首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sterol glycosyltransferases catalyze the synthesis of diverse glycosterols in plants. Withania somnifera is a medically important plant, known for a variety of pharmacologically important withanolides and their glycosides. In this study, a novel 27beta-hydroxy glucosyltransferase was purified to near homogeneity from cytosolic fraction of W. somnifera leaves and studied for its biochemical and kinetic properties. The purified enzyme showed activity with UDP-glucose but not with UDP-galactose as sugar donor. It exhibited broad sterol specificity by glucosylating a variety of sterols/withanolides with beta-OH group at C-17, C-21 and C-27 positions. It transferred glucose to the alkanol at C-25 position of the lactone ring, provided an alpha-OH was present at C-17 in the sterol skeleton. A comparable enzyme has not been reported earlier from plants. The enzyme is distinct from the previously purified W. somnifera 3beta-hydroxy specific sterol glucosyltransferase and does not glucosylate the sterols at C-3 position; though it also follows an ordered sequential bisubstrate reaction mechanism, in which UDP-glucose and sterol are the first and second binding substrates. The enzyme activity with withanolides suggests its role in secondary metabolism in W. somnifera. Results on peptide mass fingerprinting showed its resemblance with glycuronosyltransferase like protein. The enzyme activity in the leaves of W. somnifera was enhanced following the application of salicylic acid. In contrast, it decreased rapidly on exposure of the plants to heat shock, suggesting functional role of the enzyme in biotic and abiotic stresses.  相似文献   

2.
3.
A study was made of the sterol glucosylating ability of cell-free homogenates obtained from 16 species of photosynthesizing and nonphotosynthesizing lower plants (2 species of Chlorophyceae, 2 species of Cyanophyceae, 1 species of Phycomycetes, 3 species of Ascomycetes, 3 species of Basidomycetes, 1 species of Myxomycetes, 3 species of Musci and 1 species of Sphenopsida). Except for the blue-green and green algae, all the remaining species showed distinct in vitro synthesis of steryl monoglucosides from UDPG and cholesterol or sitosterol. Preliminary studies on the specificity of the relevant enzymes pointed to a correlation between the sterol composition of the plant and the specificity of its glucosylating enzyme. The enzyme from Ascomycetes and Basidomycetes utilized ergosterol better than cholesterol or sitosterol. Enzymic preparations from mosses utilized sitosterol the best.  相似文献   

4.
Sterol glycosyltransferases (SGTs) catalyze the transfer of sugar molecules to diverse sterol molecules, leading to a change in their participation in cellular metabolism. Withania somnifera is a medicinal plant rich in sterols, sterol glycosides and steroidal lactones. Sterols and their modified counterparts are medicinally important and play a role in adaptation of the plant to stress conditions. We have identified 3 members of SGT gene family through RACE (Rapid Amplification of cDNA Ends) in addition to sgtl1 reported earlier. The amino acid sequence deduced from the ORF's showed homology (45-67?%) to the reported plant SGTs. The expression of the genes was differentially modulated in different organs in W. somnifera and in response to external stimuli. Salicylic acid and methyl jasmonate treatments showed up to 10 fold increase in the expression of sgt genes suggesting their role in defense. The level of expression increased in heat and cold stress indicating the role of sterol modifications in abiotic stress. One of the members, was expressed in E. coli and the enzyme assay showed that the crude enzyme glycosylated stigmasterol. W. somnifera expresses a family of sgt genes and there is a functional recruitment of these genes under stress conditions. The genes which are involved in sterol modification are important in view of medicinal value and understanding stress.  相似文献   

5.
Isayenkova J  Wray V  Nimtz M  Strack D  Vogt T 《Phytochemistry》2006,67(15):1598-1612
Two full-length cDNAs encoding flavonoid-specific glucosyltransferases, UGT73A4 and UGT71F1, were isolated from a cDNA library of Beta vulgaris (Amaranthaceae) cell suspension cultures. They displayed high identity to position-specific betanidin and flavonoid glucosyltransferases from Dorotheanthus bellidiformis (Aizoaceae) and to enzymes with similar substrate specificities from various plant families. The open reading frame of the sequences encode proteins of 476 (UGT73A4) and 492 (UGT71F1) amino acids with calculated molecular masses of 54.07kDa and 54.39kDa, and isoelectric points of 5.8 and 5.6, respectively. Both enzymes were functionally expressed in Escherichia coli as His- and GST-tagged proteins, respectively. They exhibited a broad substrate specificity, but a distinct regioselectivity, glucosylating a variety of flavonols, flavones, flavanones, and coumarins. UGT73A4 showed a preference for the 4'- and 7-OH position in the flavonoids, whereas UGT71F1 preferentially glucosylated the 3- or the 7-OH position. Glucosylation of betanidin, the aglycone of the major betacyanin, betanin, in B. vulgaris was also observed to a low extent by both enzymes. Several O-glycosylated vitexin derivatives isolated from leaves of young B. vulgaris plants and rutin obtained from B. vulgaris tissue culture are discussed as potential endogenous products of UGT73A4 and UGT71F1. The results are analyzed with regard to evolution and specificity of plant natural product glucosyltransferases.  相似文献   

