = 3. 04, P=.00018; MLB-LOD=2.99, P=.00010) on chromosome 1q21-q24. Several other chromosomal regions showed indication of linkage with diabetic traits, including markers on chromosome 2p21-p16, 10q26, 20p, and 20q. These results (a) showed evidence for a novel susceptibility locus for type 2 diabetes in French whites on chromosome 3q27-qter and (b) confirmed the previously reported diabetes-susceptibility locus on chromosome 1q21-q24. Saturation on both chromosomes narrowed the regions of interest down to an interval of <7 cM.  相似文献   

10.
Susceptibility genes for complex diseases are characterized by reduced penetrance, caused by the influence of other genes, the environment or stochastic events. Recently, positional cloning efforts have yielded several candidate susceptibility genes in different complex disorders such as Crohn's disease and asthma. Within a genetic locus, however, the identification of the effector gene may pose further challenges and require functional studies. I review two examples of such challenges: the cloning of GPR154 (GPRA) and AAA1 on chromosome 7p14 at a susceptibility locus for atopy and asthma, and the study of HLA-Cw6, CCHCR1 (HCR) and CDSN on chromosome 6p21 at PSORS1, the major susceptibility locus for psoriasis. The susceptibility locus for atopy and asthma contains two genes and only one of them is protein coding. We studied its isoform-specific expression in bronchial biopsies and in a mouse model of ovalbumin-induced inflammation of bronchial epithelia. In the PSORS1 locus, strong linkage disequilibrium between genes has made it difficult to distinguish the effects of the three nearby genes. We engineered transgenic mice with either a HCR non-risk allele or the HCR*WWCC risk allele controlled by the cytokeratin-14 promoter. The results suggested that the overexpression of HCR in mouse skin was insufficient to induce a psoriasiform phenotype, but it appeared to induce allele-specific gene expression changes that were similar to those observed in psoriatic skin.  相似文献   

11.
Progressive familial intrahepatic cholestasis (PFIC; OMIM 211600) is the second most common familial cholestatic syndrome presenting in infancy. A locus has previously been mapped to chromosome 18q21-22 in the original Byler pedigree. This chromosomal region also harbors the locus for benign recurrent intrahepatic cholestasis (BRIC) a related phenotype. Linkage analysis in six consanguineous PFIC pedigrees from the Middle East has previously excluded linkage to chromosome 18q21-22, indicating the existence of locus heterogeneity within the PFIC phenotype. By use of homozygosity mapping and a genome scan in these pedigrees, a locus designated "PFIC2" has been mapped to chromosome 2q24. A maximum LOD score of 8.5 was obtained in the interval between marker loci D2S306 and D2S124, with all families linked.  相似文献   

12.
Following a report of a linkage study that yielded evidence for a susceptibility locus for bipolar affective disorder on the long arm of chromosome 21, we studied 23 multiply affected pedigrees collected from Iceland and the UK, using the markers PFKL, D21S171, and D21S49. Counting only bipolar cases as affected, a two-point LOD of 1.28 was obtained using D21S171 (θ = 0.01, α = 0.35), with three Icelandic families producing LODs of 0.63, 0.62, and 1.74 (all at θ = 0.0). Affected sib pair analysis demonstrated increased allele sharing at D21S171 (P= 0.001) when unipolar cases were also considered affected. The same set of pedigrees had previously been typed for a tyrosine hydroxylase gene (TH) polymorphism at 11p15 and had shown some moderate evidence for linkage. When information from TH and the 21q markers was combined in a two-locus admixture analysis, an overall admixture LOD of 3.87 was obtained using the bipolar affection model. Thus the data are compatible with the hypothesis that a locus at or near TH influences susceptibility in some pedigrees, while a locus near D21S171 is active in others. Similar analyses in other datasets should be carried out to confirm or refute our tentative finding.  相似文献   

13.
Candidate genes for human type II gonadotropin-releasing hormone receptor (GnRH-RII) reside on two separate loci, 1q12-q21 and 14q21-23, yet neither locus generates functional GnRH-RII. Instead, their opposite DNA strands encode functional RNA-binding motif protein 8 (RBM8s), which is also encoded by another locus, 5q13-q14. To elucidate the mechanism through which such multiple human GnRH-RII/RBM8 loci arose, here we have defined an RBM8 locus in a comparative model species, the medaka Oryzias latipes. The medaka RBM8, which exists as a single copy gene, is linked to, but does not overlap with, GnRH-R2 on linkage group (LG) 16, demonstrating the ancient origin of the physical linkage between GnRH-R and RBM8. The medaka LG 16 contains orthologous segments to the human chromosome 1 and therefore the 1q12-q21 locus would be an originating human GnRH-RII/RBM8 segment. Furthermore, like the human RBM8s on 1q12-q21 and 5q13-q14 but not that on 14q21-q23, the medaka RBM8 is a multiexon gene, indicating that the 14q21-q23 and 5q13-q14 loci were generated by retrotransposition and segmental genomic duplication, respectively, of the originating 1q12-q21 locus.  相似文献   

