首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
种间原生质体融合提高巴龙霉素单位产量的研究   总被引:1,自引:0,他引:1  
将巴龙霉素产生菌与新霉素产生菌的高产变株进行了种间原生质体融合,融合频率为10-4左右。在4l0株稳定的原养型重组体中,产生巴龙霉素者占58%。在200株产生巴龙霉素的种间重组体中,单位产量在1500μg/ml以上的约10%,获得了比巴龙霉素产生菌原始菌株(单位产量300μg/ml)单位产量高5—6倍的重组体菌株。核磁共振谱和质谱测定证明,高单位重组体所产抗生素确为巴龙霉素。结果表明,为了提高某一抗生素产生菌的单位产量,使之与另一生物合成途径相似的抗生素产生菌的高产变株进行种间杂交,是一值得探索的新途径。  相似文献   

2.
本实验是以黄色短杆菌T_(6—13)的诱变株L—亮氨酸产生菌D—R—4为出发菌株,经青霉素、甘氨酸、溶菌酶作用制备原生质体,形成率达91.30%,再生率达53.68%;然后对原生质体进行紫外线、利福平、氯化锂复合诱变处理;在再生培养基平皿上培养,获得再生突变株,从中挑取单独菌落,进行摇瓶发酵筛选,已选育出一株57—4S号高产稳定菌株;经氨基酸分析仪测定其发酵液L—亮氨酸产量由出发菌株的17.35mg/ml提高到23.45mg/ml提高了35%。发酵液中主要副酸——异亮氨酸含量很少。  相似文献   

3.
目前,绝大多数酿酒酵母(Saccharomyces cerevisiae)菌株利用菊糖生产乙醇的能力有限,而蔗糖转化酶Suc2是酿酒酵母水解菊糖的关键酶,其分泌水平直接影响酿酒酵母转化菊糖为乙醇的性能。为提高酿酒酵母中蔗糖转化酶Suc2的分泌表达水平,利用生物信息学的分析方法选择出11种不同的分泌信号肽,包括酿酒酵母内源性、其他菌株来源以及已报道序列优化改造的信号肽,将它们融合至Suc2并构建了相应的酿酒酵母BY4741重组菌。其中,酿酒酵母内源分泌信号肽AGA2能使蔗糖转化酶Suc2更有效的分泌,含有信号肽AGA2的重组菌BY-AG的蔗糖酶酶活和菊糖酶酶活相对于含有天然信号肽的原始菌BY-S分别提高42%和26%,其利用菊糖产乙醇能力较原始菌提高了32%,乙醇产量达到78.11 g/L。在使用毕赤酵母(Pichia pastoris)分泌信号肽MSB2时,蔗糖转化酶Suc2的分泌水平也有提高,含有信号肽MSB2的重组菌BY-MS较原始菌BY-S的蔗糖酶酶活和菊糖酶酶活分别提高了80%和74%,同时,利用菊糖产乙醇能力也提高了56%,产量达到86.31 g/L。最后,对重组菌BY-MS摇瓶发酵过程中的生物量、蔗糖酶酶活、残糖总量和乙醇产量进行了监测,结果表明,重组菌BY-MS的发酵性能较原始菌BY-S有显著提高。本研究为提高蔗糖转化酶Suc2的分泌水平、构建高效菊糖基乙醇生产菌株提供参考。  相似文献   

4.
发酵法生产L—缬氨酸的研究   总被引:1,自引:0,他引:1  
以棒状杆菌(Corynebacterium)T6—13野生菌为出发菌株,经紫外线和亚硝基胍多次诱变,获得一株新型的L—缬氨酸产生菌104(2—TA_r,AHV~r,β—HL~r)。经摇瓶发酵试验、显示出0.25%的玉米粉具有极显著的刺激增产作用,并可降低生物素用量。以食用砂糖为碳源代替葡萄糖发酵,主酸产量提高了30—40%,同时副生酸含量下降。在适宜条件下,L—缬氨酸累积可达10mg/ml以上。  相似文献   

