首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural integrity of cartilage depends on the presence of extracellular matrices (ECM) formed by heterotypic fibrils composed of collagen II, collagen IX, and collagen XI. The formation of these fibrils depends on the site-specific binding between relatively small regions of interacting collagen molecules. Single amino acid substitutions in collagen II change the physicochemical and structural characteristics of those sites, thereby leading to an alteration of intermolecular collagen II/collagen IX interaction. Employing a biosensor to study interactions between R75C, R789C or G853E collagen II mutants and collagen IX, we demonstrated significant changes in the binding affinities. Moreover, analyses of computer models representing mutation sites defined exact changes in physicochemical characteristics of collagen II mutants. Our study shows that changes in collagen II/collagen IX affinity could represent one of the steps in a cascade of changes occurring in the ECM of cartilage as a result of single amino acid substitutions in collagen II.  相似文献   

2.
Type IX collagen functions in covalent cross-linkage to type II collagen in cartilage (Eyre, D. R., Apone, S., Wu, J. J., Ericsson, L. H., and Walsh, K. A. (1987) FEBS Lett. 220, 337-341). To understand this molecular relationship better, an analysis of all cross-linking sites labeled by [3H]borohydride was undertaken using the protein prepared from fetal bovine cartilage. Sequence analysis of tryptic peptides containing the 3H-labeled cross-links showed that each of the chains of type IX collagen, alpha 1(IX), alpha 2(IX), and alpha 3(IX), contained a site of cross-linking at the amino terminus of the COL2 triple-helix to which the alpha 1(II)N-telopeptide could bond. The alpha 3(IX)COL2 domain alone also had an attachment site for the alpha 1(II)C-telopeptide. The distance between the alpha 1(II)N-telopeptide and alpha 1(II)C-telopeptide interaction sites, 137 residues, is equal to the length of the hole zone (0.6D) in a type II collagen fibril. This implies an antiparallel type II to type IX cross-linking relationship. Peptide analysis also revealed an unknown amino acid sequence linked to the COL2 cross-linking domains in both the alpha 1(IX) and alpha 3(IX) chains. Using antibodies to this novel peptide, its origin in the collagen alpha 3(IX)NC1 domain was established. In summary, the results confirm extensive covalent cross-linking between type IX and type II collagen molecules and reveal the existence of type IX-type IX bonding. These data provide a molecular basis for the proposed function of type IX collagen as a critical contributor to the mechanical stability and resistance to swelling of the collagen type II fibril framework of cartilage.  相似文献   

3.
The specificities of four monoclonal antibodies rho 1D4, 1C5, 3A6, and 3D6 prepared by immunization of rod outer segments containing rhodopsin have been defined using synthetic peptides. All of these antibodies interact within the 18 residues at the COOH terminus of rhodopsin and recognize linear antigenic determinants of 4-11 residues. Twenty-seven synthetic peptide analogs of varying lengths of native sequence or containing single amino acid substitutions at each position of the COOH-terminal 18 residues have provided some insight into the mechanism of antigen-antibody binding. Our results clearly demonstrate that antibodies can be highly specific at key positions as shown by the loss of binding on single amino acid substitutions in the binding site. In contrast single amino acid substitutions at other positions in the binding site only affect affinity for some antibodies. Ionic interactions can dominate immunogenic determinants. Immunogenic determinants are not restricted to highly charged hydrophilic regions on the surface of a protein and may be dominated by hydrophobic interactions. Although certain side chains can dominate the interaction of the antigen with antibody, our results are in agreement with the interpretation that the free energies of all the contact points are additive and a certain free energy must be present to achieve binding. Antibodies with different specificities directed to the same region of the protein antigen can be produced in an immune response. Peptide antigens representing regions of a protein antigen bind best to the anti-protein antibody when the sequence is shortened to contain only those residues binding to the specificity site in the antibody. Cross-reactivity between protein antigens can be explained by conservation of the critical residues in the combining site.  相似文献   

