首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sponge-associated fungi represent the single most prolific source of novel natural products from marine fungi. Cyclo (l-Trp-l-Phe) exhibits biological functions such as plant growth regulation, moderate cytotoxicity and thus has the application potential in pharmaceutical and agricultural biotechnologies. In this study, a fungal strain TS08 was isolated from sponge Holoxea sp. in the South China Sea and identified as A. versicolor according to its 18S rRNA gene and morphological, physiological, and biochemical characteristics. Meanwhile, cyclo (l-Trp-l-Phe) was found to be produced by A. versicolor strain TS08 mainly in the exponential growth phase. The highest yield of cyclo (l-Trp-l-Phe), 13.24 mg/g (per crude extract of EtOAc), 2.51% of cell dry weigh, was obtained on the tenth day of the fungal cultivation. It was the first time to find the biological active cyclo (l-Trp-l-Phe) in sponge-associated microorganism.  相似文献   

2.
Summary The growth of Rhodotorula glutinis is inhibited by both D-threo chloramphenicol and an L-threo isomer of chloramphenicol (lacking the dichloroacetyl group), causing an increase in the mean generation time, in a variety of media, approximately proportional to the concentration of antibiotic. The antibiotic is not removed from the growth medium in any quantity during this inhibition of growth. The oxygen uptakes of normal and chloramphenicol-grown cells of R. glutinis are similar when expressed on a dry weight basis. The oxygen uptake of normal and L-threo isomer-grown cells is strongly inhibited by antimycin A, whereas D-threo chloramphenicol-grown cells are unaffected. There was no evidence to suggest that any uncoupling of phosphorylation occurred with either isomer. Pythium ultimum mycelium also showed similar oxygen uptakes per unit dry weight whether grown in the presence or absence of D-threo chloramphenicol. The D-threo chloramphenicol-grown mycelium was also insensitive to antimycin A in contrast to the normal mycelium which was strongly inhibited. P. ultimum grows slowly in the presence of 100 g/ml D-threo chloramphenicol in a glucose salts medium, but is completely inhibited by a similar concentration in a glycerol salts medium. The L-threo isomer does not inhibit the growth of P. ultimum.The mitochondria of Rhodotorula glutinis show a progressive disorganization when grown in the presence of increasing concentrations of D-threo chloramphenicol up to 1000 g/ml. There is an associated over synthesis of cell wall material in the higher concentrations of the antibiotic. The L-threo isomer produces no obvious fine structural abnormalities even at concentrations of 1000 g/ml.  相似文献   

3.
A bacterial strain, SCE2, identified as Bacillus polymyxa, produced an anti-microbial substance active against yeasts, fungi and different genera of Gram-positive and-negative bacteria, in liquid medium and in plate assays. This substance appeared to be an antibiotic different from the polymyxin group, mainly because of its action against the majority of Gram-positive bacteria tested and its lack of activity against Pseudomonas aeruginosa, a species usually killed by polymyxins. Preliminary characterization showed resistance to heat (65°C, 2 h), to proteases, trypsin, lysozyme, deoxyribonuclease I, ribonuclease A, phospholipase C, ethanol, acetone, chloroform, ether and to strong alkali treatment (2 M NaOH). The molecular weight was less than 3500. The B. polymyxa strain harboured a plasmid that did not correlate with antibiotic production; after curing experiments, a derivative strain, SCE2(46), was isolated that lacked the plasmid pES1, but showed the same inhibitory spectrum as the wild-type strain.  相似文献   

4.
Streptomyces albulus NBRC14147 produces ɛ-poly-l-lysine (ɛ-PL), which is an amino acid homopolymer antibiotic. Despite the commercial importance of ɛ-PL, limited information is available regarding its biosynthesis; the l-lysine molecule is directly utilized for ɛ-PL biosynthesis. In most bacteria, l-lysine is biosynthesized by an aspartate pathway. Aspartokinase (Ask), which is the first enzyme in this pathway, is subject to complex regulation such as through feedback inhibition by the end-product amino acids such as l-lysine and/or l-threonine. S. albulus NBRC14147 can produce a large amount of ɛ-PL (1–3 g/l). We therefore suspected that Ask(s) of S. albulus could be resistant to feedback inhibition to provide sufficient l-lysine for ɛ-PL biosynthesis. To address this hypothesis, in this study, we cloned the ask gene from S. albulus and investigated the feedback inhibition of its gene product. As predicted, we revealed the feedback resistance of the Ask; more than 20% relative activity of Ask was detected in the assay mixture even with extremely high concentrations of l-lysine and l-threonine (100 mM each). We further constructed a mutated ask gene for which the gene product Ask (M68V) is almost fully resistant to feedback inhibition. The homologous expression of Ask (M68V) further demonstrated the increase in ɛ-PL productivity.  相似文献   

