首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deficiencies in traditional bacterial enumeration techniques which rely on colony formation have led to the use of total direct counting methods, such as the acridine orange direct count technique for the enumeration of planktonic bacteria. As total direct counts provide no information on the viability or activity of the organisms, demonstration of respiratory activity with the fluorochrome cyanoditolyl tetrazolium chloride (CTC) has been employed. We have modified this technique by performing filtration prior to CTC incubation. Cells captured on a polycarbonate membrane were incubated on absorbent pads saturated with medium containing CTC. Following counterstaining with DAPI (4(prm1),6-diamidino-2-phenylindole) total and respiring cells were enumerated by epifluorescence microscopy. Factors affecting CTC reduction by Klebsiella pneumoniae, Salmonella typhimurium, and Escherichia coli K-12 were investigated. With K. pneumoniae, nutrient additions to the CTC medium did not increase the number of respiring cells detected. CTC reduction by all three organisms decreased in response to an increase of the pH of the CTC medium above pH 6.5. Increasing phosphate concentrations contributed to this inhibitory effect. CTC-membrane filter counts of K. pneumoniae, S. typhimurium, and E. coli K-12 and of bacteria in well water corresponded closely with plate counts (r = 0.987). The results show that careful attention should be given to the composition of CTC-containing media which are used to enumerate respiring bacteria. With an appropriate medium, reliable enumeration of respiring bacteria can be achieved within a few hours.  相似文献   

2.
Seven blue nucleic acid dyes from Molecular Probes Inc. (SYTO-9, SYTO-11, SYTO-13, SYTO-16, SYTO-BC, SYBR-I and SYBR-II) were compared with the DAPI (4′,6-diamidino-2-phenylindole) method for flow cytometric enumeration of live and fixed bacteria in aquatic systems. It was shown that SYBR-II and SYTO-9 are the most appropriate dyes for bacterial enumeration in nonsaline waters and can be applied to both live and dead bacteria. The fluorescence signal/noise ratio was improved when SYTO-9 was used to stain living bacteria in nonsaline waters. Inversely, SYBR-II is more appropriate than SYTO dyes for bacterial enumeration of unfixed and fixed seawater samples.  相似文献   

3.
Understanding the role of bacteria in microbial food webs is intimately connected to the methods applied in the direct enumeration of bacteria. We have examined over 220 papers describing studies in which fluorochrome staining followed by epifluorescent microscopic direct counts was used to estimate total bacterial abundances. In this review, we summarize patterns in the use of 3,6-bis[dimethylamino]acridinium chloride (acridine orange) and 4',6-diamidino-2-phenylindole (DAPI), the two stains most frequently used in bacterial enumeration. The staining of samples with these fluorochromes, followed by filtration and direct counting of bacterial cells on filter surfaces, has become routine over the past 10 years. We examine trends in features of the standard direct count methods, such as sample preservation and preparation techniques, membrane filter types used, applied stain concentrations, duration of staining, and counting strategies, in relation to the types of samples being examined. The high variability in bacterial counts observed within similar sample types may be partially accounted for by differences in methods. Synthesizing review findings, we include a recommended method for the direct enumeration of bacteria in environmental samples.  相似文献   

4.
High background fluorescence and unspecific staining hampered the epifluorescence enumeration of bacteria in 45% of the tested soil and sediment samples with 4′,6-diamidino-2-phenylindole (DAPI) and polycarbonate membrane filters. These problems of the determination of total cell counts can be circumvented by using green fluorescent high-affinity nucleic acid dyes and aluminum oxide membrane filters. Due to the bright staining of cells, we recommend SYBR Green II as dye.  相似文献   

