首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calpain-mediated proteolysis regulates cytoskeletal dynamics and is altered during aging and the progression of numerous diseases or pathological conditions. Although several cytoskeletal proteins have been identified as substrates, how localized calpain activity is regulated and the mechanisms controlling substrate recognition are not clear. In this study, we report that phosphoinositide binding regulates the susceptibility of the cytoskeletal adhesion protein alpha-actinin to proteolysis by calpains 1 and 2. At first, alpha-actinin did not appear to be a substrate for calpain 2; however, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) binding to alpha-actinin resulted in nearly complete proteolysis of the full-length protein, producing stable breakdown products. Calpain 1 was able to cleave alpha-actinin in the absence of phosphoinositide binding; however, PtdIns(3,4,5)P(3) binding increased the rate of proteolysis, and phosphatidylinositol 4,5-diphosphate (PtdIns(4,5)P(2)) binding significantly inhibited cleavage. Phosphoinositide binding appeared to regulate calpain proteolysis of alpha-actinin by modulating the exposure of a highly sensitive cleavage site within the calponin homology 2 domain. In U87MG glioblastoma cells, which contain elevated levels of PtdIns(3,4,5)P(3), alpha-actinin colocalized with calpain within dynamic actin cytoskeletal structures. Furthermore, proteolysis of alpha-actinin producing stable breakdown products was observed in U87MG cells treated with calcium ionophore to activate the calcium-dependent calpains. Additional evidence of PtdIns(3,4,5)P(3)-mediated calpain proteolysis of alpha-actinin was observed in rat embryonic fibroblasts. These results suggest that PtdIns(3,4,5)P(3) binding is a critical determinant for alpha-actinin proteolysis by calpain. In conclusion, phosphoinositide binding to the substrate is a potential mechanism for regulating susceptibility to proteolysis by calpain.  相似文献   

2.
Young P  Gautel M 《The EMBO journal》2000,19(23):6331-6340
The assembly of stable cytoskeletal structures from dynamically recycled molecules requires developmental and spatial regulation of protein interactions. In muscle, titin acts as a molecular ruler organizing the actin cytoskeleton via interactions with many sarcomeric proteins, including the crosslinking protein alpha-actinin. An interaction between the C-terminal domain of alpha-actinin and titin Z-repeat motifs targets alpha-actinin to the Z-disk. Here we investigate the cellular regulation of this interaction. alpha-actinin is a rod shaped head-to-tail homodimer. In contrast to C-terminal fragments, full-length alpha-actinin does not bind Z-repeats. We identify a 30-residue Z-repeat homologous sequence between the actin-binding and rod regions of alpha-actinin that binds the C-terminal domain with nanomolar affinity. Thus, Z-repeat binding is prevented by this 'pseudoligand' interaction between the subunits of the alpha-actinin dimer. This autoinhibition is relieved upon binding of the Z-disk lipid phosphatidylinositol-bisphosphate to the actin-binding domain. We suggest that this novel mechanism is relevant to control the site-specific interactions of alpha-actinin during sarcomere assembly and turnover. The intramolecular contacts defined here also constrain a structural model for intrasterical regulation of all alpha-actinin isoforms.  相似文献   