6.
Sterol glucosides, typical membrane-bound lipids of many eukaryotes, are biosynthesized by a UDP-glucose:sterol glucosyltransferase (EC 2. 4.1.173). We cloned genes from three different yeasts and from Dictyostelium discoideum, the deduced amino acid sequences of which all showed similarities with plant sterol glucosyltransferases (Ugt80A1, Ugt80A2). These genes from Saccharomyces cerevisiae (UGT51 = YLR189C), Pichia pastoris (UGT51B1), Candida albicans (UGT51C1), and Dictyostelium discoideum (ugt52) were expressed in Escherichia coli. In vitro enzyme assays with cell-free extracts of the transgenic E. coli strains showed that the genes encode UDP-glucose:sterol glucosyltransferases which can use different sterols such as cholesterol, sitosterol, and ergosterol as sugar acceptors. An S. cerevisiae null mutant of UGT51 had lost its ability to synthesize sterol glucoside but exhibited normal growth under various culture conditions. Expression of either UGT51 or UGT51B1 in this null mutant under the control of a galactose-induced promoter restored sterol glucoside synthesis in vitro. Lipid extracts of these cells contained a novel glycolipid. This lipid was purified and identified as ergosterol-beta-D-glucopyranoside by nuclear magnetic resonance spectroscopy. These data prove that the cloned genes encode sterol-beta-D-glucosyltransferases and that sterol glucoside synthesis is an inherent feature of eukaryotic microorganisms.  相似文献   

7.
Milkowski C  Baumert A  Strack D 《Planta》2000,211(6):883-886
A cDNA encoding a UDP-glucose:sinapate glucosyltransferase (SGT) that catalyzes the formation of 1-O-sinapoylglucose, was isolated from cDNA libraries constructed from immature seeds and young seedlings of rape (Brassica napus L.). The open reading frame encoded a protein of 497 amino acids with a calculated molecular mass of 55,970 Da and an isoelectric point of 6.36. The enzyme, functionally expressed in Escherichia coli, exhibited broad substrate specificity, glucosylating sinapate, cinnamate, ferulate, 4-coumarate and caffeate. Indole-3-acetate, 4-hydroxybenzoate and salicylate were not conjugated. The amino acid sequence of the SGT exhibited a distinct sequence identity to putative indole-3-acetate glucosyltransferases from Arabidopsis thaliana and a limonoid glucosyltransferase from Citrus unshiu, indicating that SGT belongs to a distinct subgroup of glucosyltransferases that catalyze the formation of 1-O-acylglucosides (β-acetal esters). Received: 14 July 2000 / Accepted: 8 August 2000  相似文献   

8.
Different parts of plant species belonging to Solanaceae and Fabaceae families were screened for L-asparaginase enzyme (E.C.3.5.1.1.). Among 34 plant species screened for L-asparaginase enzyme, Withania somnifera L. Was identified as a potential source of the enzyme on the basis of high specific activity of the enzyme. The enzyme was purified and characterized from W. Somnifera, a popular medicinal plant in South East Asia and Southern Europe. Purification was carried out by a combination of protein precipitation with ammonium sulfate as well as Sephadex-gel filtration. The purified enzyme is a homodimer, with a molecular mass of 72±0.5 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresisand size exclusion chromatography. The enzyme has a pH optimum of 8.5 and an optimum temperature of 37℃. The Km value for the enzyme is 6.1×10-2 mmol/L. This is the first report for L-asparaginase from W. Somnifera, a traditionally used Indian medicinal plant.  相似文献   

9.

Background

Sterol glycosyltrnasferases (SGT) are enzymes that glycosylate sterols which play important role in plant adaptation to stress and are medicinally important in plants like Withania somnifera. The present study aims to find the role of WsSGTL1 which is a sterol glycosyltransferase from W. somnifera, in plant’s adaptation to abiotic stress.