5.
产胆红素氧化酶菌种筛选   总被引:4,自引:0,他引:4  
选出一株产胆红素氧化酶的菌种露湿漆斑菌—Myrotheciumr oriclum,简称MTR89—403。此菌产酶最适培养基:40—80%的马铃薯浸出液100ml、葡萄糖1g,pH6.0。培养条件:500ml三角瓶装100ml培养基,在27℃、200rpm旋转摇床培养84h,得到的最高酶活为1300u/L,比活为12.3u/mg蛋白。  相似文献   

6.
利用PCR技术以Pseudomonas sp. B3-1基因组DNA为模板,扩增出2.9kb编码苯甲酸双加氧酶基因簇benABC。将该基因簇连接于pLAFRJ载体,电转化至E.coli DH5α,再通过三亲本结合法导入野生菌株Pseudomonas sp. B3-1中,得到了一株邻苯二酚产量提高的基因工程菌,命名为Pseudomonas sp.B4。发酵条件优化表明,当苯甲酸钠浓度为6.0 g/L,聚蛋白胨浓度为2.0 g/L,温度为32℃以及pH值为6.0时,工程菌在200rpm旋转摇床发酵36小时后,邻苯二酚产量达到0.7 mg/ml,比优化前提高了20%。  相似文献   

7.
代谢工程与全基因组重组构建酿酒酵母抗逆高产乙醇菌株   总被引:1,自引:0,他引:1  
将酿酒酵母海藻糖代谢工程与全基因组重组技术相结合,改良工业酿酒酵母菌株的抗逆性和乙醇发酵性能。对来源于二倍体出发菌株Zd4的两株优良单倍体Z1和Z2菌株进行杂交获得基因组重组菌株Z12,并对Z1和Z2先进行(1)过表达海藻糖-6-磷酸合成酶基因 (TPS1) ,(2)敲除海藻糖水解酶基因 (ATH1), (3)同时过表达 TPS1和敲除ATH1, 经此三种基因工程操作后再进行杂交获得代谢工程菌株的全基因组重组菌株Z12ptps1、Z12 Δath1和Z12pTΔA。与亲株Zd4相比,Z12及结合代谢工程获得的菌株在高糖、高乙醇浓度与高温条件下生长与乙醇发酵性能都有不同程度的改进。对比研究结果表明:在高糖发酵条件下,同时过表达 TPS1和敲除ATH1 的双基因操作工程菌株胞内海藻糖积累、乙醇主发酵速率和乙醇产量相对于亲株的提高幅度要大于只过表达 TPS1,或敲除ATH1 的工程菌。结合了全基因组重组后获得的二倍体工程菌株Z12pTΔA,与原始出发菌株Zd4及重组子Z12相比,主发酵速率分别提高11.4%和6.3%,乙醇产量提高7.0%和4.1%,与其胞内海藻糖含量高于其它菌株、在胁迫条件下具有更强耐逆境能力相一致。结果证明,海藻糖代谢工程与杂交介导的全基因组重组相结合,是提高酿酒酵母抗逆生长与乙醇发酵性能的有效策略与技术途径。  相似文献   

8.
酿酒酵母原生质体融合及其融合子的鉴定   总被引:2,自引:0,他引:2  
应用原生质体融合技术,得到乙醇产量较高的两株多倍体酵母菌融合子F_(28)和F_(38),融合频率为2×10~(-5)。测定融合子F_(28)、F_(38)每个细胞内DNA含量分别为2.14×10~(-8)、2.34×10~(-8)μg,而亲株DNA含量分别为0.78×10~(-8)和1.24×10~(-8)μg。并进行了融合子细胞增殖率、乙醇发酵能力及同功酶分析等试验。用固定化细胞发酵乙醇试验结果表明,在pH4.0,17%糖蜜为基质情况下,发酵3小时,融合子F_(28)、F_(38)的乙醇产量分别为77.21和77.09mg/ml;亲株乙醇产量仅为65.00mg/ml和68.40mg/ml。为固定化细胞发酵乙醇提供优良菌株。  相似文献   