5.
The redox dye 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) was employed for direct epifluorescent microscopic enumeration of respiring bacteria in environmental samples. Oxidized CTC is nearly colorless and is nonfluorescent; however, the compound is readily reduced via electron transport activity to fluorescent, insoluble CTC-formazan, which accumulates intracellularly. Bacteria containing CTC-formazan were visualized by epifluorescence microscopy in wet-mount preparations, on polycarbonate membrane filter surfaces, or in biofilms associated with optically opaque surfaces. Counterstaining of CTC-treated samples with the DNA-specific fluorochrome 4',6-diamidino-2-phenylindole allowed enumeration of active and total bacterial subpopulations within the same preparation. Municipal wastewater, groundwater, and seawater samples supplied with exogenous nutrients yielded CTC counts that were generally lower than total 4',6-diamidino-2-phenylindole counts but typically equal to or greater than standard heterotrophic (aerobic) plate counts. In unsupplemented water samples, CTC counts were typically lower than those obtained with the heterotrophic plate count method. Reduction of CTC by planktonic or biofilm-associated bacteria was suppressed by formaldehyde, presumably because of inhibition of electron transport activity and other metabolic processes. Because of their bright red fluorescence (emission maximum, 602 nm), actively respiring bacteria were readily distinguishable from abiotic particles and other background substances, which typically fluoresced at shorter wavelengths. The use of CTC greatly facilitated microscopic detection and enumeration of metabolically active (i.e., respiring) bacteria in environmental samples.  相似文献   

6.
The redox dye 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) was employed for direct epifluorescent microscopic enumeration of respiring bacteria in environmental samples. Oxidized CTC is nearly colorless and is nonfluorescent; however, the compound is readily reduced via electron transport activity to fluorescent, insoluble CTC-formazan, which accumulates intracellularly. Bacteria containing CTC-formazan were visualized by epifluorescence microscopy in wet-mount preparations, on polycarbonate membrane filter surfaces, or in biofilms associated with optically opaque surfaces. Counterstaining of CTC-treated samples with the DNA-specific fluorochrome 4',6-diamidino-2-phenylindole allowed enumeration of active and total bacterial subpopulations within the same preparation. Municipal wastewater, groundwater, and seawater samples supplied with exogenous nutrients yielded CTC counts that were generally lower than total 4',6-diamidino-2-phenylindole counts but typically equal to or greater than standard heterotrophic (aerobic) plate counts. In unsupplemented water samples, CTC counts were typically lower than those obtained with the heterotrophic plate count method. Reduction of CTC by planktonic or biofilm-associated bacteria was suppressed by formaldehyde, presumably because of inhibition of electron transport activity and other metabolic processes. Because of their bright red fluorescence (emission maximum, 602 nm), actively respiring bacteria were readily distinguishable from abiotic particles and other background substances, which typically fluoresced at shorter wavelengths. The use of CTC greatly facilitated microscopic detection and enumeration of metabolically active (i.e., respiring) bacteria in environmental samples.  相似文献   

7.
The use of fluorescence in situ hybridization (FISH) to identify and enumerate soil bacteria has long been hampered by the autofluorescence of soil particles masking the bacterial signals and because the need of counting hundreds of bacteria in order to achieve statistically reliable data is time consuming. Recently, it was demonstrated that Nycodenz facilitates FISH in soil by concentrating bacteria on membrane filters and avoiding autofluorescent soil particles. We present a routine protocol for FISH in soil including the use of Nycodenz. The protocol allows fast and easy enumeration of hundreds of bacteria. We propose the use of silicon grease coated slides to treat in parallel seven samples per hybridization. Further, we developed a semi-automated approach for the enumeration of bacteria by implementing macros concatenating all steps of the image analyzes in the Image J software. Using Nycodenz, software-assisted bacterial counts statistically matched eye-counts of the same images and it was possible to count 880 DAPI stained bacteria per ten images. Fifty-five percent of these bacteria were co-labelled with the FISH probe specific for the Domain Bacteria, in accordance with recent FISH studies of bacterial populations in bulk soil. With a soil slurry protocol used for comparison, soil particles impaired automatic counts of the bacteria and FISH analysis, and only 88 DAPI stained bacteria per ten images could be counted by eye. With the Nycodenz protocol, 5 mM Na(2)EDTA used as an extractant increased the number of bacteria observed by 49%. In contrast, Tween 20 (1% or 5%) had no significant effect and increased the variability between the samples. Overall, the proposed procedure allows to process a high number of samples and to achieve a time efficient FISH characterization of soil bacterial communities.  相似文献   

