首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High background fluorescence and unspecific staining hampered the epifluorescence enumeration of bacteria in 45% of the tested soil and sediment samples with 4′,6-diamidino-2-phenylindole (DAPI) and polycarbonate membrane filters. These problems of the determination of total cell counts can be circumvented by using green fluorescent high-affinity nucleic acid dyes and aluminum oxide membrane filters. Due to the bright staining of cells, we recommend SYBR Green II as dye.  相似文献   

2.
The nucleic acid stain SYBR Green I was evaluated for use with solid-phase laser cytometry to obtain total bacterial cell counts from several water sources with small bacterial numbers. Results were obtained within 30 min and exceeded or equaled counts on R2A agar plates incubated for 14 days at room temperature.  相似文献   

3.
Bacteria on plant surfaces were examined using epifluorescence, bright-field microscopy and an impression technique. Staining bacteria directly on the plant surface with phenolic aniline blue was found to be the best method to use for the determination of bacterial density. The effect on the estimation of population density of pretreatment of the plant with agents such as methanol and eosin yellowish was investigated. The average sizes of the bacterial populations on two freshwater plants, Rorippa and Lemna , estimated after staining by this method, were 5 times 106 and 9 times 106 bacteria cm-z respectively.  相似文献   

4.
The DNA-specific fluorochromes Hoechst 33258 and 33342 were used to enumerate aquatic bacteria by epifluorescent direct counts. Cultures of estuarine bacteria gave identical counts when stained with Hoechst 33258 or acridine orange, whereas natural populations of aquatic bacteria gave 92 to 98.5% of the acridine orange counts. The technique had distinct advantages over acridine orange when enumerating bacteria on surfaces which bind acridine orange, such as polystyrene.  相似文献   

5.
Seven blue nucleic acid dyes from Molecular Probes Inc. (SYTO-9, SYTO-11, SYTO-13, SYTO-16, SYTO-BC, SYBR-I and SYBR-II) were compared with the DAPI (4′,6-diamidino-2-phenylindole) method for flow cytometric enumeration of live and fixed bacteria in aquatic systems. It was shown that SYBR-II and SYTO-9 are the most appropriate dyes for bacterial enumeration in nonsaline waters and can be applied to both live and dead bacteria. The fluorescence signal/noise ratio was improved when SYTO-9 was used to stain living bacteria in nonsaline waters. Inversely, SYBR-II is more appropriate than SYTO dyes for bacterial enumeration of unfixed and fixed seawater samples.  相似文献   

6.
An antiserum raised against whole cells of Thiobacillus ferrooxidans was allowed to react with a variety of acidophilic and nonacidophilic bacteria in an enzyme-linked immunosorbent assay and an indirect immunofluorescence assay. Both experiments demonstrated that the antiserum was specific at the species level. This preparation was used to evaluate the role of T. ferrooxidans in the microbial desulfurization process. Leaching experiments were performed, and the numbers of T. ferrooxidans cells and other bacteria were estimated by using a combined immunofluorescence-DNA-fluorescence staining technique that was adapted for this purpose. Nonsterile coal samples inoculated with T. ferrooxidans yielded high concentrations of soluble iron after 16 days. After this period, however, T. ferrooxidans cells could no longer be detected by the immunofluorescence assay, whereas the DNA-fluorescence staining procedure demonstrated a large number of microorganisms on the coal particles. These results indicate that T. ferrooxidans is removed by competition with different acidophilic microorganisms that were originally present on the coal.  相似文献   

7.
Application of flow cytometry (FCM) to microbial analysis of milk is hampered by the presence of milk proteins and lipid particles. Here we report on the development of a rapid (≤1-h) FCM assay based on enzymatic clearing of milk to determine total bacteria in milk. When bacteria were added to ultra-heat-treated milk, a good correlation (r ≥ 0.98) between the FCM assay and the more conventional methods of plating and direct microscopic counting was achieved. Raw milk data showed a significant correlation (P < 0.01) and a good agreement (r = 0.91) between FCM and standard plate count methods. The detection limit of the FCM assay was ≤104 bacteria ml of milk−1. This limit is below the level of detection required to satisfy legislation in many countries and states.  相似文献   