9.
耐温性L-谷氨酸发酵菌种的选育   总被引:1,自引:0,他引:1  
应用基因组改组技术提高,L-谷氨酸生产菌在高温发酵条件下的谷氨酸产量。以天津短杆菌T6—13变异株SW07-1为原始亲株,分别经紫外线(UV)-硫酸二乙酯(DES)和X射线诱变,获得5株耐温性能略有提高的突变菌株。经2轮基因组改组,获得耐高温(能在44℃生长)的L-谷氨酸菌株F2-50。F2—50在38℃下,摇瓶发酵40h,发酵液中L-谷氨酸浓度比原始出发菌株提高了近41%,在41℃高温下,摇瓶发酵40h,L-谷氨酸浓度比原始出发菌株提高了近2倍。  相似文献   

10.
FML8611是从黄色短杆菌FM84—415经诱变选育得到的一株新的高产赖氨酸菌株。它具有高丝氨酸营养缺陷、S—(2—氨基乙基)—L—半胱氨酸抗性、对利福平不敏感等遗传特性,还具有耐高糖、产赖氨酸稳定等特点。在适宜的条件下,FML8611摇瓶发酵的平均产量为78.9mg/ml,糖酸转化率为46.2%。  相似文献   

11.
以亚硝基胍(MNNG)诱变处理大肠杆菌ASI.358,获得蛋氨酸缺陷型(Met-)突变株,从中得到一株B2851菌,能在培养基中积累少量苏氨酸。通过连续诱变,得K1-73菌株(Met-),在5%葡萄糖与DL-蛋氨酸舔加量为75mg/l的条件下,能够积累3.5mg/ml L-苏氨酸。同样以MNNG诱变处理钝齿棒状杆菌C. crtenalum ASI.542,获得抗a一氨基一β一羟基戊酸(AHV)突变株1770林,其中6%菌株能够积累少量苏氨酸。选得LR—1458菌产L一苏氨酸(1mg/ml。 对该菌逐步诱变,得一株抗8mg/ml AHV及蛋氨酸缺陷型双重突变株(AHV,Mer) LRA-96,其L一苏氨酸产率与亲株比较有明显提高,达3.5mg/ml。连续再诱变并结合单菌落分离选育,得一突变株m一85(AHV,Met-),能在培养基中积累13mg/ml L-苏氨酸。试验表明,连续诱变处理是选育L一苏氨酸高产菌株有效手段之一。  相似文献   

12.
米根霉乙醇脱氢酶(ADH)突变菌株的诱变选育   总被引:4,自引:0,他引:4  
米根霉发酵生产L-乳酸过程中,由于丙酮酸在丙酮酸脱羧酶、乙醇脱氢酶(ADH)催化下生成乙醇,使得丙酮酸向乳酸转化的流量减少。采用亚硝基胍(NTG)诱变米根霉AS3.3462孢子液,诱变剂量为0.15 mg/ mL时,致死率为70%~80%。在含丙烯醇的YPD筛选培养基上筛选获得两株ADH活力降低的突变株mut-1和mut-2,检测突变株mut-1和mut-2的最大ADH活力分别为35.67和43.09U/mL,是原始菌株的41.63%和50.29%。发酵72h后,原始菌株的乙醇与乳酸浓度分别为28.9g/L和40.31g/L,而mut-1和mut-2突变株的乙醇产量分别为4.87g/L和6.56g/L,乳酸产量为54.45g/L和44.07g/L。在相同的发酵条件下,米根霉ADH突变株mut-1和mut-2对还原糖的利用速率高于出发菌株,其生物量积累亦高于出发菌株。  相似文献   

