首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peroxisomes were purified from livers of control mice and from mice treated with three agents which induce proliferation of hepatic peroxisomes — namely two structurally unrelated hypolipidemic drugs, clofibrate (ethyl--p-chlorophenoxyisobutyrate) and Wy-14,643 (4-chloro-6[2,3-xylidino)-2-pyrimidinylthio] acetic acid), and a plasticizer, DEHP (di-(2-ethylhexyl)phthalate).Membranes were isolated from these purified peroxisomes and analysed by SDS-polyacrylamide gel electrophoresis. All membranes which were tested, displayed two predominant integral membrane proteins of apparent molecular weights of 68 kDa and 70 kDa respectively, as well as a number of minor components. Treatment of animals with clofibrate, Wy-14,643 and DEHP was observed to result in each case in an increased proportion of the 70 kDa protein in the peroxisomal membranes. These treatments also resulted in increased peroxisomal fatty acid oxidation in livers and an increase in the proportion of catalase activity in the cytosolic fraction of liver cells.These results have been discussed in relation to alterations in the molecular composition of the membranes, the mechanisms of peroxisome proliferation and the inducibility of peroxisomal membrane proteins.  相似文献   

2.
Purification of membrane polypeptides of rat liver peroxisomes   总被引:7,自引:0,他引:7  
Peroxisomes were obtained by sucrose density gradient centrifugation from the livers of di(2-ethylhexyl)phthalate-fed rats, and the membranes were prepared by carbonate extraction (Fujiki, Y., Fowler, S., Shio, H., Hubbard, A.L., & Lazarow, P.B. (1982) J. Cell Biol. 93, 103-110). The integrated membrane polypeptides were solubilized with sodium dodecyl sulfate, and purified by repeated polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Separation of 70 and 68 kDa polypeptides was not attempted in the present study because of their close migration in polyacrylamide gel electrophoresis. Other polypeptides with apparent molecular masses of 41, 27, 26, and 22 kDa were purified to near homogeneity. Antibodies were raised against these purified preparations. The 68 kDa polypeptide is suggested to be produced by the proteolytic modification of 70 kDa polypeptide, since the former increased concomitantly with decrease of the latter when the liver homogenate was incubated, and this change was prevented in the presence of leupeptin during the incubation. The 41 kDa polypeptide was a minor component. The 70 and 68 kDa polypeptides and 41 kDa polypeptide and their antibodies were cross-reactive, but the relation of these polypeptides was not clear. The 27 and 26 kDa polypeptides seemed to be another species of membrane polypeptides, although the relationship of these two polypeptides remains to be clarified. The 22 kDa polypeptide is not related to other membrane polypeptides. The results of immunoblot analysis of subcellular fractions of the liver and an electron microscopic immunocytochemical study to locate the antigenic sites with protein A-gold complex suggest that all of these polypeptides are localized on peroxisomal membranes. On proliferation of rat liver peroxisomes by administration of di(2-ethylhexyl)phthalate, a peroxisome proliferator, all of these polypeptides were markedly increased.  相似文献   

3.
Peroxisomal enoyl-CoA hydratase was purified from livers of mice treated with di-(2-ethylhexyl)phthalate and its properties compared with those of the 70 kDa protein present in the membranes prepared by carbonate extraction of peroxisomes. The two proteins had identical subunit molecular masses, of about 70,000 daltons. Limited proteolysis of these proteins using the V8 proteinase of S. aureus yielded identical peptide maps, with these peptides crossreacting with antiserum raised against the 70 kDa membrane protein. These data are consistent with the proposal that the peroxisomal 70 kDa membrane protein and the peroxisomal enoyl-CoA hydratase are the same protein.  相似文献   