8.
The culturability of 10 strains of Campylobacter jejuni and Campylobacter coli was studied after the bacteria were exposed to acid conditions for various periods of time. Campylobacter cells could not survive 2 h under acid conditions (formic acid at pH 4). The 10 Campylobacter strains could not be recovered, even when enrichment media were used. Viable cells, however, could be detected by a double-staining (5-cyano-2,3-ditolyl tetrazolium chloride [CTC]-4',6'-diamidino-2-phenylindole [DAPI]) technique, demonstrating that the treated bacteria changed into a viable but nonculturable (VBNC) form; the number of VBNC forms decreased over time. Moreover, some VBNC forms of Campylobacter could be successfully resuscitated in specific-free-pathogen fertilized eggs via two routes, amniotic and yolk sac injecting.  相似文献   

9.
Simple, rapid methods for the detection and enumeration of specific bacteria in water and wastewater are needed. We have combined incubation using cyanoditolyl tetrazolium chloride (CTC) to detect respiratory activity with a modified fluorescent-antibody (FA) technique, for the enumeration of specific viable bacteria. Bacteria in suspensions were captured by filtration on nonfluorescent polycarbonate membranes that were then incubated on absorbent pads saturated with CTC medium. A specific antibody conjugated with fluorescein isothiocyanate was reacted with the cells on the membrane filter. The membrane filters were mounted for examination by epifluorescence microscopy with optical filters designed to permit concurrent visualization of fluorescent red-orange CTC-formazan crystals in respiring cells which were also stained with the specific FA. Experiments with Escherichia coli O157:H7 indicated that both respiratory activity and specific FA staining could be detected in logarithmic- or stationary-phase cultures, as well as in cells suspended in M9 medium or reverse-osmosis water. Following incubation without added nutrients in M9 medium or unsterile reverse-osmosis water, the E. coli O157:H7 populations increased, although lower proportions of the organisms reduced CTC. Numbers of CTC-positive, FA-positive cells compared with R2A agar plate counts gave a strong linear regression (R = 0.997). Differences in injury did not appear to affect CTC reduction. The procedure, which can be completed within 3 to 4 h, has also been performed successfully with Salmonella typhimurium and Klebsiella pneumoniae.  相似文献   

10.
Heterotrophic bacteria in sea ice play a key role in carbon cycling, but little is known about the predominant players at the phylogenetic level. In a study of both algal bands and clear ice habitats within summertime Arctic pack ice from the Chukchi Sea, we determined the abundance of total bacteria and actively respiring cells in melted ice samples using epifluorescence microscopy and the stains 4', 6'-diamidino-2-phenylindole 2HCl (DAPI) and 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), respectively. Organic-rich and -poor culturing media were used to determine culturable members by plating (at 0 degrees C and 5 degrees C) and most-probable-number (MPN) analyses (at -1 degrees C). Total bacterial counts ranged from 5.44 x 10(4) ml(-1) in clear ice to 2.41 x 10(6) ml(-1) in algal-band ice samples, with 2-27% metabolically active by CTC stain. Plating and MPN results revealed a high degree of culturability in both types of media, but greater success in oligotrophic media (to 62% of total abundance) and from clear ice samples. The bacterial enumeration anomaly, commonly held to mean 相似文献   

11.
A method was established for staining and counting of actively respiring bacteria in natural stone by using the tetrazolium salt 5-cyano-2,3-ditolyltetrazolium chloride (CTC) in combination with confocal laser scanning microscopy (CLSM). Applying 5 mM CTC for 2 h to pure cultures of representative stone-inhabiting microorganisms showed that chemoorganotrophic bacteria and fungi-in contrast to lithoautotrophic nitrifying bacteria-were able to reduce CTC to CTF, the red fluorescing formazan crystals of CTC. Optimal staining conditions for microorganisms in stone material were found to be 15 mM CTC applied for 24 h. The cells could be visualized on transparent and nontransparent mineral materials by means of CLSM. A semi-automated method was used to count the cells within the pore system of the stone. The percentage of CTC-stained bacteria was dependent on temperature and humidity of the material. At 28 degrees C and high humidity (maximum water holding capacity) in the laboratory, about 58% of the total bacterial microflora was active. On natural stone exposed for 9 years at an urban exposure site in Germany, 52-56% of the bacterial microflora was active at the east, west, and north side of the specimen, while only 18% cells were active at the south side. This is consistent with microclimatic differences on the south side which was more exposed to sunshine thus causing UV and water stress as well as higher temperatures on a microscale level. In combination with CLSM, staining by CTC can be used as a fast method for monitoring the metabolic activity of chemoorganotrophic bacteria in monuments, buildings of historic interest or any art objects of natural stone. Due to the small size of samples required, the damage to these objects and buildings can be minimized.  相似文献   