4.
A triple-helical conformation and stability at physiological temperature are critical for the mechanical and biological functions of the fibril-forming collagens. Here, we characterized the role of consecutive domains of collagen II in stabilizing the triple helix. Analysis of melting temperatures of genetically engineered collagen-like proteins consisting of tandem repeats of the D1, D2, D3 or D4 collagen II periods revealed the presence of a gradient of thermostability along the collagen molecule with thermolabile N-terminal domains and thermostable C-terminal domains. These results imply a multi-domain character of the collagen triple helix. Assays of thermostabilities of the Arg75Cys and Arg789Cys collagen II mutants suggest that, in contrast to the thermostable domains, the thermolabile domains are able to accommodate amino acid substitutions without altering the thermostability of the entire collagen molecule.  相似文献   

5.
Type IX collagen is covalently bound to the surface of type II collagen fibrils within the cartilage extracellular matrix. The N-terminal, globular noncollagenous domain (NC4) of the α1(IX) chain protrudes away from the surface of the fibrils into the surrounding matrix and is available for molecular interactions. To define these interactions, we used the NC4 domain in a yeast two-hybrid screen of a human chondrocyte cDNA library. 73% of the interacting clones encoded fibronectin. The interaction was confirmed using in vitro immunoprecipitation and was further characterized by surface plasmon resonance. Using whole and pepsin-derived preparations of type IX collagen, the interaction was shown to be specific for the NC4 domain with no interaction with the triple helical collagenous domains. The interaction was shown to be of high affinity with nanomolar Kd values. Analysis of the fibronectin-interacting clones indicates that the constant domain is the likely site of interaction. Type IX collagen and fibronectin were shown to co-localize in cartilage. This novel interaction between the NC4 domain of type IX collagen and fibronectin may represent an in vivo interaction in cartilage that could contribute to the matrix integrity of the tissue.  相似文献   

6.
Two Cys residues, Cys(I) and Cys(II), are present in most plant alternative oxidases (AOXs). Cys(I) inactivates AOX by forming a disulfide bond with the corresponding Cys(I) residue on the adjacent subunit of the AOX homodimer. When reduced, Cys(I) associates with alpha-keto acids, such as pyruvate, to activate AOX, an effect mimicked by charged amino acid substitutions at the Cys(I) site. Cys(II) may also be a site of AOX activity regulation, through interaction with the small alpha-keto acid, glyoxylate. Comparison of Arabidopsis AOX1a (AtAOX1a) mutants with single or double substitutions at Cys(I) and Cys(II) confirmed that glyoxylate interacted with either Cys, while the effect of pyruvate (or succinate for AtAOX1a substituted with Ala at Cys(I)) was limited to Cys(I). A variety of Cys(II) substitutions constitutively activated AtAOX1a, indicating that neither the catalytic site nor, unlike at Cys(I), charge repulsion is involved. Independent effects at each Cys were suggested by lack of Cys(II) substitution interference with pyruvate stimulation at Cys(I), and close to additive activation at the two sites. However, results obtained using diamide treatment to covalently link the AtAOX1a subunits by the disulfide bond indicated that Cys(I) must be in the reduced state for activation at Cys(II) to occur.  相似文献   

7.
From a study to understand the mechanism of covalent interaction between collagen types II and IX, we present experimental evidence for a previously unrecognized molecular site of cross-linking. The location relative to previously defined cross-linking sites predicts a specific manner of interaction and folding of collagen IX on the surface of nascent collagen II fibrils. The initial evidence came from Western blot analysis of type IX collagen extracted by pepsin from fetal human cartilage, which showed a molecular species that had properties indicating an adduct between the alpha1(II) chain and the C-terminal domain (COL1) of type IX collagen. A similar component was isolated from bovine cartilage in sufficient quantity to confirm this identity by N-terminal sequence analysis. Using an antibody that recognized the putative cross-linking sequence at the C terminus of the alpha1(IX) chain, cross-linked peptides were isolated by immunoaffinity chromatography from proteolytic digests of human cartilage collagen. They were characterized by immunochemistry, N-terminal sequence analysis, and mass spectrometry. The results establish a link between a lysine near the C terminus (in the NC1 domain) of alpha1(IX) and the known cross-linking lysine at residue 930 of the alpha1(II) triple helix. This cross-link is speculated to form early in the process of interaction between collagen IX molecules and collagen II polymers. A model of molecular folding and further cross-linking is predicted that can spatially accommodate the formation of all six known cross-linking interactions to the collagen IX molecule on a fibril surface. Of particular biological significance, this model can accommodate potential interfibrillar as well as intrafibrillar links between the collagen IX molecules themselves, so providing a mechanism whereby collagen IX could stabilize a collagen fibril network.  相似文献   

