共查询到20条相似文献,搜索用时 0 毫秒
1.
The ability to monitor and characterize DNA mismatch repair activity in various mammalian cells is important for understanding mechanisms involved in mutagenesis and tumorigenesis. Since mismatch repair proteins recognize mismatches containing both normal and chemically altered or damaged bases, in vitro assays must accommodate a variety of mismatches in different sequence contexts. Here we describe the construction of DNA mismatch substrates containing G:T or O6meG:T mismatches, the purification of recombinant native human MutSα (MSH2–MSH6) and MutLα (MLH1–PMS2) proteins, and in vitro mismatch repair and excision assays that can be adapted to study mismatch repair in nuclear extracts from mismatch repair proficient and deficient cells. 相似文献
2.
C Schmutte M M Sadoff K S Shim S Acharya R Fishel 《The Journal of biological chemistry》2001,276(35):33011-33018
Exonucleolytic degradation of DNA is an essential part of many DNA metabolic processes including DNA mismatch repair (MMR) and recombination. Human exonuclease I (hExoI) is a member of a family of conserved 5' --> 3' exonucleases, which are implicated in these processes by genetic studies. Here, we demonstrate that hExoI binds strongly to hMLH1, and we describe interaction regions between hExoI and the MMR proteins hMSH2, hMSH3, and hMLH1. In addition, hExoI forms an immunoprecipitable complex with hMLH1/hPMS2 in vivo. The study of interaction regions suggests a biochemical mechanism of the involvement of hExoI as a downstream effector in MMR and/or DNA recombination. 相似文献
3.
The human DNA mismatch repair (MMR) process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2). Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency. 相似文献
4.
The DNA mismatch repair (MMR) system is highly conserved and vital for preserving genomic integrity. Current mechanistic models for MMR are mainly derived from in vitro assays including reconstitution of strand-specific MMR and DNA binding assays using short oligonucleotides. However, fundamental questions regarding the mechanism and regulation in the context of cellular DNA replication remain. Using synchronized populations of HeLa cells we demonstrated that hMSH2, hMLH1 and PCNA localize to the chromatin during S-phase, and accumulate to a greater extent in cells treated with a DNA alkylating agent. In addition, using small interfering RNA to deplete hMSH2, we demonstrated that hMLH1 localization to the chromatin is hMSH2-dependent. hMSH2/hMLH1/PCNA proteins, when associated with the chromatin, form a complex that is greatly enhanced by DNA damage. The DNA damage caused by high doses of alkylating agents leads to a G2 arrest after only one round of replication. In these G2-arrested cells, an hMSH2/hMLH1 complex persists on chromatin, however, PCNA is no longer in the complex. Cells treated with a lower dose of alkylating agent require two rounds of replication before cells arrest in G2. In the first S-phase, the MMR proteins form a complex with PCNA, however, during the second S-phase PCNA is missing from that complex. The distinction between these complexes may suggest separate functions for the MMR proteins in damage repair and signaling. Additionally, using confocal immunofluorescence, we observed a population of hMSH6 that localized to the nucleolus. This population is significantly reduced after DNA damage suggesting that the protein is shuttled out of the nucleolus in response to damage. In contrast, hMLH1 is excluded from the nucleolus at all times. Thus, the nucleolus may act to segregate a population of hMSH2–hMSH6 from hMLH1–hPMS2 such that, in the absence of DNA damage, an inappropriate response is not invoked. 相似文献
5.
Molecular mechanisms of DNA mismatch repair. 总被引:15,自引:0,他引:15
P Hsieh 《Mutation research》2001,486(2):71-87
DNA mismatch repair (MMR) safeguards the integrity of the genome. In its role in postreplicative repair, this repair pathway corrects base-base and insertion/deletion (I/D) mismatches that have escaped the proofreading function of replicative polymerases. In its absence, cells assume a mutator phenotype in which the rate of spontaneous mutation is greatly elevated. The discovery that defects in mismatch repair segregate with certain cancer predisposition syndromes highlights its essential role in mutation avoidance. Recently, three-dimensional structures of MutS, a key repair protein that recognizes mismatches, have been determined by X-ray crystallography. This article provides an overview of the structural features of MutS proteins and discusses how the structural data together with biochemical and genetic studies reveal new insights into the molecular mechanisms of mismatch repair. 相似文献
6.