4.
Highly purified peroxisomal membranes stripped from their peripheral membrane proteins and only minimally contaminated with other membranes, contained three GTP-binding proteins of 29, 27 and 25 kDa, respectively. Bound radioactive GTP was displaced by unlabelled GTP, GTP analogs and GDP but not by GMP or other nucleotides. GTP binding was markedly decreased by trypsin treatment of intact purified peroxisomes; it increased 2-3-fold after pretreatment of the animals with a peroxisome proliferator. We conclude that the peroxisomal membrane contains small GTP-binding proteins that are exposed to the cytosol and that are firmly anchored in the membrane. We speculate that these proteins are involved in peroxisome multiplication by fission or budding during peroxisome biogenesis and proliferation.  相似文献   

5.
E Lopez-Huertas  J Oh  A Baker 《FEBS letters》1999,459(2):227-229
The membrane protein Pex14p is a key component of the protein import machinery of peroxisomes. Antibodies raised against human Pex14p recognise a 66 kDa protein in sunflower glyoxysomes (HaPex14p) and immunoprecipitate in vitro-translated Arabidopsis Pex14p (AtPex14p). These antibodies inhibit the ATP-independent binding to sunflower peroxisome membranes of peroxisome targeting signal type (PTS) 1- and PTS2-targeted matrix proteins, but not an integral membrane protein. These results suggest that Pex14p functions before the ATP-dependent step of peroxisome assembly.  相似文献   

6.
We have characterized the integral membrane polypeptides of liver peroxisomes from untreated rats and rats treated with clofibrate, a peroxisome proliferator. Membranes, prepared by treatment of purified peroxisomes with sodium carbonate, were used to raise an antiserum in rabbits. Immunoblot analysis demonstrated the reaction of this antiserum with six peroxisomal integral membrane polypeptides (molecular masses, 140, 69, 50, 36, 22, and 15 kDa). Treatment of rats with the hypolipidemic drug clofibrate caused a 4- to 10-fold induction in the 69-kDa integral membrane polypeptide, while the other integral membrane polypeptides remained unchanged or varied to a lesser extent. The anti-peroxisomal membrane serum reacted with two integral membrane polypeptides of the endoplasmic reticulum which co-migrated with the 50- and 36-kDa integral membrane polypeptides of the peroxisome. Biochemical and immunoblot analyses indicated that these integral membrane polypeptides were co-localized to peroxisomes and endoplasmic reticulum. Immunoprecipitation of in vitro translation products of RNA isolated from free and membrane-bound polysomes indicated that the 22-, 36-, and 69-kDa integral membrane polypeptides were synthesized on free polysomes, while the 50-kDa integral membrane polypeptide was predominantly synthesized on membrane-bound polysomes. The predominant synthesis of the 50-kDa integral membrane polypeptide on membrane-bound polysomes raises interesting possibilities concerning its biosynthesis.  相似文献   

7.
Fluorescent peroxisomal probes were developed by fusing green fluorescent protein (GFP) to the matrix peroxisomal targeting signals PTS1 and PTS2, as well as to an integral peroxisomal membrane protein (IPMP). These proteins were used to identify and characterize novel peroxisome assembly (pas) mutants in the yeast Pichia pastoris. Mutant cells lacking the PAS10 gene mislocalized both PTS1-GFP and PTS2-GFP to the cytoplasm but did incorporate IPMP-GFP into peroxisome membranes. Similar distributions were observed for endogenous peroxisomal matrix and membrane proteins. While peroxisomes from translocation-competent pas mutants sediment in sucrose gradients at the density of normal peroxisomes, >98% of peroxisomes from pas10 cells migrated to a much lower density and had an extremely low ratio of matrix:membrane protein. These data indicate that Pas10p plays an important role in protein translocation across the peroxisome membrane. Consistent with this hypothesis, we find that Pas10p is an integral protein of the peroxisome membrane. In addition, Pas10p contains a cytoplasmically-oriented C3HC4 zinc binding domain that is essential for its biological activity.  相似文献   