5.
Sponges (Porifera) are nerve- and muscleless. Nevertheless, they react to external stimuli in a coordinated way, by body contraction, oscule closure or stopping pumping activity. The underlying mechanisms are still unknown, but evidence has been found for chemical messenger-based systems. We used the sponge Tethya wilhelma to test the effect of γ-aminobutyric acid (GABA) and glutamate (l-Glu) on its contraction behaviour. Minimal activating concentrations were found to be 0.5 μM (GABA) and 50 μM (l-Glu), respectively. Taking maximum relative contraction speed and minimal relative projected body area as a measure of the sponge’s response, a comparison of the dose–response curves indicated a higher sensitivity of the contractile tissue for GABA than for l-Glu. The concentrations eliciting the same contractile response differ by about 100-fold more than the entire concentration range tested. In addition, desensitising effects and spasm-like reactions were observed. Presumably, a GABA/l-Glu metabotropic receptor-based system is involved in the regulation of contraction in T. wilhelma. We discuss a coordination system for sponges based on hypothetical chemical messenger pathways. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users. K. Ellwanger and A. Eich contributed equally and designed and performed experiments, analysed data and revised the paper, M. Nickel designed the study and experiments, analysed data, prepared the figures, wrote and revised the paper.  相似文献   

6.
The hexactinellid spongeAphrocallistes alveolites (Roemer, 1841) from Campanian calcareous to marly rocks of the Hannover area is redescribed. Based on well preserved larger fragments of the sponge body, its generai growth-form is reconstructed. It is shown that this species consists of stolon-like, ramified branches running parallel to the sediment-water interface. Initially, they scatter in all directions in a star-like manner, with presumably four to five branches giving the sponge body an almost radially spreading shape. Structures for anchoring, e. g., root-like appendices, are not developed. The branches are interspersed by bowl-like offspings with an osculum covered by a diaphragm at their distal ends. Thus, mature specimens resemble a rambling “chandelier“. This external morphology represents a special “bauplan“ of sponges that was heretofore unknown. Morphologically,A. alveolites shows adaptations both to soft-bottom sediments and calm, non-disturbed (neritic) offshore shelf environments. Specimens attained a stable position by building an extended skeleton of stellate branches resting laterally on the soft-bottom sediment or are partly burried in the sediment (snowshoe strategy). Functional morphological analysis indicates that the mode of interposition and spatial distribution of oscula within branches ensure the nutrition ofA. alveolites in a calm environment.   相似文献   

7.
Summary Bacilysin, a dipeptide antibiotic produced byBacillus subtilis A 14, was synthesized by a cell-free extract of the producing organism from its constitutent amino acids,l-alanine andl-anticapsin. The synthesis required ATP and Mg2+ and was optimal at pH 8.1. The same extract also synthesizedl-alanyl-l-alanine. The synthesis of bacilysin was not inhibited by chloramphenicol, DNase or RNase.  相似文献   

8.
Actinomadura sp. ATCC 39727 produces the glycopeptide antibiotic A40926, structurally similar to teicoplanin, with significant activity against Neisseria gonorrhoeae and precursor of the semi-synthetic antibiotic dalbavancin. In this study the production of A40926 by Actinomadura under a variety of growth conditions was investigated. The use of chemically defined mineral media allowed us to analyze the influence of carbon and nitrogen sources, phosphate, ammonium and calcium on the growth and the antibiotic productivity of Actinomadura. We confirm recent data [Gunnarsson et al. (2003) J Ind Microbiol Biotechnol 30:150–156] that low initial concentrations of phosphate and ammonium are beneficial for growth and A40926 production, and we provide new evidence that the production of A40926 is depressed by calcium, but promoted when l-glutamine or l-asparagine are used as nitrogen sources instead of ammonium salts.  相似文献   