DNA mismatch repair and cancer 总被引:31,自引:0,他引:31
Peltomäki P 《Mutation research》2001,488(1):77-85
Five human DNA mismatch repair genes have been identified that, when mutated, cause susceptibility to hereditary nonpolyposis colorectal cancer (HNPCC). Mutational inactivation of both copies of a DNA mismatch repair gene results in a profound repair defect and progressive accumulation of mutations throughout the genome. Some of the mutations confer selective advantage on the cells, giving rise to cancer. Recent discoveries suggest that apart from postreplication repair, DNA mismatch repair proteins have several other functions that are highly relevant to carcinogenesis. These include DNA damage surveillance, prevention of recombination between nonidentical sequences and participation in meiotic processes (chromosome pairing). A brief overview of these different features of the human DNA mismatch repair system will be provided, with the emphasis in their implications in cancer development. 相似文献
7.
ATP-dependent interaction of human mismatch repair proteins and dual role of PCNA in mismatch repair. 总被引:9,自引:7,他引:9
下载免费PDF全文

DNA mismatch repair ensures genomic stability by correcting biosynthetic errors and by blocking homologous recombination. MutS-like and MutL-like proteins play important roles in these processes. In Escherichia coli and yeast these two types of proteins form a repair initiation complex that binds to mismatched DNA. However, whether human MutS and MutL homologs interact to form a complex has not been elucidated. Using immunoprecipitation and Western blot analysis we show here that human MSH2, MLH1, PMS2 and proliferating cell nuclear antigen (PCNA) can be co-immunoprecipitated, suggesting formation of a repair initiation complex among these proteins. Formation of the initiation complex is dependent on ATP hydrolysis and at least functional MSH2 and MLH1 proteins, because the complex could not be detected in tumor cells that produce truncated MLH1 or MSH2 protein. We also demonstrate that PCNA is required in human mismatch repair not only at the step of repair initiation, but also at the step of repair DNA re-synthesis. 相似文献
8.
Treatment with low concentrations of monofunctional alkylating agents induces a G2 arrest only after the second round of DNA synthesis in mammalian cells and requires a proficient mismatch repair (MMR) pathway. Here, we have investigated rapid alkylation-induced recruitment of DNA repair proteins to chromosomal DNA within synchronized populations of MMR proficient cells (HeLa MR) after N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) treatment. Within the first hour, the concentrations of MutS alpha and PCNA increase well beyond their constitutive chromosomally bound levels and MutL alpha is newly recruited to the chromatin-bound MutS alpha. Remarkably, immunoprecipitation experiments demonstrate rapid association of these proteins on the alkylation-damaged chromatin, even when DNA replication is completely blocked. The extent of association of PCNA and MMR proteins on the chromatin is dependent upon the concentration of MNNG and on the specific type of replication block. A subpopulation of the MutS alpha-associated PCNA also becomes monoubiquitinated, a known requirement for PCNA to interact with translesion synthesis (TLS) polymerases. In addition, chromatin-bound SMC1 and NBS1 proteins, associated with DNA double-strand-breaks (DSBs), become phosphorylated within 1-2h of exposure to MNNG. However, these activated proteins are not co-localized on the chromatin with MutS alpha in response to MNNG exposure. PCNA, MutS alpha/MutL alpha and activated SMC1/NBS1 remain chromatin-bound for at least 6-8h after alkylation damage. Thus, cells that are exposed to low levels of alkylation treatment undergo rapid recruitment to and/or activation of key proteins already on the chromatin without the requirement for DNA replication, apparently via different DNA-damage signaling pathways. 相似文献
9.