8.
In vitro synthesis of peroxisomal membrane polypeptides   总被引:4,自引:0,他引:4  
Peroxisomal membranes containing predominantly integral peroxisome membrane polypeptides were obtained from a highly purified peroxisomal fraction. Following sodium dodecylsulfate polyacrylamide gel electrophoresis three polypeptides with apparent molecular weights of 69, 36, and 22 kDa were isolated and used to raise antibodies in rabbits. Cell-free synthesis of these polypeptides was carried out in an in vitro translational system derived from rabbit reticulocytes. By subjecting peroxisomal membranes to reductive methylation [14C]-radiolabeled mature membrane polypeptides were obtained. The comparison of the three mature integral peroxisome membrane polypeptides with their corresponding in vitro synthesis products revealed no size differences indicating the lack of recognizable presequences for these peroxisomal membrane polypeptides.  相似文献   

9.
Rats were treated with clofibrate, a hypolipidemic drug, and with thyroxine. Both drugs which are known to cause peroxisome proliferation, and a concomitant increase in peroxisomal fatty acid beta-oxidation activity in liver increased one of the major integral peroxisomal membrane polypeptides (PMPs), with apparent molecular mass of 69-kDa, six- and twofold, respectively. On the other hand hypothyroidism caused a decrease in peroxisomal fatty acid beta-oxidation activity and considerably lowered the concentration of PMP 69 in the peroxisomal membrane. Two other PMPs with apparent molecular masses of 36 and 22 kDa were not influenced by these treatments. The PMPs with apparent molecular masses of 42, 28, and 26 kDa were shown to be derived from the 69-kDa polypeptide by the activity of a yet uncharacterized endogenous protease during isolation of peroxisomes. Limited proteolysis of intact peroxisomes using proteinase K and subtilisin further substantiated that some portion of the 69-kDa polypeptide extends into the cytoplasm. The 36- and the 22-kDa polypeptides were accessible to proteolytic attack to a much lower extent and, therefore, are supposed to be rather deeply embedded within the peroxisomal membrane. It is demonstrated that peroxisomal acyl-CoA synthetase, an integral PMP extending partially into the cytoplasm, and PMP 69 are not identical polypeptides. Comparison of the peroxisomal membrane with that of mitochondria and microsomes revealed that the 69- and 22-kDa polypeptides as well as the bifunctional protein of the peroxisomal fatty acid beta-oxidation pathway were specifically located only in peroxisomes. Considerable amounts of a polypeptide cross-reacting with the antiserum against the 36-kDa polypeptide were found in mitochondria.  相似文献   

10.
We have combined classical subcellular fractionation with large-scale quantitative mass spectrometry to identify proteins that enrich specifically with peroxisomes of Saccharomyces cerevisiae. In two complementary experiments, isotope-coded affinity tags and tandem mass spectrometry were used to quantify the relative enrichment of proteins during the purification of peroxisomes. Mathematical modeling of the data from 306 quantified proteins led to a prioritized list of 70 candidates whose enrichment scores indicated a high likelihood of them being peroxisomal. Among these proteins, eight novel peroxisome-associated proteins were identified. The top novel peroxisomal candidate was the small GTPase Rho1p. Although Rho1p has been shown to be tethered to membranes of the secretory pathway, we show that it is specifically recruited to peroxisomes upon their induction in a process dependent on its interaction with the peroxisome membrane protein Pex25p. Rho1p regulates the assembly state of actin on the peroxisome membrane, thereby controlling peroxisome membrane dynamics and biogenesis.  相似文献   

11.
Protein phosphorylation in peroxisomes   总被引:2,自引:0,他引:2  
The possible presence of phosphorylated proteins in peroxisomes was studied in hepatocytes from nafenopin-treated and normal rats. A 63 kDa phosphorylated protein was consistently and exclusively found in the membrane of peroxisomes from hepatocytes incubated in the presence of 32P-phosphate. The peroxisomes were isolated in metrizamide isopycnic gradients of postnuclear supernatants and were subfractionated by alkaline extraction to separate the membrane and the matrix proteins. Polyacrylamide gel electrophoresis, autoradiography and densitometry were employed to characterize the proteins. The 63 kDa membrane protein copurifies with peroxisomes in metrizamide gradients and apparently can be phosphorylated, in purified peroxisomes, with ATP and catalytic subunit of cAMP-dependent protein kinase.  相似文献   