Methodology

The WsSGTL1 gene was transformed in Arabidopsis thaliana through Agrobacterium mediated transformation, using the binary vector pBI121, by floral dip method. The phenotypic and physiological parameters like germination, root length, shoot weight, relative electrolyte conductivity, MDA content, SOD levels, relative electrolyte leakage and chlorophyll measurements were compared between transgenic and wild type Arabidopsis plants under different abiotic stresses - salt, heat and cold. Biochemical analysis was done by HPLC-TLC and radiolabelled enzyme assay. The promoter of the WsSGTL1 gene was cloned by using Genome Walker kit (Clontech, USA) and the 3D structures were predicted by using Discovery Studio Ver. 2.5.

Results

The WsSGTL1 transgenic plants were confirmed to be single copy by Southern and homozygous by segregation analysis. As compared to WT, the transgenic plants showed better germination, salt tolerance, heat and cold tolerance. The level of the transgene WsSGTL1 was elevated in heat, cold and salt stress along with other marker genes such as HSP70, HSP90, RD29, SOS3 and LEA4-5. Biochemical analysis showed the formation of sterol glycosides and increase in enzyme activity. When the promoter of WsSGTL1 gene was cloned from W. somnifera and sequenced, it contained stress responsive elements. Bioinformatics analysis of the 3D structure of the WsSGTL1 protein showed functional similarity with sterol glycosyltransferase AtSGT of A. thaliana.

Conclusions

Transformation of WsSGTL1 gene in A. thaliana conferred abiotic stress tolerance. The promoter of the gene in W.somnifera was found to have stress responsive elements. The 3D structure showed functional similarity with sterol glycosyltransferases.  相似文献   

10.
A particulate enzyme fraction from the Chlorophyta Prototheca zopfii catalysed the transfer of glucose-[U-14C]from UDP-Glc-[U-14C] to endogenous sterol acceptors and the esterification of steryl glucosides with fatty acids from an endogenous acyl donor. Glucose was the only sugar present, and it appeared to have the β-configuration. In the acylated derivatives the glucose-acyl linkage appeared in the C-6 position of glucose, as indicated by periodate oxidation. UDP-Glc:sterol glucosyltransferase was solubilized with detergent and purified 34-fold. The solubilized enzyme showed no specificity for the sterol but a high affinity for the sugar nucleotide UDP-Glc. Time-course incorporation into steryl glucoside (SG) and the acylderivative (ASG) indicated that SG was the precursor of ASG and that phosphatidyl ethanolamine stimulated the formation of the latter compound, presumably acting as acyl donor. A high sterol glucosylating activity was found in the Golgirich fraction. All this evidence indicates that steryl glucosides and their acylated derivatives were synthesized by algae. The early assumption that these compounds were not present in algae must be revised.  相似文献   

11.
Biotransformation of artemisinin was investigated with two different cell lines of suspension cultures of Withania somnifera. Both cell lines exhibited potential to transform artemisinin into its nonperoxidic analogue, deoxyartemisinin, by eliminating the peroxo bridge of artemisinin. The enzyme involved in the reaction is assumed to be artemisinin peroxidase, and its activity in extracts of W. somnifera leaves was detected. Thus, the non-native cell-free extract of W. somnifera and suspension culture-mediated bioconversion can be a promising tool for further manipulation of pharmaceutical compounds.  相似文献   

12.
UGT76C2是负责细胞分裂素N-糖基化修饰的糖基转移酶,该基因对于维持植物体内细胞分裂素动态平衡有重要作用。为了进一步研究UGT76C2酶蛋白结构与催化活性的关系,本文采用定点突变方法,将UGT76C2的N端第31位的保守亮氨酸替换为组氨酸。结果发现,突变型UGT76C2在离体实验中完全丧失了对细胞分裂素的糖基化修饰活性,该突变基因的过表达转基因植物出现与UGT76C2突变体类似的表型,转基因植物体内的两类主要细胞分裂素的N-糖苷含量显著降低。实验结果证明了UGT76C2 N端亮氨酸残基对于糖基化修饰活性的重要性。  相似文献   

13.
In vitro multiple shoots, root, callus and cell suspension cultures of Withania somnifera exhibited the potentiality to produce pharmacologically active withanolides. Multiple shoots cultures exhibited an increase in withanolide A accumulation compared to shoots of the mother plant. In vitro generated root cultures as well as callus and suspension cultures also produced withanolides albeit at lower levels.  相似文献   