13.
以C.shehataeTZ8为出发茵株,利用1%溶壁酶和1%蜗牛酶酶解1.5h,制备成C.shehataeTZ8原生质体,并对原生质体进行紫外诱变,以含不同浓度乙醇的木糖液体培养基培养进行初筛和复筛,获得一株遗传性能稳定、耐乙醇能力达5.5%(v/v)的蕾株C.shehataeTZ8-4,比初始菌株耐乙醇能力提高了2%。对突变株C.shehataeTZ8-4发酵性能的研究结果表明:C.shehataeTZ8-4发酵糖能力从80g/L(葡糖糖和木糖比为2:1)提高到120g/L,最大乙醇产量从27.41g/L提高到43.12g/L。  相似文献   

14.
假蜜环菌液体深层发酵条件的研究   总被引:5,自引:0,他引:5  
对该真菌菌丝体的液体深层培养条件进行了探讨为进一步工业化发酵提供参考数据。方法:在基本培养基的基础上分别改变碳源、氮源、无机元素和C/N比对该菌的液体深层发酵情况,包括测量各培养条件下耗糖情况、绘制生长曲线,观察菌体的生长形态等等。结果:假蜜环菌的菌丝产量在第6d可达到最大值,其后会逐渐降低,并伴有溶菌的现象发生。在培养初期加入微量钴元素有利于刺激糖代谢提高菌体对糖的利用率,其作用主要是缩短延滞期。进入指数生长期后连续补加碳源有利于菌体迅速生长。优化后培养基组成为:葡萄糖l%和蔗糖1%为碳源,以酵母浸膏l%为氮源,KH2PO4 0.1%,MgSO4 0.05%Z,元素钴适量。液体深层发酵培养6d后菌丝生长状态已达到最佳,在此条件下搅拌发酵培养可收获20mg/ml(干重)的菌丝体。  相似文献   

15.
以老抽酱醪为实验材料进行耐盐性酵母菌种分离,并做菌种鉴定。分析了在不同盐度条件下耐盐性酵母菌的生长情况和生长过程中培养基总糖的消耗,可以发现实验得到的酵母在22%(质量与体积}E)盐度下依然能够良好生长。结果表明,实验分离出的No.2菌在同级盐度的条件下的生长量要明显高于No.1菌,但在乙醇产率方面,两株菌在相同的含盐量为16%(质量与体积比)的麦芽汁培养基中发酵8d,No.1菌的乙醇产率为3.1%(体积比),No.2菌的乙醇产率2.9%(体积比)。  相似文献   

16.
代谢工程改善野生酵母利用木糖产乙醇的性能   总被引:1,自引:0,他引:1  
从256个自然样品中筛选得到1株可高效转化D-木糖的酵母。通过生理生化和分子生物学方法鉴定, 证实该菌株是属于Candida tropicalis。以该酵母为研究对象, 增加木糖醇脱氢酶表达量, 通过改变代谢流以达到提高酒精产率的目的。以pXY212-XYL2质粒为基础载体, 构建了含有潮霉素抗性的pYX212-XYL2-Hygro, 电击转化进入野生型C. tropicalis, 潮霉素抗性筛选, 得到含高拷贝木糖醇脱氢酶基因的重组菌株C. tropicalis XYL2-7。重组菌的比酶活达到0.5 u/mg protein, 比原始菌株提高了3倍。实验表明, 重组菌木糖醇得率比原始菌株降低了3倍, 酒精得率提高了5倍。首次通过实验验证了热带假丝酵母利用木糖产乙醇的可行性, 这对研究酵母利用秸秆、麦糠、谷壳等纤维质农业废弃物生产燃料乙醇具有重要启示。  相似文献   