12.
Two extracellular matrix cell surface proteins which bind the proteoglycan-like aggregation factor from the marine sponge Microciona prolifera (MAF) and which may function as physiological receptors for MAF were identified and characterized for the first time. By probing nitrocellulose blots of nonreducing sodium dodecyl sulfate gels containing whole sponge cell protein with iodinated MAF, a 210- and a 68-kDa protein, which have native molecular masses of approximately 200-400 and 70 kDa, were identified. MAF binding to blots is species-specific. It is also sensitive to reduction and is completely abolished by pretreatment of live cells with proteases, as was cellular aggregation, indicating that the 210- and 68-kDa proteins may be located on the cell surface. The additional observations that the 68 kDa is an endoglycosidase F-sensitive glycoprotein and that antisera against whole sponge cells or membranes can immunoprecipitate the 210 kDa when prebound to intact cells are consistent with a cell surface location. Both proteins can be isolated from sponge cell membranes and from the sponge skeleton (insoluble extracellular matrix), but the 210-kDa MAF-binding protein can also be found in the soluble extracellular matrix (buffer washes of cells and skeleton) as well. A third MAF-binding protein of molecular mass 95 kDa was also found in the sponge extracellular matrix but rarely on cells. Both of the cell-associated 210- and 68-kDa proteins are nonintegral membrane proteins, based on Triton X-114 phase separation, flotation of liposomes containing sponge membrane lysates, and their extraction from membranes by buffer washes. Both proteins bind MAF affinity resins, indicating that they each exhibit a moderate affinity for MAF under native conditions. They can also be separated from each other and from the bulk of the protein in an octylpolyoxyethylene extract of membranes by fast protein liquid chromatography Mono Q anion exchange chromatography, as assessed by native dot blot and denaturing Western blot assays. Although neither protein bound to heparin, gelatin, hexosamine, or uronic acid-Sepharose resins, their affinity for an invertebrate proteoglycan, their roles in sponge cell adhesion, and their peripheral membrane protein natures suggest that they may represent early invertebrate analogs of cell-associated vertebrate extracellular matrix adhesion proteins, such as fibronectin or vitronectin, or else an entirely novel set of cell adhesion molecules.  相似文献   

13.
Isolated human placental syncytiotrophoblast microvillous plasma membrane vesicles were extracted with Triton X-100 to yield a detergent-insoluble residue. The residue contained approx. 50% of the total membrane protein and was qualitatively different from untreated trophoblast on SDS-polyacrylamide gel electrophoresis, Western blots and dot-immunobinding assay. Three major proteins, with molecular weights of 68, 36 and 34 kDa, dissociated from this non-ionic detergent-insoluble submembranous cytoskeletal fraction in the presence of calcium chelators. They were immunologically related to human lymphocyte cytoskeletal calcium-binding proteins, and the 36 kDa component reacted with antisera to the phospholipase A2 inhibitor, lipocortin II. Anti-lipocortin I sera did not recognise the 34 kDa protein, but did react with a series of trophoblast cytoskeletal proteins in the 34-37 kDa region. Incubation of epidermal growth factor with isolated trophoblast membrane vesicles stimulated the phosphorylation of a 36 kDa protein on tyrosine residues. Immunoprecipitation studies further showed there was no phosphorylation of the 34 kDa protein, but the 68 kDa protein was a major phosphorylated component of isolated syncytiotrophoblast membranes. p68 was principally phosphorylated on serine with slight tyrosine phosphorylation which showed an apparent increase after epidermal growth factor treatment. These results indicate a family of calcium-dependant binding proteins, some of which are phosphorylated, associated with the submembranous cytoskeleton of syncytiotrophoblast microvilli.  相似文献   