9.
《Autophagy》2013,9(3):408-415
Representatives of all major metazoan lineages form biominerals. The molecular mechanisms that underlie this widespread and evolutionarily ancient ability are gradually being revealed for some lineages. However, until a wider range of metazoan biomineralization strategies are understood, the true diversity, and therefore the evolutionary origins of this process, will remain unknown. We have previously shown that the coralline demosponge, Astrosclera willeyana, in some way employs its endobiotic bacterial community to form its highly calcified skeleton. Here, using in situ hybridization and immunohistochemistry, we show that an ortholog of ATG8 (most likely a GABARAPL2/GATE-16 ortholog) is expressed in cells that construct the individual skeletal elements of the sponge. In TEM sections sponge cells can be observed to contain extensive populations of bacteria, and frequently possesses double-membrane structures which we interpret to be autophagosomes. In combination with our previous work, these findings support the hypothesis that the host sponge actively degrades a proportion of its bacterial community using an autophagy pathway, and uses the prokaryotic organic remains as a framework upon which calcification of the sponge skeleton is initiated.  相似文献   

10.
The amino acid derivative, S-carboxymethyl-l-cysteine, is an anti-oxidant agent extensively employed as adjunctive therapy in the treatment of human pulmonary conditions. A major biotransformation route of this drug, which displays considerable variation in capacity in man, involves the oxidation of the sulfide moiety to the inactive S-oxide metabolite. Previous observations have indicated that fasted plasma l-cysteine concentrations and fasted plasma l-cysteine/free inorganic sulfate ratios were correlated with the degree of sulfoxidation of this drug and that these particular parameters may be used as endobiotic biomarkers for this xenobiotic metabolism. It has been proposed also that the enzyme, cysteine dioxygenase, was responsible for the drug sulfoxidation. Further in this theme, the degree of S-oxidation of S-carboxymethyl-l-cysteine in 100 human volunteers was investigated with respect to it potential correlation with fasted plasma amino acid concentrations. Extensive statistical analyses showed no significant associations or relationships between the degree of drug S-oxidation and fasted plasma amino acid concentrations, especially with respect to the sulfur-containing compounds, methionine, l-cysteine, l-cysteine sulfinic acid, taurine and free inorganic sulfate, also the derived ratios of l-cysteine/l-cysteine sulfinic acid and l-cysteine/free inorganic sulfate. It was concluded that plasma amino acid levels or derived ratios cannot be employed to predict the degree of S-oxidation of S-carboxymethyl-l-cysteine (or vice versa) and that it is doubtful if the enzyme, cysteine dioxygenase, has any involvement in the metabolism of this drug.  相似文献   

11.
Summary DL-seleno-methionine resistant mutants of Cephalosporium acremonium were isolated which have an enhanced capacity to utilized sulfate for the synthesis of cephalosporin C. Of these mutants, one designated as SMR-I3 produced three-fold more cephalosporin C from sulfate than its parent CW19. Mutant SMR-I3 required less dl-methionine for maximal synthesis of cephalosporin C, but an excess of dl-methionine inhibited the synthesis of the antibiotic. Furthermore, the mutant accumulated excessive methionine in the amino acid pool and possessed superior activity for sulfate uptake. These observations indicate that in the mutant SMR-I3, the biosynthesis of methionine from sulfate is very active and excess methionine becomes available for the synthesis of cephalosporin C.  相似文献   