8.
Membrane filtration and epifluorescent microscopy were used for the direct enumeration of bacteria in raw milk. Somatic cells were lysed by treatment with trypsin and Triton X-100 so that 2 ml of milk containing up to 5 × 106 somatic cells/ml could be filtered. The majority of the bacteria (ca. 80%) remained intact and were concentrated on the membrane. After being stained with acridine organe, the bacteria fluoresced under ultraviolet light and could easily be counted. The clump count of orange fluorescing cells on the membrane correlated well (r = 0.91) with the corresponding plate count for farm, tanker, and silo milks. Differences between counts obtained by different operators and between the membrane clump count and plate count were not significant. The technique is rapid, taking less than 25 min, inexpensive, costing less than 50 cents per sample, and is suitable for milks containing 5 × 103 to 5 × 108 bacteria per ml.  相似文献   

9.
We present a new method that stains differently two subpopulations of Purkinje cells in the adult rat. Deparaffinized sections of cerebella, fixed by perfusion with buffered glutaraldehyde or Bouin's fluid were stained with 0.5% light green in 50% ethanolf 10-30 min). The excess dye was removed with saturated aqueous picric acid (10-30 min). At this point some Purkinje cells appeared as lightly stained neurons, while others were strongly stained. Slides were immersed in 0.5% aqueous acid fuchsin for approximately 1 min until the lightly stained neurons acquired a red color. Following immersion in 1% phosphotungstic acid, slides were rapidly dehydrated in ethanol, passed to xylene and mounted in Canada balsam. Two subpopulations of Purkinje cells differing in their protein content in somata and proximal dendrites stained differentially by this method. They occurred in all coronal and sagittal sections and in patches or stripes. Their relative proportion varied from lobule to lobule. A second staining method used potassium permanganate as the sole staining reagent. The staining reagent can be used on sections previously stained with the acid dyes. Purkinje cells appeared as subsets of brownish to deep brown stained neurons, the latter ones corresponding to green stained cells in the dichromic method. The results obtained indicated that the subpopulations reflect real differences among individual neurons and are not artifacts. The technique holds promise for identifying and localizing subsets of Purkinje cells differing in their protein content under normal and experimental conditions and for their further characterization by combined staining and histochemical procedures.  相似文献   

10.
Marine macroorganisms are a potential source for new bioactive substances. In many cases marine microorganisms—especially bacteria—associated with these macroorganisms are actually producing the bioactive substances. One often is not able to immediately isolate microorganisms from collected macroorganismic materials; we therefore evaluated different methods for storage of such material, e.g., on board research vessels. These methods were the following: storage of macerates in sintered glass beads and 5% trehalose at −20°C (SGT method); storage of sections in 5% dimethyl sulfoxide at −70°C (SD method); storage of macerates at −20°C using the commercial ROTI-STORE system (RS method); storage of macerates at −20°C in 50% glycerol (GC method); and storage of macerates covered by mineral oil at 4°C (MO method). The SGT and SD methods resulted in numbers of and especially diversity of recoverable bacteria that were higher than for the other methods. Data for the RS method indicated its potential usefulness, too. The MO method resulted in growth during storage, thereby enriching a few selected microorganisms; the GC method resulted in a survival and diversity of recovered bacteria that was too low.  相似文献   