14.
Orth T  Reumann S  Zhang X  Fan J  Wenzel D  Quan S  Hu J 《The Plant cell》2007,19(1):333-350
PEROXIN11 (PEX11) is a peroxisomal membrane protein in fungi and mammals and was proposed to play a major role in peroxisome proliferation. To begin understanding how peroxisomes proliferate in plants and how changes in peroxisome abundance affect plant development, we characterized the extended Arabidopsis thaliana PEX11 protein family, consisting of the three phylogenetically distinct subfamilies PEX11a, PEX11b, and PEX11c to PEX11e. All five Arabidopsis PEX11 proteins target to peroxisomes, as demonstrated for endogenous and cyan fluorescent protein fusion proteins by fluorescence microscopy and immunobiochemical analysis using highly purified leaf peroxisomes. PEX11a and PEX11c to PEX11e behave as integral proteins of the peroxisome membrane. Overexpression of At PEX11 genes in Arabidopsis induced peroxisome proliferation, whereas reduction in gene expression decreased peroxisome abundance. PEX11c and PEX11e, but not PEX11a, PEX11b, and PEX11d, complemented to significant degrees the growth phenotype of the Saccharomyces cerevisiae pex11 null mutant on oleic acid. Heterologous expression of PEX11e in the yeast mutant increased the number and reduced the size of the peroxisomes. We conclude that all five Arabidopsis PEX11 proteins promote peroxisome proliferation and that individual family members play specific roles in distinct peroxisomal subtypes and environmental conditions and possibly in different steps of peroxisome proliferation.  相似文献   

15.
It has been known for a long time that mammalian peroxisomes are extremely fragile in vitro. Changes in the morphological appearance and leakage of proteins from purified particles demonstrate that peroxisomes are damaged during isolation. However, some properties of purified peroxisomes, e.g., the latency of catalase, imply that their membranes are not disrupted. In the current study, we tried to ascertain the mechanism of this unusual behavior of peroxisomes in vitro. Biochemical and morphological examination of isolated peroxisomes subjected to sonication or to freezing and thawing showed that the membrane of the particles seals after disruption, restoring permeability properties. Transient damage of the membrane leads to the formation of peroxisomal "ghosts" containing nucleoid but nearly devoid of matrix proteins. The rate of leakage of matrix proteins from broken particles depended inversely on their molecular size. The effect of polyethylene glycols on peroxisomal integrity indicated that these particles are osmotically sensitive. Peroxisomes suffered an osmotic lysis during isolation that was resistant to commonly used low-molecular-mass osmoprotectors, e.g., sucrose. Damage to peroxisomes was partially prevented by applying more "bulky" osmoprotectors, e.g., polyethylene glycol 1500. A method was developed for the isolation of highly purified and nearly intact peroxisomes from rat liver by using polyethylene glycol 1500 as an osmoprotector. osmolarity; cell fractionation; isolation of organelles  相似文献   

16.
Most mammalian cell strains genetically deficient in peroxisome biogenesis have abnormal membrane structures called ghosts, containing integral peroxisomal membrane protein, PMP70, but lacking the peroxisomal matrix proteins. Upon genetic complementation, these mutants regain the ability of peroxisome biogenesis. It is postulated that, in this process, the ghosts act as the precursors of peroxisomes, but there has been no evidence to support this. In the present study, we investigated this issue by protein microinjection to a mutant Chinese hamster ovary cell line defective of PEX5, encoding a peroxisome-targeting signal receptor. When recombinant Pex5p and green fluorescent protein (GFP) carrying a peroxisome-targeting signal were co-injected into the mutant cells, the GFP fluorescence gathered over time to particulate structures where PMP70 was co-localized. This process was dependent on both Pex5p and the targeting signal, and, most importantly, occurred even in the presence of cycloheximide, a protein synthesis inhibitor. These findings suggest that the ghosts act as acceptors of matrix proteins in the peroxisome recovery process at least in the PEX5 mutant, and support the view that peroxisomes can grow by incorporating newly synthesized matrix proteins.  相似文献   