14.
A second locus for familial high myopia maps to chromosome 12q.   总被引:30,自引:0,他引:30       下载免费PDF全文
Myopia, or nearsightedness, is the most common eye disorder worldwide. "Pathologic" high myopia, or myopia of <=-6.00 diopters, predisposes individuals to retinal detachment, macular degeneration, cataract, or glaucoma. A locus for autosomal dominant pathologic high myopia has been mapped to 18p11.31. We now report significant linkage of high myopia to a second locus at the 12q21-23 region in a large German/Italian family. The family had no clinical evidence of connective-tissue abnormalities or glaucoma. The average age at diagnosis of myopia was 5.9 years. The average spherical-component refractive error for the affected individuals was -9.47 diopters. Markers flanking or intragenic to the genes for the 18p locus, Stickler syndromes type I and II (12q13.1-q13.3 and 6p21.3), Marfan syndrome (15q21.1), and juvenile glaucoma (chromosome 1q21-q31) showed no linkage to the myopia in this family. The maximum LOD score with two-point linkage analysis in this pedigree was 3.85 at a recombination fraction of .0010, for markers D12S1706 and D12S327. Recombination events identified markers D12S1684 and D12S1605 as flanking markers that define a 30.1-cM interval on chromosome 12q21-23, for the second myopia gene. These results confirm genetic heterogeneity of myopia. The identification of this gene may provide insight into the pathophysiology of myopia and eye development.  相似文献   

15.
Hereditary neuralgic amyotrophy (HNA) is an autosomal dominant disorder that is associated with episodic recurrent brachial plexus neuropathy. A mutation for HNA maps to chromosome 17q25. To refine the HNA locus further, we carried out genetic linkage studies in seven pedigrees with a high density set of DNA markers from chromosome 17q25. All pedigrees demonstrated linkage to chromosome 17q25, and an analysis of recombinant events placed the HNA locus within an interval of approximately 1 Mb flanked by markers D17S722 and D17S802. In order to test the power of linkage disequilibrium mapping, we compared genotypes of 12 markers from seven pedigrees that were from the United States and that showed linkage to chromosome 17q25. The haplotypes identified a founder effect in six of the seven pedigrees with a minimal shared haplotype that further refines the HNA locus to an interval of approximately 500 kb. These findings suggest that, for the pedigrees from the United States, there are at least two different mutations in the HNA gene.  相似文献   

16.
Paraoxonase 1 (PON1), a high-density-lipoprotein-associated enzyme known to protect against cellular damage from toxic agents, may also have antioxidant properties. Although the importance of the influence of the PON1 structural locus on chromosome 7q21-22 for variation in the concentration and activity of the enzyme is well-documented, the contribution of other loci is poorly understood. Based on the recent observations of at least one additional quantitative trait locus (QTL) for PON1 activity in pedigreed baboons, we conducted a whole-genome linkage screen for QTLs other than the PON1 structural locus that may influence PON1 activity in humans. We measured PON1 activity in frozen serum for 1,406 individuals in more than 40 extended pedigrees from the San Antonio Family Heart Study (SAFHS). We used a maximum-likelihood-based variance decomposition approach implemented in SOLAR to test for QTLs that may influence PON1 activity. In addition to a QTL for which we detected the strongest, significant evidence (LOD = 31.41) at or near the PON1 structural locus on chromosome 7q21-22, we also localized at least one additional significant QTL on chromosome 12 (LOD = 3.56). Furthermore, we detected suggestive evidence for two more PON-related QTLs on chromosomes 17 and 19. We have provided evidence that other genes, in addition to the well-known ones on chromosome 7, play a role in influencing normal variation in PON1 activity.  相似文献   