12.
Physiologically active bacteria in purified water used in the manufacturing process of pharmaceutical products were enumerated in situ. Bacteria with growth potential were enumerated using the micro-colony technique and direct viable counting (DVC), followed by 24 h of incubation in 100-fold diluted SCDB (Soybean Casein Digest Broth) at 30 degrees C. Respiring and esterase-active bacteria were detected by fluorescent staining with 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) and 6-carboxyfluorescein diacetate (6CFDA), respectively. A large number of bacteria in purified water retained physiological activity, while most could not form colonies on conventional media. The techniques applied in this study enabled bacteria to be counted within 24 h so results could be available within one working day. These rapid and convenient techniques should be useful for the systematic monitoring of bacteria in water used for pharmaceutical manufacturing.  相似文献   

13.
Fluorescent stains in conjunction with cryoembedding and image analysis were applied to demonstrate spatial gradients in respiratory activity within bacterial biofilms during disinfection with monochloramine. Biofilms of Klebsiella pneumoniae and Pseudomonas aeruginosa grown together on stainless steel surfaces in continuous-flow annular reactors were treated with 2 mg of monochloramine per liter (influent concentration) for 2 h. Relatively little biofilm removal occurred as evidenced by total cell direct counts. Plate counts (of both species summed) indicated an average 1.3-log decrease after exposure to 2 mg of monochloramine per liter. The fluorogenic redox indicator 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) and the DNA stain 4',6-diamidino-2-phenylindole (DAPI) were used to differentiate respiring and nonrespiring cells in biofilms. Epifluorescence micrographs of frozen biofilm cross sections clearly revealed gradients of respiratory activity within biofilms in response to monochloramine treatment. These gradients in specific respiratory activity were quantified by calculating the ratio of CTC and DAPI intensities measured by image analysis. Cells near the biofilm-bulk fluid interface lost respiratory activity first. After 2 h of biocide treatment, greater respiratory activity persisted deep in the biofilm than near the biofilm-bulk fluid interface.  相似文献   

14.
It is widely accepted that the heterotrophic plate count method may not support the growth of all viable bacteria which may be present within a water sample and that alternative procedures using 'viability markers' may yield additional information. In this study, ChemChrome B (CB), which is converted to a fluorescent product by esterase activity, was used to stain viable bacteria (captured by membrane filtration) from potable water samples. The labelled bacteria from each sample were subsequently enumerated using a novel laser scanning instrument (ChemScan). Analysis of 107 potable water samples using this procedure demonstrated the presence of a significantly greater number of bacteria than were detected by culture (z-test, P < 0.05). The mean number of bacteria isolated by culture on R2A agar incubated at 22 degrees C for 7 d was only 25.2% of the total number of viable bacteria detected using the CB/ChemScan viability assay. Further analysis of 81 water samples using a 5-cyano-2,3,4-tolyl-tetrazolium chloride (CTC) viability assay also demonstrated the presence of many viable bacteria which were not capable of growth under the culture conditions employed in this study. However, the results indicate that ChemChrome B has the ability to stain a significantly greater number of heterotrophs than CTC (z-test, P < 0.05). In contrast, six potable waters were identified in which the CTC viability assay resulted in counts greater than those obtained using CB. The ChemScan instrument was successfully used for rapid and accurate enumeration of labelled micro-organisms, allowing information on the total viable microbial load of a water sample to be determined within 1 h. Furthermore, the ChemScan system has the potential for use in detecting specific organisms labelled with fluorescently-labelled antibodies or nucleic acid probes.  相似文献   