3.
S Lundberg  V P Lehto  L Backman 《Biochemistry》1992,31(24):5665-5671
Calcium binding to brain and erythrocyte spectrins was studied at physiological ionic strength by a calcium overlay assay and aqueous two-phase partitioning. When the spectrins were immobilized on nylon membranes by slot blotting, the overlay assay showed that even though both spectrins bound 45Ca2+, the brain protein displayed much greater affinity for calcium ions than erythrocyte spectrin did. Since the observed binding was weaker than that displayed by calmodulin under similar conditions, the overlay assay results indicated that the binding must be weaker than 1 microM. The phase partition experiments showed that there are at least two sites for calcium on brain spectrin and that calcium binding to one of these sites is reduced significantly by magnesium ions. From the partition isotherm, the dissociation constants were estimated as 50 microM for the Mg(2+)-independent site and 150 microM for the Mg(2+)-dependent site. The phase partition results also showed that erythrocyte spectrin bound calcium ions at least 1 order of magnitude weaker. By examining calcium binding to slot-blotted synthetic peptides, we identified two binding sites in brain spectrin. One mapped to the second putative calcium binding site (EF-hand) in alpha-spectrin and the other to the 36 amino acid residue long insert in domain 11. In addition, a tryptic fragment derived from the C-terminal of erythrocyte alpha-spectrin, which contained the two postulated EF-hands, also bound calcium. These findings suggest that the calcium signal system may also involve direct binding of calcium to spectrin beside known calcium modulators such as calmodulin and calpain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The C-terminal 165 amino acids of the rat brain plasma membrane (PM) Ca(2+)-ATPase II containing the calmodulin binding auto-inhibitory domain was connected to the C-terminus of the ouabain sensitive chicken Na+,K(+)-ATPase alpha 1 subunit. Expression of this chimeric molecule in ouabain resistant mouse L cells was assured by the high-affinity binding of [3H]ouabain. In the presence of Ca2+/calmodulin, this chimeric molecule exhibited ouabain inhibitable Na+,K(+)-ATPase activity; the putative chimeric ATPase activity was absent in the absence of Ca2+/calmodulin and activated by Ca2+/calmodulin in a dose-dependent manner. Furthermore, this chimeric molecule could bind monoclonal IgG 5 specific to the chicken Na+,K(+)-ATPase alpha 1 subunit only in the presence of Ca2+/calmodulin, suggesting that the epitope for IgG 5 in this chimera is masked in the absence of Ca2+/calmodulin and uncovered in their presence. These results propose a direct interaction between the calmodulin binding auto-inhibitory domain of the PM Ca(2+)-ATPase and the specific regions of the Na+,K(+)-ATPase alpha 1 subunit that are structurally homologous to the PM Ca(2+)-ATPase. A comparison of the deduced amino acid sequences revealed several possible regions within the Na+,K(+)-ATPase that might interact with the auto-inhibitory domain of the PM Ca(2+)-ATPase.  相似文献   

5.
Calcium-activated neutral proteases (calpain, EC 3.4.22.17) bind to agarose matrices (Bio-Gel A-150m, Sepharose 4B, and Ultrogel AcA 34) with high affinity in the presence of calcium. 6-O-beta-Galactopyranosyl-D-galactose, a disaccharide which closely resembles the repeating unit of the agarose matrices, completely blocks the binding of calpains and can release agarose-bound enzymes in the presence of calcium. At least 1 microM level of free calcium is required for binding. Other calcium binding proteins, including calmodulin, calpastatin, casein, and neurofilament proteins, fail to bind under the same conditions. Both calpain I and calpain II can be readily purified from crude enzyme preparations by agarose chromatography in the presence of calcium and leupeptin. Agarose-bound enzymes are eluted with calcium-free solutions or can be released in the presence of calcium by 1% Triton X-100, but not by 1 M urea or 20% ethylene glycol. Enzymes eluted from agarose are activated, as evidenced by the appearance of faster migrating forms (76 and 78 kDa) of the 80-kDa catalytic subunit of calpain I upon electrophoresis and by the increased sensitivity of calpain II to activation by micromolar levels of calcium. The electrophoretic migration of the 30-kDa regulatory subunit is, however, unaltered in enzyme fractions eluted from an agarose column. When the enzyme subunits are dissociated in 1 M NaSCN, only the 30-kDa subunit binds to the agarose matrix. Furthermore, neither calpain I nor calpain II binds to agarose when their 30-kDa subunit is autocatalyzed to an 18-kDa fragment, indicating that the NH2-terminal of the 30-kDa subunit is important for the binding of calpains to an agarose matrix.  相似文献   

6.
The mechanism(s) underlying eccentric damage to skeletal muscle cytoskeleton remain unclear. We examined the role of Ca(2+) influx and subsequent calpain activation in eccentric damage to cytoskeletal proteins. Eccentric muscle damage was induced by stretching isolated mouse muscles by 20% of the optimal length in a series of 10 tetani. Muscle force and immunostaining of the cytoskeletal proteins desmin, dystrophin, and titin were measured at 5, 15, 30, and 60 min after eccentric contractions and compared with the control group that was subjected to 10 isometric contractions. A Ca(2+)-free solution and leupeptin (100 microM), a calpain inhibitor, were applied to explore the role of Ca(2+) and calpain, respectively, in eccentric muscle damage. After eccentric contractions, decreases in desmin and dystrophin immunostaining were apparent after 5 min that accelerated over the next 60 min. Increased titin immunostaining, thought to indicate damage to titin, was evident 10 min after stretch, and fibronectin entry, indicating membrane disruption, was evident 20 min after stretch. These markers of damage also increased in a time-dependent manner. Muscle force was reduced immediately after stretch and continued to fall, reaching 56 +/- 2% after 60 min. Reducing extracellular calcium to zero or applying leupeptin minimized the changes in immunostaining of cytoskeletal proteins, reduced membrane disruption, and improved the tetanic force. These results suggest that the cytoskeletal damage and membrane disruption were mediated primarily by increased Ca(2+) influx into muscle cells and subsequent activation of calpain.  相似文献   