12.
Rhizocticin A, the main component of the antifungal, hydrophilic phosphono-oligopeptides of Bacillus subtilis ATCC 6633, was used for sensitivity testing and experiments into the molecular mechanism of the antibiotic action. Budding and filamentous fungi as well as the cultivated nematode Caenorhabditis elegans were found to be sensitive, whereas bacteria and the protozoon Paramecium caudatum were insensitive. Rhizoctonia solani was inhibited in agar dilution tests but not in diffusion tests. The antifungal effect of rhizocticin A was neutralized by a variety of amino acids and oligopeptides. Oligopeptide influence was mainly understood as transport antagonism, and it was concluded that the antibiotic enters the recipeint cell via the peptide transport system. l- and d-cystine were also identified as potent, general antagonists of the oligopeptide transport. The rhizocticin-antagonism of four other amino acids was taken as a clue to the site of action. Provided that rhizocticin A is split by peptidases of the target cell into inactive l-arginine and toxic l-2-amino-5-phosphono-3-cis-pentenoic acid (l-APPA), the latter may interfere with the threonine or threonine-related metabolism.Abbreviations APPA (2-amino-5-phosphono-3-cis-pentenoic acid) - B. (Bacillus) - P. (Paecilomyces) - S. (Saccharomyces) Dedicated to Professor Dr. Hans Zähner for the 60th return of his birthdayThis work was supported by the Deutsche Forschungsgemeinschaft (DFG-Lo 3201, SFB 3232)  相似文献   

13.
Summary A membrane potential (inside negative) across the plasma membrane of the obligatory aerobic yeastRhodotorula gracilis is indicated by the intracellular accumulation of the lipid-soluble cations tetraphenylphosphonium and triphenylmethylphosphonium. The uptake of these ions is inhibited by anaerobic conditions, by uncouplers, by addition of diffusible ions, or by increase of the leakiness of the membrane caused by the polyene antibiotic nystatin. The membrane potential is strongly pH-dependent, its value increasing with decreasing extracellular proton concentration. Addition of transportable monosaccharides causes a depolarization of the electrical potential difference, indicating that the H+-sugar cotransport is electrogenic. The effect on the membrane potential is enhanced by increasing the sugar concentration. The half-saturation constants of depolarization ford-xylose andd-galactose were comparable to those of the corresponding transport system for the two sugars. All agents that depressed the membrane potential inhibited monosaccharide transport; hence the membrane potential provides energy for active sugar transport in this strain of yeast.  相似文献   

14.
Addition ofL-tryptophan to cultures of the basidiomyceteOudemansiella mucida brought about a pronounced increase of production of the antibiotic mucidin. The highest increase was reached in the presence of 0.15–0.20 % tryptophan and after its addition to a 1-d culture. The methyl ester of tryptophan exhibited the same effect. Mycelium growing during the initial phases in the presence of tryptophan synthesized mucidin powerfully during later phases of the fermentation. Part VII of the series Antifungal antibiotic of the basidiomyceteOudemansiella mucida; part VI:Folia Microbiol. 27, 35 (1982).  相似文献   

15.
The polyene antibiotic amphotericin B (AmB) is known to form two types of ionic channels across sterol-containing liposomes, depending on its concentration and time after mixing (Cohen, 1992). In the present study, it is shown that AmB only kills unicellular Leishmania promastigotes (LPs) when aqueous pores permeable to small cations and anions are formed. Changes of membrane potential across ergosterol-containing liposomes and LPs were followed by fluorescence changes of 3,3′ dipropylthiadicarbocyanine (DiSC3(5)). In KCl-loaded liposomes suspended in an iso-osmotic sucrose solution, low AmB concentrations (≤0.1 μm) induced a polarization potential, indicating K+ leakage, but no movement of cations and anions was allowed until AmB concentrations greater than 0.1 μm were added. In agreement with these data, it was found that AmB altered the negative membrane potential held across LPs in a manner consistent with the differential cation/anion selectivity exhibited by the channels formed in liposomes. Thus, LPs suspended in an iso-osmotic sucrose solution did not exhibit any AmB-induced membrane depolarization effect brought about by efflux of anions until 0.1 μm or higher AmB concentrations were added. By contrast, LPs suspended in an iso-osmotic NaCl solution and exposed to 0.05 μm AmB exhibited a nearly total collapse of the negative membrane potential, indicating Na+ entry into the cells. The concentration dependence of the AmB-induced permeability to different salts was also measured across vesicles derived from the plasma membrane of leishmanias (LMVs), by using a rapid mixing technique. At concentrations above 0.1 μm, AmB induced the formation of aqueous pores across LMVs with a positive cooperativity, yielding Hill coefficients between 2 to 3. Measured anion selectivity across such aqueous pores followed the sequence: SCN > NO3 > Cl > I > Br > acetate (SO2− 4 being impermeable). Cell killing by AmB was followed by fluorescence changes of the DNA-binding compound ethidium bromide (EB). At low concentrations (≤0.1 μm), AmB was found to be nonlethal against LPs but, above this concentration, leishmanias were rapidly killed. The rate and extent of such an effect were found to be dependent on the type of cation and anion present in the external aqueous solution. For both NH+ 4 and Na+ salts, the measured rank order of AmB cell killing followed the same sequence that was determined for AmB-induced salt permeation across LMVs. Further, replacement of either extracellular Na+ by choline or Cl by SO2− 4, or its partial substitution by sucrose, in iso-osmotic conditions, led to a complete inhibition of the killing effect exerted by otherwise lethal AmB concentrations. Finally, it was shown that tetraethylammonium (TEA+), an organic cation that is known to block AmB-induced salt permeation across LMVs was able to retard the time lag observed for EB incorporation across LPs, indicating that this parameter can be taken to represent the time taken for salt accumulation inside the parasites. The present results thus indicate clearly that low AmB concentrations (≤0.1 μm) were able to form across LPs, cation channels that collapsed the parasite membrane potential but are not lytic. At high concentrations (<≥0.1 μm), a salt influx via the aqueous pores formed by the antibiotic was followed by osmotic changes leading to cell lysis. This last stage is supported by electron microscopy observations of the changes of parasite morphology immediately upon addition of AmB, which indicated that the typical elongated promastigote cell forms became rounded and the flagella swells and round up. The present work is the first demonstration of the in vitro sensitivity of Leishmania promastigotes to osmotic lysis by AmB. Received: 25 September 1995/Revised: 11 March 1996  相似文献   