14.
Withania somnifera is an important medicinal plant, and its anticancerous properties have been attributed to various classes of withanolide compounds. The objective of the present study was to investigate the inter- and intraspecific genetic variation present in 35 individuals of W. somnifera and 5 individuals of W. coagulans using AFLP (amplified fragment length polymorphism) marker technique. The information about genetic variation determined from AFLP data for 40 individuals was employed to estimate similarity matrix value based on Jaccard's coefficient. The similarity values were further used to construct a phenetic dendrogram revealing the genetic relationships. The dendrogram generated by UPGMA (unweighted pair group method of arithmetic averages) distinguished W. somnifera from W. coagulans and formed two major clusters. These two main clusters shared a similarity coefficient of 0.3, correlating with the high level of polymorphism detected. The dendrogram further separated W. somnifera into three subclasses corresponding to Kashmiri and Nagori groups and an intermediate type. The AFLP profile of Kashmiri individuals was distinct from that of the Nagori group of plants. The intermediate genotype was distinct as it shared bands with both the Kashmiri and Nagori individuals, even though it was identified as a Kashmiri morphotype. Furthermore, the intermediate type shared a similarity coefficient of 0.8 with the Kashmiri individuals. The present work revealed low levels of variation within a population though high levels of polymorphism were detected between Nagori and Kashmiri populations. The ability of AFLP markers for efficient and rapid detection of genetic variations at the species as well as intraspecific level qualifies it as an efficient tool for estimating genetic similarity in plant species and effective management of genetic resources.  相似文献   

15.
Withania somnifera (ashwagandha) is a rich repository of large number of pharmacologically active secondary metabolites known as withanolides. Though the plant has been well characterized in terms of phytochemical profiles as well as pharmaceutical activities, but there is sparse information about the genes responsible for biosynthesis of these compounds. In this study, we have cloned and characterized a gene encoding squalene synthase (EC 2.5.1.21) from a withaferin A rich variety of W. somnifera, a key enzyme in the biosynthesis of isoprenoids. Squalene synthase catalyses dimerization of two farnesyl diphosphate (FPP) molecules into squalene, a key precursor for sterols and triterpenes. A full-length cDNA consisting of 1765 bp was isolated and contained a 1236 bp open reading frame (ORF) encoding a polypeptide of 411 amino acids. Recombinant C-terminus truncated squalene synthase (WsSQS) was expressed in BL21 cells (Escherichia coli) with optimum expression induced with 1mM IPTG at 37°C after 1h. Quantitative RT-PCR analysis showed that squalene synthase (WsSQS) expressed in all tested tissues including roots, stem and leaves with the highest level of expression in leaves. The promoter region of WsSQS isolated by genome walking presented several cis-acting elements in the promoter region. Biosynthesis of withanolides was up-regulated by different signalling components including methyl-jasmonate, salicylic acid and 2, 4-D, which was consistent with the predicted results of WsSQS promoter region. This work is the first report of cloning and expression of squalene synthase from W. somnifera and will be useful to understand the regulatory role of squalene synthase in the biosynthesis of withanolides.  相似文献   

16.
Resveratrol is a stilbene with well-known health-promoting effects in humans that is produced constitutively or accumulates as a phytoalexin in several plant species including grape (Vitis sp.). Grape berries accumulate stilbenes in the exocarp as cis- and trans-isomers of resveratrol, together with their respective 3-O-monoglucosides. An enzyme glucosylating cis- and trans-resveratrol was purified to apparent homogeneity from Concord (Vitis labrusca) grape berries, and peptide sequencing associated it to an uncharacterized Vitis vinifera full-length clone (TC38971, tigr database). A corresponding gene from Vitis labrusca (VLRSgt) had 98% sequence identity to clone TC38971 and 92% sequence identity to a Vitis viniferap-hydroxybenzoic acid glucosyltransferase that produces glucose esters. The recombinant enzyme was active over a broad pH range (5.5-10), producing glucosides of stilbenes, flavonoids and coumarins at higher pH and glucose esters of several hydroxybenzoic and hydroxycinnamic acids at low pH. Vitis labrusca grape berries accumulated both stilbene glucosides and hydroxycinnamic acid glucose esters, consistent with the bi-functional role of VLRSgt in stilbene and hydroxycinnamic acid modification. While phylogenetic analysis of VLRSgt and other functionally characterized glucosyltransferases places it with other glucose ester-producing enzymes, the present results indicate broader biochemical activities for this class of enzymes.  相似文献   