7.
Ca2+ influx through the N-methyl-d-aspartate (NMDA)-type glutamate receptor triggers activation and postsynaptic accumulation of Ca2+/calmodulin-dependent kinase II (CaMKII). CaMKII, calmodulin, and alpha-actinin directly bind to the short membrane proximal C0 domain of the C-terminal region of the NMDA receptor NR1 subunit. In a negative feedback loop, calmodulin mediates Ca2+-dependent inactivation of the NMDA receptor by displacing alpha-actinin from NR1 C0 upon Ca2+ influx. We show that Ca2+-depleted calmodulin and alpha-actinin simultaneously bind to NR1 C0. Upon addition of Ca2+, calmodulin dislodges alpha-actinin. Either the N- or C-terminal half of calmodulin is sufficient for Ca2+-induced displacement of alpha-actinin. Whereas alpha-actinin directly antagonizes CaMKII binding to NR1 C0, the addition of Ca2+/calmodulin shifts binding of NR1 C0 toward CaMKII by displacing alpha-actinin. Displacement of alpha-actinin results in the simultaneous binding of calmodulin and CaMKII to NR1 C0. Our results reveal an intricate mechanism whereby Ca2+ functions to govern the complex interactions between the two most prevalent signaling molecules in synaptic plasticity, the NMDA receptor and CaMKII.  相似文献   

8.
《The Journal of cell biology》1995,129(4):1155-1164
The leukocyte adhesion molecule L-selectin mediates binding to lymph node high endothelial venules (HEV) and contributes to leukocyte rolling on endothelium at sites of inflammation. Previously, it was shown that truncation of the L-selectin cytoplasmic tail by 11 amino acids abolished binding to lymph node HEV and leukocyte rolling in vivo, but the molecular basis for that observation was not determined. This study examined potential interactions between L-selectin and cytoskeletal proteins. We found that the cytoplasmic domain of L- selectin interacts directly with the cytoplasmic actin-binding protein alpha-actinin and forms a complex with vinculin and possibly talin. Solid phase binding assays using the full-length L-selectin cytoplasmic domain bound to microtiter wells demonstrated direct, specific, and saturable binding of purified alpha-actinin to L-selectin (Kd = 550 nM), but no direct binding of purified talin or vinculin. Interestingly, talin potentiated binding of alpha-actinin to the L- selectin cytoplasmic domain peptide despite the fact that direct binding of talin to L-selectin could not be measured. Vinculin binding to the L-selectin cytoplasmic domain peptide was detectable only in the presence of alpha-actinin. L-selectin coprecipitated with a complex of cytoskeletal proteins including alpha-actinin and vinculin from cells transfected with L-selectin, consistent with the possibility that alpha- actinin binds directly to L-selectin and that vinculin associates by binding to alpha-actinin in vivo to link actin filaments to the L- selectin cytoplasmic domain. In contrast, a deletion mutant of L- selectin lacking the COOH-terminal 11 amino acids of the cytoplasmic domain failed to coprecipitate with alpha-actinin or vinculin. Surprisingly, this mutant L-selectin localized normally to the microvillar projections on the cell surface. These data suggest that the COOH-terminal 11 amino acids of the L-selectin cytoplasmic domain are required for mediating interactions with the actin cytoskeleton via a complex of alpha-actinin and vinculin, but that this portion of the cytoplasmic domain is not necessary for proper localization of L- selectin on the cell surface. Correct L-selectin receptor positioning is therefore insufficient for leukocyte adhesion mediated by L- selectin, suggesting that this adhesion may also require direct interactions with the cytoskeleton.  相似文献   