Structure and function of mismatch repair proteins 总被引:13,自引:0,他引:13
Yang W 《Mutation research》2000,460(3-4):245-256
DNA mismatch repair is required for maintaining genomic stability and is highly conserved from prokaryotes to eukaryotes. Errors made during DNA replication, such as deletions, insertions and mismatched basepairs, are substrates for mismatch repair. Mismatch repair is strand-specific and targets only the newly synthesized daughter strand. To initiate mismatch repair in Escherichia coli, three proteins are essential, MutS, for mismatch recognition, MutH, for introduction of a nick in the target strand, and MutL, for mediating the interactions between MutH and MutS. Homologues of MutS and MutL important for mismatch repair have been found in nearly all organisms. Mutations in MutS and MutL homologues have been linked to increased cancer susceptibility in both mice and humans. Here, we review the crystal structures of the MutH endonuclease, a conserved ATPase fragment of MutL (LN40), and complexes of LN40 with various nucleotides. Based on the crystal structure, the active site of MutH has been identified and an evolutionary relationship between MutH and type II restriction endonucleases established. Recent crystallographic and biochemical studies have revealed that MutL operates as a molecular switch with its interactions with MutH and MutS regulated by ATP binding and hydrolysis. These crystal structures also shed light on the general mechanism of mismatch repair and the roles of Mut proteins in preventing mutagenesis. 相似文献
10.
We have developed a simple procedure that enables the efficient selection of cells that are deficient for DNA mismatch repair (MMR). This selection procedure was used to investigate the frequency of fortuitous MMR-deficient cells in a mouse embryonic stem cell line, heterozygous for the MMR gene Msh2. We found a surprisingly high frequency (3 x 10(-4)) of Msh2-deficient cells. The wild type Msh2 allele was almost invariably lost by loss of heterozygosity. Single treatments with the genotoxic agents ethylnitrosourea, UVC light and mitomycin C resulted in a further increase of the number of Msh2-/- cells in the heterozygous cell line. This increase was not only due to induced loss of the wild type allele but also to a selective growth advantage of preexisting Msh2-/- cells to ethylnitrosourea and UVC. Mitomycin C, in contrast to ethylnitrosourea and UVC, uniquely induced loss of heterozygosity at Msh2. These mechanistically different ways of loss of the wild type Msh2 allele reflect the different repair pathways processing these damages. Heterozygous germ line defects in one of the MMR genes underlie the hereditary nonpolyposis colorectal cancer (HNPCC) syndrome. Based on the results described here we hypothesize that mutagen-induced loss of MMR in the intestine of these patients contributes to the tissue specificity of carcinogenesis in HNPCC patients. 相似文献
11.
We assayed error-prone double-strand break (DSB) repair in wild-type and isogenic Mlh1-null mouse embryonic fibroblasts containing a stably integrated DSB repair substrate. The substrate contained a thymidine kinase (tk) gene fused to a neomycin-resistance (neo) gene; the tk-neo fusion gene was disrupted in the tk portion by a 22bp oligonucleotide containing the 18 bp recognition site for endonuclease I-SceI. Following DSB-induction by transient expression of I-SceI endonuclease, cells that repaired the DSB by error-prone nonhomologous end-joining (NHEJ) and restored the correct reading frame to the tk-neo fusion gene were recovered by selecting for G418-resistant clones. The number of G418-resistant clones induced by I-SceI expression did not differ significantly between wild-type and Mlh1-deficient cells. While most DSB repair events were consistent with simple NHEJ in both wild-type and Mlh1-deficient cells, complex repair events were more common in wild-type cells. Furthermore, genomic deletions associated with NHEJ events were strikingly larger in wild-type versus Mlh1-deficient cells. Additional experiments revealed that the stable transfection efficiency of Mlh1-null cells is higher than that of wild-type cells. Collectively, our results suggest that Mlh1 modulates error-prone NHEJ by inhibiting the annealing of DNA ends containing noncomplementary base pairs or by promoting the annealing of microhomologies. 相似文献
12.
The evolutionary conserved mismatch repair proteins correct a wide range of DNA replication errors. Their importance as guardians of genetic integrity is reflected by the tremendous decrease of replication fidelity (two to three orders of magnitude) conferred by their loss. Germline mutations in mismatch repair genes, predominantly MSH2 and MLH1, have been found to underlie the Lynch syndrome (also called hereditary non-polyposis colorectal cancer, HNPCC), a hereditary predisposition for cancer. Lynch syndrome affects predominantly the colon and accounts for 2–5% of all colon cancer cases. During more than 30 years of biochemical, crystallographic and clinical research, deep insight has been achieved in the function of mismatch repair and the diseases that are associated with its loss. We review the biochemistry of mismatch repair and also introduce the clinical, diagnostic and genetic aspects of Lynch syndrome. 相似文献
13.