8.
Upon hormone binding, a hydrophobic coactivator binding groove is induced in the androgen receptor (AR) ligand-binding domain (LBD). This groove serves as high affinity docking site for alpha-helical FXXLF motifs present in the AR N-terminal domain and in AR cofactors. Study of the amino acid requirements at position +4 of the AR FXXLF motif revealed that most amino acid substitutions strongly reduced or completely abrogated AR LBD interaction. Strong interactions were still observed following substitution of Leu+4 by Phe or Met residues. Leu+4 to Met or Phe substitutions in the FXXLF motifs of AR cofactors ARA54 and ARA70 were also compatible with strong AR LBD binding. Like the corresponding FXXLF motifs, interactions of FXXFF and FXXMF variants of AR and ARA54 motifs were AR specific, whereas variants of the less AR-selective ARA70 motif displayed increased AR specificity. A survey of currently known AR-binding proteins revealed the presence of an FXXFF motif in gelsolin and an FXXMF motif in PAK6. In vivo fluorescence resonance energy transfer and functional protein-protein interaction assays showed direct, efficient, and specific interactions of both motifs with AR LBD. Mutation of these motifs abrogated interaction of gelsolin and PAK6 proteins with AR. In conclusion, we have demonstrated strong interaction of FXXFF and FXXMF motifs to the AR coactivator binding groove, thereby mediating specific binding of a subgroup of cofactors to the AR LBD.  相似文献   

9.
Sieron AL  Louneva N  Fertala A 《Cytokine》2002,18(4):214-221
Bone morphogenetic proteins (BMPs) play a critical role in embryo development, organogenesis, and regeneration of damaged tissues. Biological activity of BMPs depends on their local concentration, which is regulated by intracellular enzymatic processing of pro-BMPs, and then the binding of secreted BMPs to antagonizing extracellular proteins. It has been suggested that BMPs interact with structural proteins of the extracellular matrix, but this process is poorly understood. To study interactions of BMPs with fibrillar collagens in detail we expressed recombinant procollagen II variants in which specific domains that correspond to the D-periods were deleted. Subsequently, the procollagen II variants were used in biosensor and immuno-precipitation binding assays to map the regions of procollagen II with a high affinity for the BMP-2. Our data suggest that interaction of BMP-2 with procollagen II is site-specific, and that the high-affinity binding site is located in the D4-period of the collagen triple helix. We hypothesize that the binding of BMP-2 to collagen II reflects a general mechanism of interaction between the fibrillar collagens and morphogens that belong to the transforming growth factor (TGF)-beta superfamily.  相似文献   

10.
For discrimination between arginine and 19 other amino acids in aminoacylation of tRNA(Arg)-C-C-A by arginyl-tRNA synthetase from baker's yeast, discrimination factors (D) have been determined from kcat and Km values. The lowest values were found for Trp, Cys, Lys (D = 800-8500), showing that arginine is 800-8500 times more often incorporated into tRNA(Arg)-C-C-A than noncognate acids at the same amino acid concentrations. The other noncognate amino acids exhibit D values between 10,000 and 60,000. In aminoacylation of tRNA(Arg)-C-C-A(3'NH2) discrimination factors D1 are in the range 10-600. From these values and AMP formation stoichiometry, pretransfer proof-reading factors II1 were determined; from D values and AMP stoichiometry in aminoacylation of tRNA(Arg)-C-C-A, posttransfer proof-reading factors II2 could be calculated, II1 values between 2 and 120 show that pretransfer proof-reading is the main correction step, posttransfer proof-reading (II2 approximately 1-10) plays a marginal role. Initial discrimination factors due to different Gibbs free energies of binding between arginine and the noncognate amino acids were calculated from discrimination and proof-reading factors. According to a two-step binding process, two factors (I1 and I2) were determined. They can be related to hydrophobic interaction forces and hydrogen bonds that are especially formed by the arginine side chain. A hypothetical 'stopper' model of the amino acid recognition site is discussed.  相似文献   