9.
The three-dimensional structure of alpha-actinin from rabbit skeletal muscle was determined by cryoelectron microscopy in combination with homology modeling of the separate domain structures based on results previously determined by X-ray crystallography and nuclear magnetic resonance spectroscopy. alpha-Actinin was induced to form two-dimensional arrays on a positively charged lipid monolayer and micrographs were collected from unstained, frozen hydrated specimens at tilt angles from 0 degrees to 60 degrees. Interpretation of the 15 A-resolution three-dimensional structure was done by manually docking homologous models of the three key domains, actin-binding, three-helix motif and the C-terminal calmodulin-like domains. The initial model was refined quantitatively to improve its fit to the experimental reconstruction. The molecular model of alpha-actinin provides the first view of the overall structure of a complete actin cross-linking protein. The structure is characterized by close proximity of the C-terminal, calmodulin-like domain to the linker between the two calponin-homology domains that comprise the actin-binding domain. This location suggests a hypothesis to explain the involvement of the C-terminal domain in Ca(2+)-dependent actin binding of non-muscle isoforms.  相似文献   

10.
We report a selective, differential stimulus-dependent enrichment of the actin-associated protein alpha-actinin and of isoforms of the signaling enzyme protein kinase C (PKC) in the neutrophil cytoskeleton. Chemotactic peptide, activators of PKC, and cell adhesion all induce a significant increase in the amount of cytoskeletal alpha-actinin and actin. Increased association of PKCbetaI and betaII with the cytoskeletal fraction of stimulated cells was also observed, with phorbol ester being more effective than chemotactic peptide. A fraction of phosphatase 2A was constitutively associated with the cytoskeleton independent of cell activation. None of the stimuli promoted association of vinculin or myosin II with the cytoskeleton. Phosphatase inhibitors okadaic acid and calyculin A prevented increases in cytoskeletal actin, alpha-actinin, and PKCbetaII induced by phorbol ester, suggesting the requirement for phosphatase activity in these events. Increases in cytoskeletal alpha-actinin and PKCbetaII showed differing sensitivity to agents that prevent actin polymerization (cytochalasin D, latrunculin A). Latrunculin A (1 microM) completely blocked PMA-induced increases in cytoskeletal alpha-actinin but reduced cytoskeletal recruitment of PKCbetaII only by 16%. Higher concentrations of latrunculin A (4 microM), which almost abolished the cytoskeletal actin pool, reduced cytoskeletal PKCbetaII by 43%. In conclusion, a selective enrichment of cytoskeletal and signaling proteins in the cytoskeleton of human neutrophils is induced by specific stimuli.  相似文献   

11.
Both mu- and m-calpain (the micro- and millimolar Ca(2+)-requiring Ca(2+)-dependent proteinases) can completely remove Z-disks from skeletal muscle myofibrils and leave a space devoid of filaments in the Z-disk area. alpha-Actinin, a principal protein component of Z-disks, is removed from myofibrils by the calpains, and a 100-kDa polypeptide that comigrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with the alpha-actinin subunit is released into the supernatant. Purified calpain does not degrade purified actin or purified alpha-actinin as indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by N- and C-terminal amino acid analysis of calpain-treated and untreated alpha-actinin and actin. The 100-kDa polypeptide released from myofibrils by calpain elutes identically with native alpha-actinin off DEAE-cellulose and hydroxyapatite columns and, after purification, binds to pure F-actin in the same manner that untreated, native alpha-actinin binds. Calpain-released alpha-actinin also accelerates the rate of superprecipitation of reconstituted actomyosin, a sensitive property characteristic of native alpha-actinin. Consequently, the calpains release alpha-actinin from the Z-disk of myofibrils without degrading it or without altering its ability to bind to actin. These results indicate that alpha-actinin does not simply cross-link thin filaments across the Z-disk but that at least one additional protein (or perhaps an altered actin or alpha-actinin) is involved in the alpha-actinin/actin interaction in Z-disks.  相似文献   