17.
Here, we present the results of two genome-wide scans in two diverse populations in which a consistent use of recently introduced migraine-phenotyping methods detects and replicates a locus on 10q22-q23, with an additional independent replication. No genetic variants have been convincingly established in migraine, and although several loci have been reported, none of them has been consistently replicated. We employed the three known migraine-phenotyping methods (clinical end diagnosis, latent-class analysis, and trait-component analysis) with robust multiple testing correction in a large sample set of 1675 individuals from 210 migraine families from Finland and Australia. Genome-wide multipoint linkage analysis that used the Kong and Cox exponential model in Finns detected a locus on 10q22-q23 with highly significant evidence of linkage (LOD 7.68 at 103 cM in female-specific analysis). The Australian sample showed a LOD score of 3.50 at the same locus (100 cM), as did the independent Finnish replication study (LOD score 2.41, at 102 cM). In addition, four previously reported loci on 8q21, 14q21, 18q12, and Xp21 were also replicated. A shared-segment analysis of 10q22-q23 linked Finnish families identified a 1.6-9.5 cM segment, centered on 101 cM, which shows in-family homology in 95% of affected Finns. This region was further studied with 1323 SNPs. Although no significant association was observed, four regions warranting follow-up studies were identified. These results support the use of symptomology-based phenotyping in migraine and suggest that the 10q22-q23 locus probably contains one or more migraine susceptibility variants.  相似文献   

18.
Autosomal recessive nonsyndromic hearing loss (ARNSHL) is the most common form of severe inherited childhood deafness. We present the linkage analysis of two inbred Bedouin kindreds from Israel that are affected with ARNSHL. A rapid genomewide screen for markers linked to the disease was performed by using pooled DNA samples. This screen revealed evidence for linkage with markers D9S922 and D9S301 on chromosome 9q. Genotyping of individuals from both kindreds confirmed linkage to chromosome 9q and a maximum combined LOD score of 26.2 (recombination fraction [theta] .025) with marker D9S927. The disease locus was mapped to a 1.6-cM region of chromosome 9ql3-q2l, between markers D9S15 and D9S927. The disease segregates with a common haplotype in the two kindreds, at markers D9S927, D9S175, and D9S284 in the linked interval, supporting the hypothesis that both kindreds inherited the deafness gene from a common ancestor. Although this nonsyndromic-hearing-loss (NSHL) locus maps to the same cytogenetic interval as DFNB7, it does not overlap the currently defined DFNB7 interval and may represent (1) a novel form of NSHL in close proximity to DFNB7 or (2) a relocalization of the DFNB7 interval to a region telomeric to its reported location. This study further demonstrates that DNA pooling is an effective means of quickly identifying regions of linkage in inbred families with heterogeneous autosomal recessive disorders.  相似文献   

19.
Lung cancer is a major cause of death in the United States and other countries. The risk of lung cancer is greatly increased by cigarette smoking and by certain occupational exposures, but familial factors also clearly play a major role. To identify susceptibility genes for familial lung cancer, we conducted a genomewide linkage analysis of 52 extended pedigrees ascertained through probands with lung cancer who had several first-degree relatives with the same disease. Multipoint linkage analysis, under a simple autosomal dominant model, of all 52 families with three or more individuals affected by lung, throat, or laryngeal cancer, yielded a maximum heterogeneity LOD score (HLOD) of 2.79 at 155 cM on chromosome 6q (marker D6S2436). A subset of 38 pedigrees with four or more affected individuals yielded a multipoint HLOD of 3.47 at 155 cM. Analysis of a further subset of 23 multigenerational pedigrees with five or more affected individuals yielded a multipoint HLOD score of 4.26 at the same position. The 14 families with only three affected relatives yielded negative LOD scores in this region. A predivided samples test for heterogeneity comparing the LOD scores from the 23 multigenerational families with those from the remaining families was significant (P=.007). The 1-HLOD multipoint support interval from the multigenerational families extends from C6S1848 at 146 cM to 164 cM near D6S1035, overlapping a genomic region that is deleted in sporadic lung cancers as well as numerous other cancer types. Parametric linkage and variance-components analysis that incorporated effects of age and personal smoking also supported linkage in this region, but with somewhat diminished support. These results localize a major susceptibility locus influencing lung cancer risk to 6q23-25.  相似文献   

20.
The familial form of nonmedullary thyroid carcinoma (NMTC) is a complex genetic disorder characterized by multifocal neoplasia and a higher degree of aggressiveness than its sporadic counterpart. In a large Tasmanian pedigree (Tas1) with recurrence of papillary thyroid carcinoma (PTC), the most common form of NMTC, an extensive genomewide scan revealed a common haplotype on chromosome 2q21 in seven of the eight patients with PTC. To verify the significance of the 2q21 locus, we performed linkage analysis in an independent sample set of 80 pedigrees, yielding a multipoint heterogeneity LOD score (HLOD) of 3.07 (α=0.42), nonparametric linkage (NPL) 3.19, (P=.001) at marker D2S2271. Stratification based on the presence of at least one case of the follicular variant of PTC, the phenotype observed in the Tas1 family, identified 17 such pedigrees, yielding a maximal HLOD score of 4.17 (α=0.80) and NPL=4.99 (P=.00002) at markers AFMa272zg9 and D2S2271, respectively. These results indicate the existence of a susceptibility locus for familial NMTC on chromosome 2q21.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号