11.
Activation of voltage-gated sodium (Na(v)) channels initiates and propagates action potentials in electrically excitable cells. β-Scorpion toxins, including toxin IV from Centruroides suffusus suffusus (CssIV), enhance activation of Na(V) channels. CssIV stabilizes the voltage sensor in domain II in its activated state via a voltage-sensor trapping mechanism. Amino acid residues required for the action of CssIV have been identified in the S1-S2 and S3-S4 extracellular loops of domain II. The extracellular loops of domain III are also involved in toxin action, but individual amino acid residues have not been identified. We used site-directed mutagenesis and voltage clamp recording to investigate amino acid residues of domain III that are involved in CssIV action. In the IIISS2-S6 loop, five substitutions at four positions altered voltage-sensor trapping by CssIV(E15A). Three substitutions (E1438A, D1445A, and D1445Y) markedly decreased voltage-sensor trapping, whereas the other two substitutions (N1436G and L1439A) increased voltage-sensor trapping. These bidirectional effects suggest that residues in IIISS2-S6 make both positive and negative interactions with CssIV. N1436G enhanced voltage-sensor trapping via increased binding affinity to the resting state, whereas L1439A increased voltage-sensor trapping efficacy. Based on these results, a three-dimensional model of the toxin-channel interaction was developed using the Rosetta modeling method. These data provide additional molecular insight into the voltage-sensor trapping mechanism of toxin action and define a three-point interaction site for β-scorpion toxins on Na(V) channels. Binding of α- and β-scorpion toxins to two distinct, pseudo-symmetrically organized receptor sites on Na(V) channels acts synergistically to modify channel gating and paralyze prey.  相似文献   

12.
H Munakata  K Takagaki  M Majima  M Endo 《Glycobiology》1999,9(10):1023-1027
The interactions of glycosaminoglycans with collagens and other glycoproteins in extracellular matrix play important roles in cell adhesion and extracellular matrix assembly. In order to clarify the chemical bases for these interactions, glycosaminoglycan solutions were injected onto sensor surfaces on which collagens, fibronectin, laminin, and vitronectin were immobilized. Heparin bound to type V collagen, type IX collagen, fibronectin, laminin, and vitronectin; and chondroitin sulfate E bound to type II, type V, and type VII collagen. Heparin showed a higher affinity for type IX collagen than for type V collagen. On the other hand, chondroitin sulfate E showed the highest affinity for type V collagen. The binding of chondroitin sulfate E to type V collagen showed higher affinity than that of heparin to type V collagen. These data suggest that a novel characteristic sequence included in chondroitin sulfate E is involved in binding to type V collagen.  相似文献   

13.
G S Shaw  R S Hodges  B D Sykes 《Biochemistry》1991,30(34):8339-8347
Three 34-residue peptides corresponding to the high-affinity calcium-binding site III and two variant sequences from the muscle protein troponin C (TnC) were synthesized by solid-phase techniques. The two variant 34-residue peptides had amino acid modifications at either the coordinating positions or both the coordinating and noncoordinating positions, which corresponded to the residues found in the low-affinity calcium-binding site II of TnC. High-field 1H NMR spectroscopy was used to monitor calcium binding to each peptide to determine the effect these amino acid substitutions had on calcium affinity. The dissociation constant of the native site III peptide (SCIII) was 3 x 10(-6) M, smaller than that of the peptide incorporating the ligands from site II (LIIL), 8 x 10(-6) M, and that with the entire site II loop (LII), 3 x 10(-3) M, which bound calcium very weakly. These calcium dissociation constants demonstrate that very minor amino acid substitutions have a significant effect on the dissociation constant and give some insight into why the dissociation constants for site III and IV in TnC are 100-fold smaller than those for sites I and II. The results suggest that the differences in coordinating ligands between sites II and III have very little effect on Ca2+ affinity and that the noncoordinating residues in the site II loop are responsible for the low affinity of site II compared to the high affinity of site III in TnC.  相似文献   