16.
Summary The taxonomically problematic spongillid genus Corvomeyenia Weltner is analyzed. A north-south evolutionary series composed of Corvomeyenia everetti (Mills), Corvomeyenia carolinensis sp. nov., and Corvomeyenia australis Bonetto & Ezcurra de Drago can be demonstrated. C. carolinensis sp. nov. possesses spicular characteristics that indicate genetic variation from its congeners; in addition, environmental conditions in the type locality of C. carolinensis sp. nov. differ greatly from the optimal conditions for growth of C. everetti (Mills). A new method for phase contrast study of living sponge tissues and a variety of histological and histochemical techniques are used to taxonomically define C. carolinensis sp. nov.
Zusammenfassung Die in taxonomischer Hinsicht problematische Spongilliden-gattung Corvomeyenia Weltner wird analysiert. Von Norden nach Süden lässt sich eine Entwicklungsreihe nachweisen, bestehend aus Corvomeyenia everetti (Mills), Corvomeyenia carolinensis sp. nov. sowie Corvomeyenia australis Bonetto & Ezcurra de Drago. Die Skelettnadeln von C. carolinensis sp. nov. weisen Merkmale auf, welche auf eine genetische Abweichung von seinen Gattungsverwandten hindeuten; überdies unterscheiden sich die Umweltsbedingungen an den Fundorten von C. carolinensis sp. nov. weitgehend von den optimalen Bedingungen für den Wuchs von C. everetti (Mills). Zur taxonomischen Bestimmung von C. carolinensis sp. nov. werden eine neue Methode der Phasenkontrastuntersuchung lebenden Schwam neue Methode der Phasenkontrastuntersuchung lebenden Schwammgewebes and verschiedene histologische und histochemische Methoden angewandt.
  相似文献   

17.
Summary We have characterized a mutant of Streptomyces clavuligerus NRRL 3585 which is almost completely blocked in cephalosporin biosynthesis and exhibits depressed activities of both the delta(l-alpha-aminoadipyl)-l-cysteinyl-d-valine (ACV) synthetase and cyclase enzymes of the cephalosporin pathway. A wild-type DNA region was cloned which partially restores antibiotic production, ACV synthetase and cyclase activities to this mutant. The recombinant plasmid exhibits a variable copy number in different transformants. Hybridization experiments indicate that sequences homologous to the cloned region are present in various -lactam-producing Streptomyces spp. but absent in species which are not known to produce this class of antibiotics. Furthermore, the chromosomal copy of the cloned region lies in close proximity to a gene coding for the isopenicilin N synthase gene of the cephalosphorin pathway.Offprint requests to: J. Piret  相似文献   