12.
Synemin is a cytoskeletal protein originally identified as an intermediate filament (IF)-associated protein because of its colocalization and copurification with the IF proteins desmin and vimentin in muscle cells. Our sequencing studies have shown that synemin is an unusually large member (1,604 residues, 182,187 Da) of the IF protein superfamily, with the majority of the molecule consisting of a long C-terminal tail domain. Molecular interaction studies demonstrate that purified synemin interacts with desmin, the major IF protein in mature muscle cells, and with alpha-actinin, an integral myofibrillar Z-line protein. Furthermore, expressed synemin rod and tail domains interact, respectively, with desmin and alpha-actinin. Analysis of endogenous protein expression in SW13 clonal lines reveals that synemin is coexpressed and colocalized with vimentin IFs in SW13.C1 vim+ cells but is absent in SW13.C2 vim- cells. Transfection studies indicate that synemin requires the presence of another IF protein, such as vimentin, in order to assemble into IFs. Taken in toto, our results suggest synemin functions as a component of heteropolymeric IFs and plays an important cytoskeletal cross-linking role by linking these IFs to other components of the cytoskeleton. Synemin in striated muscle cells may enable these heterofilaments to help link Z-lines of adjacent myofibrils and, thereby, play an important role in cytoskeletal integrity.  相似文献   

13.
Vitamin D-dependent Ca2+-binding protein from pig duodenum was hydrolysed with trypsin in the presence of Ca2+ and two products were obtained: T1, which differed from the native protein by loss of Ac-Ser-Ala-Gln-Lys from the N-terminus and Ile-Ser-Gln-OH from the C-terminus, and T2, which differed from T1 by loss of a C-terminal lysine. The hydrolysis inactivated one of the two high-affinity Ca2+-binding sites on the native protein, and the remaining site was stable in T1 but labile in T2 when the proteins were Ca2+-free. Binding studies showed that T1 had Kd values of 2.8 +/- 0.1 nM, 57 +/- 13 microM and 0.8 +/- 0.3 microM for Ca2+, Mg2+ and Mn2+ respectively, and T2 had Kd 2.2 +/- 0.3 nM for Ca2+. The affinity for Mn2+, together with the other Kd values, identified the site on T1 as the site on the native protein previously found to have Kd 0.6 microM for Mn2+, rather than one with Kd 50 microM for Mn2+. In contrast with both the native protein and another form of the protein with a single Ca2+-binding site, the intrinsic fluorescence of T1 and T2 was little affected by the addition of Ca2+. It was concluded that the active binding site in T1 and T2, and also the site in the native protein with the higher affinity for Mn2+, was probably in the C-terminal half of the molecule.  相似文献   

14.
Sorcin, a 21.6 kDa cytosolic EF-hand protein which undergoes a Ca(2+)-induced translocation from cytoplasm to membranes, has been assigned to the newly defined penta EF-hand family. A molecular model of the C-terminal Ca(2+)-binding domain has been generated using as a template the X-ray coordinates of the corresponding domain in the calpain light subunit, the family prototype [Lin, G., et al. (1997) Nat. Struct. Biol. 4, 539-546]. The model indicates that in sorcin the three-dimensional structure is conserved and in particular that of EF1, the novel EF-hand motif characteristic of the family. On this basis, two stable fragments have been obtained and characterized. Just like the native protein, the sorcin Ca(2+)-binding domain (residues 33-198) is largely dimeric, interacts with the ryanodine receptor at physiological calcium concentrations, and undergoes a reversible, Ca(2+)-dependent translocation from cytosol to target proteins on Escherichia coli membranes. In contrast, the 90-198 fragment (residues 90-198), which lacks EF1 and EF2, does not bind Ca(2+) with high affinity and is unable to translocate. Binding of calcium to the EF1-EF2 pair is therefore required for the activation of sorcin which uses the C-terminal calcium-binding domain for interaction with the ryanodine receptor, a physiological target in muscle cells.  相似文献   