17.
Bailey BA  Larson RL 《Plant physiology》1989,90(3):1071-1076
Hydroxamic acids occur in several forms in maize (Zea mays L.) with 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) being the predominant form and others including 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) being found at lower concentrations. Two enzymes capable of glucosylating hydroxamic acids were identified in maize protein extracts and partially purified and characterized. The total enzyme activity per seedling increased during the first 4 days of germination and was concurrent with the accumulation of DIMBOA. Purification of the enzymes by ammonium sulfate precipitation followed by Sephadex G-200 and Q-Sepharose gel chromatography resulted in a 13-fold increase in specific activity. The enzymes are initially separated into two peaks (peak 1 and peak 2) of activity by Q-Sepharose gel chromatography. The peak 1 glucosyltransferase had 3.6% of the DIMBOA glucosylating activity when DIBOA was used as substrate, whereas this percentage increased to 57% for the peak 2 enzyme. The enzyme in peak 2 has a Km of 174 micromolar for DIMBOA and a Km of 638 micromolar for DIBOA; the enzyme in peak 1 has a Km of 217 micromolar for DIMBOA and its activity on DIBOA was too low to determine a Km. The identification of two glucosyltransferases capable of glucosylating hydroxamic acids in vitro serves as an initial step in the characterization of the enzymes involved in production of hydroxamic acids in maize.  相似文献   

18.
NADP-malic enzyme from plants.   总被引:13,自引:0,他引:13  
NADP-malic enzyme functions in plant metabolism as a decarboxylase of malate in the chloroplast or cytosol. It serves as a source of CO2 for photosynthesis in the bundle sheath chloroplasts of C4 plants and in the cytosol of Crassulacean acid metabolism plants, and as a source of NADPH and pyruvate in the cytosol of various tissues. Mg2+ or Mn2+ is required as a cofactor. The enzyme has a high specificity and low Km for NADP+. It exists as a tetramer which may undergo changes in oligomerization and exhibit hysteresis. Its kinetic properties vary depending on the compartmentation and function of the enzyme. The chloroplast form in C4 plants has a high pH optimum (pH 8) under high malate, which favours the tetramer, whereas lower pH (pH 7) favours the dimer form. Generally, other forms of the enzyme, which are thought to be cytosolic, have lower pH optima than the chloroplast enzyme. In a number of cases these forms have been shown to have allosteric properties with malate as a substrate. Chemical modifications of the plant enzyme suggest sulphydryl, histidine and arginine residues are required for catalysis. Primary sequence studies on the chloroplastic enzyme from C4 plants show significant similarities to cytosolic NADP-ME in plants and animals, including a sequence motif which is indicative of the NADP+ binding site. The possible origin of the chloroplast form of the enzyme is discussed.  相似文献   

19.
《Phytochemistry》1987,26(9):2531-2535
Five anthraquinone-specific glucosyltransferases were partially purified from Cinchona succirubra cell suspension culture by fractional precipitation with ammonium sulphate, gel filtration and chromatofocusing on a fast protein liquid chromatography system. Five, distinct glucosylating activities were resolved with apparent pI values of 5.3, 4.8, 4.5, 4.3 and 4.1. They accepted emodin, anthrapurpurin, quinizarin, 2,6-dihydroxy anthraquinone and 1,8- dihydroxy anthraquinone as the best substrates, respectively. These enzymes exhibited similar characteristics as to pH optimum (pH 7) in histidine/HCl buffer, M, 50 000, had no cation requirement and were inhibited by various SH-group reagents. The Km value of the respective anthraquinones for either of the five enzymes was 10 μM. The physiological role of these novel enzymes is discussed in relation to the biosynthesis of anthraquinone glucosides in this tissue.  相似文献   

20.
Steryl glucosides are characteristic lipids of plant membranes. The biosynthesis of these lipids is catalyzed by the membrane-bound UDP-glucose:sterol glucosyltransferase (EC 2.4.1.173). The purified enzyme (Warnecke and Heinz, Plant Physiol 105 (1994): 1067–1073) has been used for the cloning of a corresponding cDNA from oat (Avena sativa L.). Amino acid sequences derived from the amino terminus of the purified protein and from peptides of a trypsin digestion were used to construct oligonucleotide primers for polymerase chain reaction experiments. Screening of oat and Arabidopsis cDNA libraries with amplified labeled DNA fragments resulted in the isolation of sterol glucosyltransferase-specific cDNAs with insert lengths of ca. 2.3 kb for both plants. These cDNAs encode polypeptides of 608 (oat) and 637 (Arabidopsis) amino acid residues with molecular masses of 66 kDa and 69 kDa, respectively. The first amino acid of the purified oat protein corresponds to the amino acid 133 of the deduced polypeptide. The absence of these N-terminal amino acids reduces the molecular mass to 52 kDa, which is similar to the apparent molecular mass of 56 kDa determined for the purified protein. Different fragments of these cDNAs were expressed in Escherichia coli. Enzyme assays with homogenates of the transformed cells exhibited sterol glucosyltransferase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号