The molecular mechanisms of the DNA mismatch repair (MMR) system have been uncovered over the last decade, especially in prokaryotes. The results obtained for prokaryotic MMR proteins have provided a framework for the study of the MMR system in eukaryotic organisms, such as yeast, mouse and human, because the functions of MMR proteins have been conserved during evolution from bacteria to humans. However, mutations in eukaryotic MMR genes result in pleiotropic phenotypes in addition to MMR defects, suggesting that eukaryotic MMR proteins have evolved to gain more diverse and specific roles in multicellular organisms. Here, we summarize recent advances in the understanding of both prokaryotic and eukaryotic MMR systems and describe various new functions of MMR proteins that have been intensively researched during the last few years, including DNA damage surveillance and diversification of antibodies. 相似文献
14.
Novel and diverse functions of the DNA mismatch repair family in mammalian meiosis and recombination
The mismatch repair (MMR) family is a highly conserved group of proteins that function in genome stabilization and mutation avoidance. Their role has been particularly well studied in the context of DNA repair following replication errors, and disruption of these processes results in characteristic microsatellite instability, repair defects and, in mammals, susceptibility to cancer. An additional role in meiotic recombination has been described for several family members, as revealed by extensive studies in yeast. More recently, the role of the mammalian MMR family in meiotic progression has been elucidated by the phenotypic analysis of mice harboring targeted mutations in the genes encoding several MMR family members. This review will discuss the phenotypes of the various mutant mouse lines and, drawing from our knowledge of MMR function in yeast meiosis and in somatic cell repair, will attempt to elucidate the significance of MMR activity in mouse germ cells. These studies highlight the importance of comparative analysis of MMR orthologs across species, and also underscore distinct sexually dimorphic characteristics of mammalian recombination and meiosis. 相似文献
15.
A role for DNA mismatch repair protein Msh2 in error-prone double-strand-break repair in mammalian chromosomes 总被引:2,自引:0,他引:2
下载免费PDF全文

We examined error-prone nonhomologous end joining (NHEJ) in Msh2-deficient and wild-type Chinese hamster ovary cell lines. A DNA substrate containing a thymidine kinase (tk) gene fused to a neomycin-resistance (neo) gene was stably integrated into cells. The fusion gene was rendered nonfunctional due to a 22-bp oligonucleotide insertion, which included the 18-bp I-SceI endonuclease recognition site, within the tk portion of the fusion gene. A double-strand break (DSB) was induced by transiently expressing the I-SceI endonuclease, and deletions or insertions that restored the tk-neo fusion gene's reading frame were recovered by selecting for G418-resistant colonies. Overall, neither the frequency of recovery of G418-resistant colonies nor the sizes of NHEJ-associated deletions were substantially different for the mutant vs. wild-type cell lines. However, we did observe greater usage of terminal microhomology among NHEJ events recovered from wild-type cells as compared to Msh2 mutants. Our results suggest that Msh2 influences error-prone NHEJ repair at the step of pairing of terminal DNA tails. We also report the recovery from both wild-type and Msh2-deficient cells of an unusual class of NHEJ events associated with multiple deletion intervals, and we discuss a possible mechanism for the generation of these "discontinuous deletions." 相似文献
16.
Mismatch repair proteins are a highly diverse group of proteins that interact with numerous DNA structures during DNA repair and replication. Here we review data for the role of Msh4, Msh5, Mlh1, Mlh3 and Exo1 in crossing over. Based on the paradigm of interactions developed from studies of mismatch repair, we propose models for the mechanism of crossover implementation by Msh4/Msh5 and Mlh1/Mlh3. 相似文献
17.
Mechanisms and functions of DNA mismatch repair 总被引:19,自引:1,他引:19
Li GM 《Cell research》2008,18(1):85-98
DNA mismatch repair (MMR) is a highly conserved biological pathway that plays a key role in maintaining genomic stability. The specificity of MMR is primarily for base-base mismatches and insertion/deletion mispairs generated during DNA replication and recombination. MMR also suppresses homeologous recombination and was recently shown to play a role in DNA damage signaling in eukaryotic cells. Escherichia coli MutS and MutL and their eukaryotic homologs, MutSα and MutLα, respectively, are key players in MMR-associated genome maintenance. Many other protein components that participate in various DNA metabolic pathways, such as PCNA and RPA, are also essential for MMR. Defects in MMR are associated with genome-wide instability, predisposition to certain types of cancer including hereditary non-polyposis colorectal cancer, resistance to certain chemotherapeutic agents, and abnormalities in meiosis and sterility in mammalian systems. 相似文献
18.