18.
The ability to convert d-galactose into d-tagatose was compared among a number of bacterial l-arabinose isomerases (araA). One of the most efficient enzymes, from the anaerobic thermophilic bacterium Thermoanaerobacter mathranii, was produced heterologously in Escherichia coli and characterised. Amino acid sequence comparisons indicated that this enzyme is only distantly related to the group of previously known araA sequences in which the sequence similarity is evident. The substrate specificity and the Michaelis–Menten constants of the enzyme determined with l-arabinose, d-galactose and d-fucose also indicated that this enzyme is an unusual, versatile l-arabinose isomerase which is able to isomerise structurally related sugars. The enzyme was immobilised and used for production of d-tagatose at 65 °C. Starting from a 30% solution of d-galactose, the yield of d-tagatose was 42% and no sugars other than d-tagatose and d-galactose were detected. Direct conversion of lactose to d-tagatose in a single reactor was demonstrated using a thermostable -galactosidase together with the thermostable l-arabinose isomerase. The two enzymes were also successfully combined with a commercially available glucose isomerase for conversion of lactose into a sweetening mixture comprising lactose, glucose, galactose, fructose and tagatose.  相似文献   

19.
Some of the polyketide-derived bioactive compounds contain sugars attached to the aglycone core, and these sugars often impart specific biological activity to the molecule or enhance this activity. Mycinamicin II, a 16-member macrolide antibiotic produced by Micromonospora griseorubida A11725, contains a branched lactone and two different deoxyhexose sugars, d-desosamine and d-mycinose, at the C-5 and C-21 positions, respectively. The d-mycinose biosynthesis genes, mycCI, mycCII, mycD, mycE, mycF, mydH, and mydI, present in the M. griseorubida A11725 chromosome were introduced into pSET152 under the regulation of the promoter of the apramycin-resistance gene aac(3)IV. The resulting plasmid pSETmycinose was introduced into Micromonospora rosaria IFO13697 cells, which produce the 16-membered macrolide antibiotic rosamicin containing a branched lactone and d-desosamine at the C-5 position. Although the M. rosaria TPMA0001 transconjugant exhibited low rosamicin productivity, two new compounds, IZI and IZII, were detected in the ethylacetate extract from the culture broth. IZI was identified as a mycinosyl rosamicin derivative, 23-O-mycinosyl-20-deoxo-20-dihydro-12,13-deepoxyrosamicin (MW 741), which has previously been synthesized by a bioconversion technique. This is the first report on production of mycinosyl rosamicin-derivatives by a engineered biosynthesis approach. The integration site ΦC31attB was identified on M. rosaria IFO13697 chromosome, and the site lay within an ORF coding a pirin homolog protein. The pSETmycinose could be useful for stimulating the production of “unnatural” natural mycinosyl compounds by various actinomycete strains using the bacteriophage ΦC31 att/int system.  相似文献   

20.
d-Tagatose is a highly functional rare ketohexose and many attempts have been made to convert d-galactose into the valuable d-tagatose using l-arabinose isomerase (l-AI). In this study, a thermophilic strain possessing l-AI gene was isolated from hot spring sludge and identified as Anoxybacillus flavithermus based on its physio-biochemical characterization and phylogenetic analysis of its 16s rRNA gene. Furthermore, the gene encoding l-AI from A. flavithermus (AFAI) was cloned and expressed at a high level in E. coli BL21(DE3). l-AI had a molecular weight of 55,876 Da, an optimum pH of 10.5 and temperature of 95°C. The results showed that the conversion equilibrium shifted to more d-tagatose from d-galactose by raising the reaction temperatures and adding borate. A 60% conversion of d-galactose to d-tagatose was observed at an isomerization temperature of 95°C with borate. The catalytic efficiency (k cat /K m) for d-galactose with borate was 9.47 mM−1 min−1, twice as much as that without borate. Our results indicate that AFAI is a novel hyperthermophilic and alkaliphilic isomerase with a higher catalytic efficiency for d-galactose, suggesting its great potential for producing d-tagatose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号