15.
We compared several currently discussed methods for the assessment of bacterial numbers and activity in marine waters, using samples from a variety of marine environments, from aged offshore seawater to rich harbor water. Samples were simultaneously tested for binding to a fluorescently labeled universal 16S rRNA probe; (sup3)H-labeled amino acid uptake via autoradiography; nucleoid-containing bacterial numbers by modified DAPI (4(prm1),6-diamidino-2-phenylindole) staining; staining with 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), a compound supposed to indicate oxidative cell metabolism; and total bacterial counts (classical DAPI staining), taken as a reference. For the universal-probe counts, we used an image intensifying and processing system coupled to the epifluorescence microscope. All of the above-mentioned methods yielded lower cell counts than DAPI total counts. Universal-probe counts averaged about half of the corresponding DAPI count and were highly correlated to autoradiography counts (r(sup2) = 0.943; n = 7). Nucleoid-containing cell counts could be lower than DAPI counts by as much as 1 order of magnitude but sometimes matched autoradiography or probe counts. CTC counts were 2 orders of magnitude below DAPI counts. Universal 16S rRNA probe counts correlated well with autoradiography results, indicating a population with at least minimal metabolic activity. The greater variability of the nucleoid-containing cell counts calls for further investigation of the processes involved, and CTC counts were well below the range of the other methods tested.  相似文献   

16.
Counting bacteria in drinking water samples by the epifluorescence technique after 4',6-diamidino-2-phenylindole (DAPI) staining is complicated by the fact that bacterial fluorescence varies with exposure of the cells to sodium hypochlorite. An Escherichia coli laboratory-grown suspension treated with sodium hypochlorite (5 to 15 mg of chlorine liter-1) for 90 min was highly fluorescent after DAPI staining probably due to cell membrane permeation and better and DAPI diffusion. At chlorine concentrations greater than 25 mg liter-1, DAPI-stained bacteria had only a low fluorescence. Stronger chlorine doses altered the DNA structure, preventing the DAPI from complexing with the DNA. When calf thymus DNA was exposed to sodium hypochlorite (from 15 to 50 mg of chlorine liter-1 for 90 min), the DNA lost the ability to complex with DAPI. Exposure to monochloramine did not have a similar effect. Treatment of drinking water with sodium hypochlorite (about 0.5 mg of chlorine liter-1) caused a significant increase in the percentage of poorly fluorescent bacteria, from 5% in unchlorinated waters (40 samples), to 35 to 39% in chlorinated waters (40 samples). The presence of the poorly fluorescent bacteria could explain the underestimation of the real number of bacteria after DAPI staining. Microscopic counting of both poorly and highly fluorescent bacteria is essential under these conditions to obtain the total number of bacteria. A similar effect of chlorination on acridine orange-stained bacteria was observed in treated drinking waters. The presence of the poorly fluorescent bacteria after DAPI staining could be interpreted as a sign of dead cells.  相似文献   

17.
The culturability of 10 strains of Campylobacter jejuni and Campylobacter coli was studied after the bacteria were exposed to acid conditions for various periods of time. Campylobacter cells could not survive 2 h under acid conditions (formic acid at pH 4). The 10 Campylobacter strains could not be recovered, even when enrichment media were used. Viable cells, however, could be detected by a double-staining (5-cyano-2,3-ditolyl tetrazolium chloride [CTC]-4′,6′-diamidino-2-phenylindole [DAPI]) technique, demonstrating that the treated bacteria changed into a viable but nonculturable (VBNC) form; the number of VBNC forms decreased over time. Moreover, some VBNC forms of Campylobacter could be successfully resuscitated in specific-free-pathogen fertilized eggs via two routes, amniotic and yolk sac injecting.  相似文献   