17.
从256个自然样品中筛选得到1株可高效转化D-木糖的酵母。通过生理生化和分子生物学方法鉴定, 证实该菌株是属于Candida tropicalis。以该酵母为研究对象, 增加木糖醇脱氢酶表达量, 通过改变代谢流以达到提高酒精产率的目的。以pXY212-XYL2质粒为基础载体, 构建了含有潮霉素抗性的pYX212-XYL2-Hygro, 电击转化进入野生型C. tropicalis, 潮霉素抗性筛选, 得到含高拷贝木糖醇脱氢酶基因的重组菌株C. tropicalis XYL2-7。重组菌的比酶活达到0.5 u/mg protein, 比原始菌株提高了3倍。实验表明, 重组菌木糖醇得率比原始菌株降低了3倍, 酒精得率提高了5倍。首次通过实验验证了热带假丝酵母利用木糖产乙醇的可行性, 这对研究酵母利用秸秆、麦糠、谷壳等纤维质农业废弃物生产燃料乙醇具有重要启示。  相似文献   

18.
合成乙醇重组乳杆菌的研究   总被引:2,自引:0,他引:2  
将含有Zymomonas mobilis乙醇合成途径的关键酶基因的片段Ptac-pdc和Ptac-adhB,分别/同时接入pHY300PLK以及pBBR1MCS-5载体中,得到了pHY-PA、pBBR-PA等重组质粒,分别转化入几株乳杆菌。在42℃下进行乙醇发酵试验,结果表明:在Lactobacillus plantanum CICIM B0080中同时引入基因pdc、adhB有效地将碳代谢流导向了产乙醇方向,重组菌B0080(pHY-PA)发酵6.7%葡萄糖60h分别产生0.4%(V/V)乙醇,为原始菌B0080的67倍;而将pdc、adhB基因同时引入L.amylovorus B0112和L.acidophilus B0068,能检测到相当于原始菌2倍的乙醇产出。在重组菌发酵过程中,仍有大量的乳酸产出,在引入产乙醇基因的同时敲除乳酸脱氢酶基因,将有可能使乳杆菌的代谢流向更有效地转向产乙醇途径。  相似文献   

19.
产灵菌红素沙雷氏菌的诱变育种   总被引:5,自引:2,他引:3  
通过紫外线—氯化锂复合处理灵菌红素生产菌沙雷氏菌 (Serratiasp )W 0 2 0 6,用高浓度葡萄糖为碳源的选择性平板定向筛选抗葡萄糖分解代谢物阻遏的高产株 ,筛得高产突变株B 2 0 ,相对于原始菌株 ,B 2 0摇瓶发酵灵菌红素产量提高了 3倍 ,5L反应器上的产量提高了 63 %。  相似文献   

20.
研究构建能够分泌表达纤维素酶的产乙醇菌株,实现降解木质纤维素生产乙醇的整合生物加工过程。文中通过克隆来自运动发酵单胞菌Zymomonas mobilis ZM4的丙酮酸脱羧酶基因pdc和乙醇脱氢酶基因adhB,并通过Red重组将二者整合到大肠杆菌Escherichia coli JM109基因组中,首先构建了一株可以利用葡萄糖进行乙醇发酵的重组菌E. coli P81。随后将来源于多粘芽胞杆菌Bacillus polymyxa1.794的β-葡萄糖苷酶基因bglB在E. coli P81中进行了分泌表达,得到了一株可以进行纤维二糖降解和乙醇发酵双重功能的重组菌E. coli P81(pUC19-bglB)。该菌胞外分泌β-糖苷酶活达到84.78 mU/mL菌液,纤维二糖酶活达到了32.32 mU/mL菌液。该重组菌E. coli P81(pUC19-bglB) 以纤维二糖为碳源进行乙醇发酵,乙醇得率达到了理论产率55.8%,而在葡萄糖和纤维二糖的共发酵中,其乙醇产量达到了理论产率46.5%。构建得到的此株整合生物加工大肠杆菌能够利用β-葡萄糖苷酶生产乙醇,为构建能利用木质纤维素分解产物生产燃料乙醇的高效、稳定生产用工程菌奠定了良好的基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号