14.
The interaction of bilirubin with collagen in the significance of jaundice incidence have been previously reported and investigated. The novel peptide sequences containing bilirubin binding domain was identified and located to develop a basis for further studies investigating the interactions of collagen with bilirubin in the present study. In this study an intricate interaction between bilirubin and collagen was characterized and their binding domain has been established using in-gel digestion and LC–MS/MS analysis based on the collagen sequencing and peptide mass fingerprinting. The biotinylated bilirubin derivatives bind to α1(I) chain but not to α2(I) chains which clearly designates that bilirubin shows greater affinity to α1 chains of collagen. The intact proteins collected after analyzing the resulting complex mixture of peptides was used for peptide mapping. Using the electrospray method, among the other peptide sequence information obtained, the molecular weight of collagen alpha-2(I) chain was obtained by locating a 130 kDa weight peptide sequences with greater pi value (9.14) with 1,364 amino acid residues and collagen alpha-1(I) chain with 1,463 amino acid residues with 138.9 kDa molecular weight. This information leads to locate the exact sequence of these helices focussing on the domain identification. The total charge of the peptide domain sequences infers that the bilirubin participates in the electrostatic mode of interaction with collagen peptide. Moreover, other modes of interactions such as hydrogen bonding, covalent interactions and hydrophobic interactions are possible.  相似文献   

15.
16.
Eight analogues of human epidermal growth factor (hEGF) having specific amino acid substitutions in the beta-sheet structure (residues 19-31) of the amino-terminal domain were generated by site-directed mutagenesis. Affinity of the epidermal growth factor (EGF) receptor for each of these mutant hEGF analogues was measured by both radioreceptor competition binding and receptor tyrosine kinase stimulation assays. The relative binding affinities obtained by these two methods were generally in agreement for each hEGF species. The results indicate that hydrophobic residues on the exposed surface of the beta-sheet structure of the amino-terminal domain of hEGF have an important role in the formation of the active EGF-receptor complex. The substitution of hydrophobic amino acid residues, Val-19----Gly, Met-21----Thr, Ile-23----Thr, and Leu-26----Gly, resulted in decreased binding affinity, with the most severe reductions observed with the last two mutants. The mutations Ala-25----Val and Lys-28----Arg introduced amino acid residues resulting in slightly increased receptor binding affinity. Similar to previous results with acidic residues in this region [Engler, D.A., Matsunami, R.K., Campion, S.R., Stringer, C.D., Stevens, A., & Niyogi, S.K. (1988) J. Biol. Chem. 263, 12384-12390], removal of the positive charge in the Lys-28----Leu substitution had almost no effect on binding affinity, indicating the lack of any absolute requirement for ionic interactions at this site. Substitution of Tyr-22, which resulted in decreased receptor binding affinity, provides further indication of the importance of aromatic residues in this region of the molecule, as found earlier with Tyr-29 (cf. reference above).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Binding specificity in lactose permease toward galactopyranosides is governed by H-bonding interactions at C-2, C-3, C-4, and C-6 OH groups, while binding affinity can be increased dramatically by nonspecific hydrophobic interactions with the non-galactosyl moiety [Sahin-Tóth, M., Akhoon, K. M., Runner, J., and Kaback, H. R. (2000) Biochemistry 39, 5097-5103]. To characterize the contribution of individual hydroxyls, binding of structural analogues of p-nitrophenyl alpha-D-galactopyranoside (NPG) was examined by site-directed N-[(14)C]ethylmaleimide (NEM) labeling of the substrate-protectable Cys148 in the binding site. NPG blocks NEM alkylation of Cys148 with an apparent affinity of approximately 14 microM. A deoxy derivative at position C-2 binds with 25-fold lower affinity (K(D) 0.35 mM), and the deoxy analogue at C-3 exhibits ca. 70-fold decreased binding (K(D) 1 mM), while binding of 6-deoxy-NPG is at least 130-fold diminished (K(D) 1.9 mM). Remarkably, the C-4 deoxy derivative of NPG binds with almost 1500-fold reduced affinity (K(D) approximately 20 mM). No significant substrate protection is afforded by NPG analogues with methoxy (CH(3)-O-) substitutions at positions C-3, C-4, and C-6. In contrast, the C-2 methoxy analogue binds almost normally (K(D) 26 microM). The results confirm and extend the observations that the C-2, C-3, C-4, and C-6 OH groups of galactopyranosides participate in important H-bonding interactions. Moreover, the C-4 hydroxyl is identified as the major determinant of ligand binding, suggesting that sugar recognition in lactose permease may have evolved to discriminate primarily between gluco- and galactopyranosides.  相似文献   