11.
Bacterial populations display high heterogeneity in viability and physiological activity at the single-cell level, especially under stressful conditions. We demonstrate a novel staining protocol for multiparameter assessment of individual cells in physiologically heterogeneous populations of cyanobacteria. The protocol employs fluorescent probes, i.e., redox dye 5-cyano-2,3-ditolyl tetrazolium chloride, ‘dead cell’ nucleic acid stain SYTOX Green, and DNA-specific fluorochrome 4′,6-diamidino-2-phenylindole, combined with microscopy image analysis. Our method allows simultaneous estimates of cellular respiration activity, membrane and nucleoid integrity, and allows the detection of photosynthetic pigments fluorescence along with morphological observations. The staining protocol has been adjusted for, both, laboratory and natural populations of the genus Phormidium (Oscillatoriales), and tested on 4 field-collected samples and 12 laboratory strains of cyanobacteria. Based on the mentioned cellular functions we suggest classification of cells in cyanobacterial populations into four categories: (i) active and intact; (ii) injured but active; (iii) metabolically inactive but intact; (iv) inactive and injured, or dead.  相似文献   

12.
Oysters (Crassostrea virginica) were collected monthly from May 1998 to April 1999 from Mobile Bay, Ala., and analyzed to determine Vibrio parahaemolyticus densities at zero time and after 5, 10, and 24 h of postharvest storage at 26°C. After 24 h of storage at 26°C, oysters were transferred to a refrigerator at 3°C and then analyzed 14 to 17 days later. The V. parahaemolyticus numbers were determined by the most-probable-number procedure using alkaline phosphatase-labeled DNA probe VPAP, which targets the species-specific thermolabile hemolysin gene (tlh), to identify suspect isolates (MPN-VPAP procedure). Two direct plating methods, one using a VPAP probe (Direct-VPAP) and one using a digoxigenin-labeled probe (Direct-VPDig) to identify suspect colonies, were compared to the MPN-VPAP procedure. The results of the Direct-VPAP and Direct-VPDig techniques were highly correlated (r = 0.91), as were the results of the Direct-VPAP and MPN-VPAP procedures (r = 0.91). The correlation between the Direct-VPDig and MPN-VPAP results was 0.85. The two direct plating methods in which nonradioactive DNA probes were used were equivalent to the MPN-VPAP procedure for identification of total V. parahaemolyticus, and they were more rapid and less labor-intensive.  相似文献   

13.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

14.
A technique which employs nonfluorescing membrane filters and specific fluoresceinisothiocynate-labeled antiserum has been successfully used in the identification and enumeration of known species of Escherichia coli which have been added to natural populations of bacteria found in water. The quantitative results compared favorably with those of standard tests. The use of a dissecting microscope with an external lighting arrangement provided a simple requirement for equipment. This method may be useful in monitoring specific bacterial types from waters which were being monitored for specific pollution.  相似文献   

15.
We report here a new staining procedure which uses both the enzymatic dehydrogenation of 2-(p-iodophenyl)-3-p-(nitrophenyl)-5 phenyltetrazolium chloride to a pink intracellular formazan and the DNA-specific fluorochrome 4′,6′-diamidino-2-phenylindole. Application of this staining procedure to cells concentrated on filters and then transferred to microscope slides by the filter-transfer-freeze technique has proven valuable for statistically accurate enumeration of the total viable and metabolically active cells in groundwaters.  相似文献   

16.
Soil protozoa are characterized by their ability to produce cysts, which allows them to survive unfavorable conditions (e.g., desiccation) for extended periods. Under favorable conditions, they may rapidly excyst and begin feeding, but even under optimal conditions, a large proportion of the population may be encysted. The factors governing the dynamics of active and encysted cells in the soil are not well understood. Our objective was to determine the dynamics of active and encysted populations of ciliates during the decomposition of freshly added organic material. We monitored, in soil microcosms, the active and total populations of ciliates, their potential prey (bacteria and small protozoa), their potential competitors (amoebae, flagellates, and nematodes), and their potential predators (nematodes). We sampled with short time intervals (2 to 6 days) and generated a data set, suitable for mathematical modeling. Following the addition of fresh organic material, bacterial numbers increased more than 1,400-fold. There was a temporary increase in the number of active ciliates, followed by a rapid decline, although the size of the bacterial prey populations remained high. During this initial burst of ciliate growth, the population of cystic ciliates increased 100-fold. We suggest that internal population regulation is the major factor governing ciliate encystment and that the rate of encystment depends on ciliate density. This model provides a quantitative explanation of ciliatostasis and can explain why protozoan growth in soil is less than that in aquatic systems. Internally governed encystment may be an essential adaptation to an unpredictable environment in which individual protozoa cannot predict when the soil will dry out and will survive desiccation only if they have encysted in time.  相似文献   