18.
The temporal variation in the abundance and proportion of highlyrespiration-active bacteria in the eutrophic lakes Esrum andFrederiksborg Slotssø was determined with the redox dye5-cyano-2,3-ditolyl tetrazolium chloride (CTC). In addition,a comparative late summer study was undertaken across a gradientof nutrient enrichment in Danish lakes. The purpose was to investigatethe importance of substrate (chlorophyll) and temperature forthe control of CTC-active cells (CTC+). The abundance of CTC+cells was much lower and more variable than the total numberof cells counted after 4',6-diamidino-2-phenylindole (DAPI)staining. The proportion of CTC+ cells in Lake Esrum and FrederiksborgSlotssø was normally <5%, and between 2.5 and 20%in 14 other lakes. The abundance as well as the proportion ofCTC+ cells increased with chlorophyll in Lake Esrum and FrederiksborgSlotssø, and chlorophyll explained 43% of the variabilityin CTC+ abundance. In the comparative study, the abundance ofCTC+ cells increased along the chlorophyll gradient, which explained49% of the variability. The results showed that the abundanceand, to a lesser degree, the proportion of CTC+ bacteria werecontrolled by substrate supply. One consequence of the low abundanceof active bacteria is that in situ growth rates scaled to CTC+cells are 3- to 7-fold higher than those scaled to DAPI counts.It is suggested that studies on factors controlling bacterioplanktonactivity at the single-cell level should be investigated scaledto active cells.  相似文献   

19.
The effects of starvation and salinity on the physiology of Salmonella typhimurium were investigated in a microcosm study. The physiological changes were monitored by using fluorochromes dyes such as DAPI (4',6-diamidino-2-phenylindole) for evaluation of the genomic content, CTC (5-cyano-2,3-ditolyl tetrazolium chloride) for respiratory activity and syto 9 and propidium iodide for cytoplasmic membrane damages. The metabolic activity of the cellular population was assessed with the method of Kogure (direct viable count), to enumerate the substrate-responsive cells. These different staining procedures were objectively analysed by an image analysis system. This paper describes the progressive alteration of Salmonella typhimurium physiology under salinity and starvation conditions.  相似文献   

20.
The use of the redox dye 5-cyano-2,3,-ditolyl tetrazolium chloride (CTC) for evaluating the metabolic activity of aerobic bacteria has gained wide application in recent years. In this study, we examined the utility of CTC in capturing the metabolic activity of anaerobic bacteria. In addition, the factors contributing to abiotic reduction of CTC were also examined. CTC was used in conjunction with the fluorochrome 5-(4,6-dichlorotriazinyl) aminofluorescein (DTAF), that targets bacterial cell wall proteins, to quantitate the active fraction of total bacterial numbers. Facultative anaerobic bacteria, including Escherichia coli grown fermentatively, and Pseudomonas chlorophis, P. fluorescens, P. stutzeri, and P. pseudoalcalegenes subsp. pseudoalcalegenes grown under nitrate-reducing conditions, actively reduced CTC during all phases of growth. Greater than 95% of these cells accumulated intracellular CTC-formazan crystals during the exponential phase. Obligate anaerobic bacteria, including Syntrophus aciditrophicus grown fermentatively, Geobacter sulfurreducens grown with fumarate as the electron acceptor, Desulfovibrio desulfuricans subsp. desulfuricans and D. halophilus grown under sulfate-reducing conditions, Methanobacterium formicicum grown on formate, H2 and CO2, and Methanobacterium thermoautotrophicum grown autotrophically on H2 and CO2 all reduced CTC to intracellular CTC-formazan crystals. The optimal CTC concentration for all organisms examined was 5 mM. Anaerobic CTC incubations were not required for quantification of anaerobically grown cells. CTC-formazan production by all cultures examined was proportional to biomass production, and CTC reduction was observed even in the absence of added nutrients. CTC was reduced by culture fluids containing ferric citrate as electron acceptor following growth of either G. metallireducens or G. sulfurreducens. Abiotic reduction of CTC was observed in the presence of ascorbic acid, cysteine hydrochloride, dithiothreitol, NADH, NADPH, Fe(II)Cl2, sodium thioglycolic acid and sodium sulfide. These results suggest that while CTC can be used to capture the metabolic activity of anaerobic bacteria, care must be taken to avoid abiotic reduction of CTC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号