17.
On subfractionation of purified rat liver peroxisomes in matrical, peripheral membrane, integral membrane and core protein fractions, the endogenous peroxisomal CoA was released together with the matrix proteins. The released CoA could not be measured by an enzymatic cycling assay unless the matrix proteins were denatured by acid treatment or by heating at alkaline pH. The cofactor could not be removed by dialysis of the matrix proteins unless salt was added. It was not displaced by exogenous CoA. It migrated into sucrose density gradients together with a protein of approximately 80 kDa. The results indicate that peroxisomal CoA is firmly bound to a matrix protein and that the presence of CoA inside purified peroxisomes does not necessarily imply that the peroxisomal membrane is impermeable to this cofactor.  相似文献   

18.
How proteins are imported into peroxisomes is a question attracting considerable interest at present. Peroxisomal proteins, including the integral membrane proteins of the membrane bounding the peroxisome, are synthesized on free cytoplasmic ribosomes. They assemble post-translationally into pre-existing peroxisomes. New peroxisomes are believed to form exclusively by division of old ones. Few molecular details of this process have been elucidated so far, but genetic approaches are now beginning to identify the proteins catalysing peroxisome assembly.  相似文献   

19.
Hinode D  Grenier D  Mayrand D 《Anaerobe》1995,1(5):283-290
Heat-shock proteins of Porphyromonas gingivalis were demonstrated and two of them were purified and further characterized. The amplified de novo synthesis of two different proteins, with apparent molecular weights of 75 kDa and 68 kDa, was observed by autofluorography when a P. gingivalis culture incubated in a 14C-labeled amino acid mixture was shifted from 37 degrees C to 44 degrees C. Both proteins possessed ATP-binding abilities and were purified to almost homogeneity employing affinity chromatography on ATP-agarose followed by preparative SDS-PAGE. Purified 75 kDa and 68 kDa proteins had isoelectric points of 4.4 and 4.6, respectively. They were shown to be immunoreactive with commercial anti-DnaK and anti-GroEL polyclonal antibodies, respectively. Immunoblotting analysis of whole cells using antiserum raised against each purified protein from P. gingivalis, confirmed elevated synthesis of both proteins during thermal shock. A GroEL protein reacted strongly with antiserum against the 68 kDa protein. However, a DnaK protein reacted weakly with antiserum to the 75 kDa protein. Analysis of the N-terminal amino acid sequence of the DnaK-like protein (75 kDa) showed a high degree of homology with those of the HSP70 family including both prokaryotic and eukaryotic cells. The N-terminal amino acid analysis of the GroEL-like protein (68 kDa) indicated that it was identical to those of cloned GroEL homologues from P. gingivalis.  相似文献   

20.
Peroxisomes from mouse liver were fractionated with Triton X-114, a procedure which yields a detergent phase consisting of proteins containing hydrophobic binding sites, and a nondetergent, or aqueous, phase containing hydrophilic proteins. When this method was applied to peroxisomes from control mice, catalase and fatty acyl-CoA oxidase distributed to the aqueous phase, whereas the integral membrane protein, PMP68, and the bifunctional protein were recovered exclusively in the detergent phase. Urate oxidase distributed intermediate between these two phases. With peroxisomes from mice treated with the peroxisome proliferator clofibrate, the bifunctional protein was recovered in both the detergent and the aqueous phases, and urate oxidase was shifted toward the aqueous phase. Other analyses of the subperoxisomal distribution of the bifunctional protein were consistent with a proportion of this protein being tightly associated with the peroxisomal membrane, or with some other uncharacterized, poorly soluble, component. Sucrose gradient centrifugation of the aqueous phase resulting from Triton X-114 fractionation of peroxisomes revealed that a major proportion of catalase, fatty acyl-CoA oxidase, the bifunctional protein, and other unidentified proteins behaved as if associated under these conditions. In this respect, use of a higher concentration of Triton X-114 for peroxisome fractionation led to the partitioning of some catalase and fatty acyl-CoA oxidase to the detergent phase, indicating the presence of some detergent-accessible hydrophobic binding sites even on these proteins. These data have been interpreted as indicating matrix protein associations in vivo, associations which may be responsive to proliferator treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号