18.
Transposon Tn7 inserts itself into the attTn7 target DNA sequence at the 3' end of the Escherichia coli glmS gene with high specificity and efficiency. This site in the E. coli genome displays amino acid conservation and nucleotide similarity with orthologous sequences in Archaebacteria and eukaryotes. On the basis of the high degree of nucleotide similarity, particularly with eukaryotes, we examined the interactions of a set of 20-bp duplex DNA sequences with the Tn7 protein TnsD. The protein was overexpressed in the IPTG-inducible vector pET14b-TnsD in E. coli BL21(DE3)-RIL-Codon-Plus, and purified by nickel chelation and ion exchange chromatography. Changes in the conformation of DNA duplexes upon interaction with TnsD were monitored by circular dichroism (CD) spectroscopy. TnsD binding to and dissociation from immobilized DNA duplexes were monitored by total internal reflectance (TIR). CD and TIR results were analyzed to calculate k(on), k(off), and K(D) values. The 20-bp DNA duplex corresponding to attTn7 at the 3' end of E. coli glmS displayed strong affinity for TnsD protein, with K(D) approximately 20 nM. Eukaryotic orthologs of attTn7 from yeast and mammalian GFPT1 displayed lower affinity, with K(D) approximately 500 nM. Mutant DNA sequences with a single central mismatch did not display any detectable interaction with TnsD. The physical studies validate our biological observation of Tn7 transposition into a plasmid containing the mammalian attTn7 ortholog sequence [Cleaver, S. H., and Wickstrom, E. (2000) Gene 254, 37-44], and suggest that 1-2 amino acid substitutions in TnsD might be sufficient to permit binding to mammalian orthologs that is as strong as wild-type TnsD binding to attTn7.  相似文献   

19.
The human discoidin domain receptors (DDRs), DDR1 and DDR2, are expressed widely and, uniquely among receptor tyrosine kinases, activated by the extracellular matrix protein collagen. This activation is due to a direct interaction of collagen with the DDR discoidin domain. Here, we localised a specific DDR2 binding site on the triple-helical region of collagen II. Collagen II was found to be a much better ligand for DDR2 than for DDR1. As expected, DDR2 binding to collagen II was dependent on triple-helical collagen and was mediated by the DDR2 discoidin domain. Collagen II served as a potent stimulator of DDR2 autophosphorylation, the first step in transmembrane signalling. To map the DDR2 binding site(s) on collagen II, we used recombinant collagen II variants with specific deletions of one of the four repeating D periods. We found that the D2 period of collagen II was essential for DDR2 binding and receptor autophosphorylation, whereas the D3 and D4 periods were dispensable. The DDR2 binding site on collagen II was further defined by recombinant collagen II-like proteins consisting predominantly of tandem repeats of the D2 or D4 period. The D2 construct, but not the D4 construct, mediated DDR2 binding and receptor autophosphorylation, demonstrating that the D2 period of collagen II harbours a specific DDR2 recognition site. The discovery of a site-specific interaction of DDR2 with collagen II gives novel insight into the nature of the interaction of collagen II with matrix receptors.  相似文献   

20.
The crystal structure of the metallo-beta-lactamase CcrA3 indicates that the active site of this enzyme contains a binuclear zinc center. To aid in assessing the involvement of specific residues in beta-lactam hydrolysis and susceptibility to inhibitors, individual substitutions of selected amino acids were generated. Substitution of the zinc-ligating residue Cys181 with Ser (C181S) resulted in a significant reduction in hydrolytic activity; kcat values decreased 2-4 orders of magnitude for all substrates. Replacement of His99 with Asn (H99N) significantly reduced the hydrolytic activity for penicillin and imipenem. Replacement of Asp103 with Asn (D103N) showed reduced hydrolytic activity for cephaloridine and imipenem. Deletion of amino acids 46-51 dramatically reduced both the hydrolytic activity and affinity for all beta-lactams. The metal binding capacity of each mutant enzyme was examined using nondenaturing electrospray ionization mass spectrometry. Two zinc ions were observed for the wild-type enzyme and most of the mutant enzymes. However, for the H99N, C181S, and D103N enzymes, three different zinc content patterns were observed. These enzymes contained two zinc molecules, one zinc molecule, and a mixture of one or two zinc molecules/enzyme molecule, respectively. Two enzymes with substitutions of Cys104 or Cys104 and Cys155 were also composed of mixed enzyme populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号