15.
We have studied the cytoskeletal association of intercellular adhesion molecule-1 (ICAM-1, CD54), an integral membrane protein that functions as a counterreceptor for leukocyte integrins (CD11/CD18). A linkage between ICAM-1 and cytoskeletal elements was suggested by studies showing a different ICAM-1 staining pattern for COS cells transfected with wild-type ICAM-1 or with an ICAM-1 construct that replaces the cytoplasmic and transmembrane domains of ICAM-1 with a glycophosphatidylinositol (GPI) anchor. Wild-type ICAM-1 appeared to localize most prominently in microvilli whereas GPI-ICAM-1 demonstrated a uniform cell surface distribution. Disruption of microfilaments with cytochalasin B (CCB) changed the localization of wild-type ICAM-1 but had no effect on GPI-ICAM-1. Some B-cell lines demonstrated a prominent accumulation of ICAM-1 into the uropod region whereas other cell surface proteins examined were not preferentially localized. CCB also induced redistribution of ICAM-1 in these cells. For characterization of cytoskeletal proteins interacting with ICAM-1, a 28-residue peptide that encompasses the entire predicted cytoplasmic domain (ICAM-1,478-505) was synthesized, coupled to Sepharose-4B, and used as an affinity matrix. One of the most predominant proteins eluted either with soluble ICAM-1,478-505-peptide or EDTA, was 100 kD, had a pI of 5.5, and in Western blots reacted with alpha-actinin antibodies. A direct association between alpha-actinin and ICAM-1 was demonstrated by binding of purified alpha-actinin to ICAM-1,478-505-peptide and to immunoaffinity purified ICAM-1 and by a strict colocalization of ICAM-1 with alpha-actinin, but not with the cytoskeletal proteins talin, tensin, and vinculin. The region of ICAM-1,478-505 interacting with alpha-actinin was mapped to the area close to the membrane spanning region. This region contains several positively charged residues and appears to mediate a charged interaction with alpha-actinin which is not highly dependent on the order of the residues.  相似文献   

16.
Abstract: Activation of the calcium-dependent protease calpain has been proposed to be a necessary step in the formation of long-term potentiation (LTP) in the hippocampus, and stimulation of N-methyl-d -aspartate (NMDA) receptors leads to an increase in intracellular calcium concentration, calpain activation, proteolysis of cytoskeletal elements, and modification of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor properties. In the present study, we evaluated the effects of NMDA treatment of cultured hippocampal slices on the properties of AMPA receptors. Cultured hippocampal slices were treated with NMDA (100 µM) for 15 min and [3H]AMPA binding to membrane fractions was measured. NMDA-treated slices exhibited an increase in both “high-affinity” and “low-affinity” [3H]-AMPA binding, with smaller changes in 6-cyano-7-nitro[3H]quinoxaline-2,3-dione binding. The increase in [3H]AMPA binding was significantly reduced by preincubation of cultures with calpain inhibitor I or calpeptin (100 µM). Furthermore, NMDA exposure decreased the number of GluR1 subunits of AMPA receptors detected by an antibody against the C-terminal domain of the subunit in western blots and resulted in the formation of a lower molecular weight species detected by an antibody against the N-terminal domain. Both effects were completely prevented by calpain inhibitors. These results indicate that NMDA receptor activation produces calpain activation and complex modifications of AMPA receptor properties, which could be involved in NMDA receptor-mediated changes in synaptic efficacy.  相似文献   

17.
GMP-140, a receptor for myeloid cells that is expressed on surfaces of thrombin-activated platelets and endothelial cells, is a member of the selectin family of adhesion molecules that regulate leukocyte interactions with the blood vessel wall. Each selectin contains an N-terminal domain homologous to Ca(2+)-dependent lectins and mediates cell-cell contact by binding to oligosaccharide ligands in a Ca(2+)-dependent manner. The mechanisms by which Ca2+ promotes selectin-dependent cellular interactions have not been defined. We demonstrate that purified GMP-140 contains two high affinity binding sites for Ca2+ as measured by equilibrium dialysis (Kd = 22 +/- 2 microM). Occupancy of these sites by Ca2+ alters the conformation of the protein as detected by a reduction in intrinsic fluorescence emission intensity (Kd = 4.8 +/- 0.2 microM). This Ca(2+)-dependent conformational change exposes an epitope spanning residues 19-34 of the lectin domain that is recognized by a monoclonal antibody capable of blocking neutrophil adhesion to GMP-140 (half-maximal antibody binding at approximately 20 microM Ca2+). Furthermore, a synthetic peptide encoding this epitope, CQNRYTDLVAIQNKNE, inhibits neutrophil binding to GMP-140. Mg2+ also alters the conformation of the protein, but not in a manner that will support leukocyte recognition in the absence of Ca2+. There is a strong correlation between the Ca2+ levels required for neutrophil adhesion to GMP-140, for occupancy of the two Ca(2+)-binding sites, for the fluorescence-detected conformational change, and for exposure of the antibody epitope in the lectin domain. We conclude that binding of Ca2+ to high affinity sites on GMP-140 modulates the conformation of the lectin domain in a manner that is essential for leukocyte recognition.  相似文献   