ATM-mediated stabilization of hMutL DNA mismatch repair proteins augments p53 activation during DNA damage
下载免费PDF全文

Human DNA mismatch repair (MMR) proteins correct DNA errors and regulate cellular response to DNA damage by signaling apoptosis. Mutations of MMR genes result in genomic instability and cancer development. Nonetheless, how MMR proteins are regulated has not yet been determined. While hMLH1, hPMS2, and hMLH3 are known to participate in MMR, the function of another member of MutL-related proteins, hPMS1, remains unclear. Here we show that DNA damage induces the accumulation of hPMS1, hPMS2, and hMLH1 through ataxia-telangiectasia-mutated (ATM)-mediated protein stabilization. The subcellular localization of PMS proteins is also regulated during DNA damage, which induces nuclear localization of hPMS1 and hPMS2 in an hMLH1-dependent manner. The induced levels of hMLH1 and hPMS1 are important for the augmentation of p53 phosphorylation by ATM in response to DNA damage. These observations identify hMutL proteins as regulators of p53 response and demonstrate for the first time a function of hMLH1-hPMS1 complex in controlling the DNA damage response. 相似文献
19.
Recognition and repair of compound DNA lesions (base damage and mismatch) by human mismatch repair and excision repair systems. 总被引:12,自引:4,他引:12
下载免费PDF全文

D Mu M Tursun D R Duckett J T Drummond P Modrich A Sancar 《Molecular and cellular biology》1997,17(2):760-769
Nucleotide excision repair and the long-patch mismatch repair systems correct abnormal DNA structures arising from DNA damage and replication errors, respectively. DNA synthesis past a damaged base (translesion replication) often causes misincorporation at the lesion site. In addition, mismatches are hot spots for DNA damage because of increased susceptibility of unpaired bases to chemical modification. We call such a DNA lesion, that is, a base damage superimposed on a mismatch, a compound lesion. To learn about the processing of compound lesions by human cells, synthetic compound lesions containing UV photoproducts or cisplatin 1,2-d(GpG) intrastrand cross-link and mismatch were tested for binding to the human mismatch recognition complex hMutS alpha and for excision by the human excision nuclease. No functional overlap between excision repair and mismatch repair was observed. The presence of a thymine dimer or a cisplatin diadduct in the context of a G-T mismatch reduced the affinity of hMutS alpha for the mismatch. In contrast, the damaged bases in these compound lesions were excised three- to fourfold faster than simple lesions by the human excision nuclease, regardless of the presence of hMutS alpha in the reaction. These results provide a new perspective on how excision repair, a cellular defense system for maintaining genomic integrity, can fix mutations under certain circumstances. 相似文献
20.
A system to study mismatch repair in vitro in HeLa cell extracts was developed. Preformed heteroduplex plasmid DNA containing two single base pair mismatches within the SupF gene of Escherichia coli was used as a substrate in a mismatch repair assay. Repair of one or both of the mismatches to the wild-type sequence was measured by transformation of a lac(Am) E. coli strain in which the presence of an active supF gene could be scored. The E. coli strain used was constructed to carry mutations in genes associated with mismatch repair and recombination (mutH, mutU, and recA) so that the processing of the heteroduplex DNA by the bacterium was minimal. Extract reactions were carried out by the incubation of the heteroduplex plasmid DNA in the HeLa cell extracts to which ATP, creatine phosphate, creatine kinase, deoxynucleotides, and a magnesium-containing buffer were added. Under these conditions about 1% of the mismatches were repaired. In the absence of added energy sources or deoxynucleotides, the activity in the extracts was significantly reduced. The addition of either aphidicolin or dideoxynucleotides reduced the mismatch repair activity, but only aphidicolin was effective in blocking DNA polymerization in the extracts. It is concluded that mismatch repair in these extracts is an energy-requiring process that is dependent on an adequate deoxynucleotide concentration. The results also indicate that the process is associated with some type of DNA polymerization, but the different effects of aphidicolin and dideoxynucleotides suggest that the mismatch repair activity in the extracts cannot simply be accounted for by random nick-translation activity alone. 相似文献