17.
18.
Modification of fire regimes in tropical savannas can have significant impacts on the global carbon (C) cycle, and therefore, on the climate system. In Australian tropical savannas, there has been recent, large-scale implementation of fire management that aims to decrease Kyoto-compliant non-CO2 greenhouse gas emissions by reducing late dry season intense fires through strategic early dry season burning. However, there is no accounting for changes to soil C stocks resulting from changes to savanna fire management, although impacts on these pools may be considerable. We present a hypothesis that soil C storage is greatest under low intensity fires with an intermediate fire return interval. Simulations using the CENTURY Soil Organic Matter Model confirmed this hypothesis with greatest soil C storage under a fire regime of one low intensity fire every 5 years. Key areas of uncertainty for CENTURY model simulations include fine root dynamics, charcoal production and nitrogen (N) cycling, and better understanding of these processes could improve model predictions. Soil C stocks measured in the field after 5 years of annual, 3 year and unburned fire treatments were not significantly different (range 41–58 t ha−1), but further CENTURY modelling suggests that changes in fire management will take up to 100 years to have a detectable impact (+4 t ha−1) on soil C stocks. However, implementation of fire management that reduces fire frequency and intensity within the large area of intact savanna landscapes in northern Australia could result in emissions savings of 0.17 t CO2-e ha−1 y−1, four times greater than reductions of non-CO2 emissions.  相似文献   

19.
Crystallia ribonuclease has no marked proteolytic activity, since digestion of sections with this enzyme produces no appreciable decrease in the intensity of the cytochemical tests for arginine and tyrosine. Cytoplasmic basophilia is unaffected by treatment with cold trichloracetic acid or with boiling alcohol-ether mixture. Mononucleotides and fatty acids thus have nothing to do with basophilia. Digestion of sections with desoryribonuclease has no effect on the alkaline phosphatase or arginine tests, while it supresses the Feulgen reaction and the affinity of the chromatin for basic and for some acid dyes.  相似文献   

20.
The viability of the human probiotic strains Lactobacillus paracasei NFBC 338 and Bifidobacterium sp. strain UCC 35612 in reconstituted skim milk was assessed by confocal scanning laser microscopy using the LIVE/DEAD BacLight viability stain. The technique was rapid (<30 min) and clearly differentiated live from heat-killed bacteria. The microscopic enumeration of various proportions of viable to heat-killed bacteria was then compared with conventional plating on nutrient agar. Direct microscopic enumeration of bacteria indicated that plate counting led to an underestimation of bacterial numbers, which was most likely related to clumping. Similarly, LIVE/DEAD BacLight staining yielded bacterial counts that were higher than cell numbers obtained by plate counting (CFU) in milk and fermented milk. These results indicate the value of the microscopic approach for rapid viability testing of such probiotic products. In contrast, the numbers obtained by direct microscopic counting for Cheddar cheese and spray-dried probiotic milk powder were lower than those obtained by plate counting. These results highlight the limitations of LIVE/DEAD BacLight staining and the need to optimize the technique for different strain-product combinations. The minimum detection limit for in situ viability staining in conjunction with confocal scanning laser microscopy enumeration was ~108 bacteria/ml (equivalent to ~107 CFU/ml), based on Bifidobacterium sp. strain UCC 35612 counts in maximum-recovery diluent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号