18.
Yeast AMP deaminase is allosterically activated by ATP and MgATP and inhibited by GTP and PO4. The tetrameric enzyme binds 2 mol each of ATP, GTP, and PO4/subunit with Kd values of 8.4 +/- 4.0, 4.1 +/- 0.6, and 169 +/- 12 microM, respectively. At 0.7 M KCl, ATP binds to the enzyme, but no longer activates. Titration with coformycin 5'-monophosphate, a slow, tight-binding inhibitor, indicates a single catalytic site/subunit. ATP and GTP bind at regulatory sites distinct from the catalytic site and their binding is mutually exclusive. Inorganic phosphate competes poorly with ATP for the ATP sites (Kd = 20.1 +/- 4.1 mM). However, near-saturating ATP reduces the moles of phosphate bound per subunit to 1 PO4, which binds with a Kd = 275 +/- 22 microM. In the presence of ATP, PO4 cannot effectively compete with ATP for the nucleotide triphosphate sites. The PO4 which binds in the presence of ATP is competitive with AMP at the catalytic site since the Kd equals the kinetic inhibition constant for PO4. Initial reaction rate curves are a cooperative function of AMP concentration and activation by ATP is also cooperative. However, no cooperativity is observed in the binding of any of the regulator ligands and ATP binding and kinetic activation by ATP is independent of substrate analog concentration. Cooperativity in initial rate curves results, therefore, from altered rate constants for product formation from each (enzyme.substrate)n species and not from cooperative substrate binding. The traditional cooperative binding models of allosteric regulation do not apply to yeast AMP deaminase, which regulates catalytic activity by kinetic control of product formation. The data are used to estimate the rates of AMP hydrolysis under reported metabolite concentrations in yeast.  相似文献   

19.
The beta, gamma-bidentate chromium(III) complex of ATP (CrATP) was used as a substrate analog to stabilize a form of the Ca(2+)-ATPase of the sarcoplasmic reticulum containing both of the bound calcium ions in an occluded state without enzyme phosphorylation. The kinetics of dissociation of Ca2+ from the occlusion sites in the CrATP-enzyme complex were consistent with the existence of two nonequivalent and interdependent Ca2+ occlusion sites, both in the membranous Ca(2+)-ATPase and in a detergent-solubilized monomeric Ca(2+)-ATPase preparation. The rate constant for release of the first calcium ion was k1 = 0.99 h-1, whereas the second calcium ion was released with a rate constant of k2 = 0.25 h-1 when the first site was empty and with a rate constant of k3 = 0.13 h-1 when the first site was occupied by Ca2+. Ca2+ binding at the first site occurred with a rate constant of k-1 = 0.96 microM-1 h-1 (apparent Kd = 1.0 microM). The Ca(2+)-occluded state was further stabilized by ADP, binding in exchange with ATP with an apparent Kd of 8.6 microM. Two kinetic classes of CrATP-binding sites were observed, each with a stoichiometry of 3-4 nmol/mg of protein; but only the fast phase of CrATP binding was associated with Ca2+ occlusion. Derivatization of the Ca(2+)-ATPase with N-cyclohexyl-N'-(4-dimethylamino-1-naphthyl)carbodimide resulted in inactivation of phosphorylation of the enzyme from MgATP, whereas the ability to occlude Ca2+ in the presence of CrATP was retained, albeit with a reduced apparent affinity for Ca2+.  相似文献   

20.
Dissociation and aggregation of calpain in the presence of calcium   总被引:5,自引:0,他引:5  
Calpain is a heterodimeric Ca(2+)-dependent cysteine protease consisting of a large (80 kDa) catalytic subunit and a small (28 kDa) regulatory subunit. The effects of Ca(2+) on the enzyme include activation, aggregation, and autolysis. They may also include subunit dissociation, which has been the subject of some debate. Using the inactive C105S-80k/21k form of calpain to eliminate autolysis, we have studied its disassociation and aggregation in the presence of Ca(2+) and the inhibition of its aggregation by means of crystallization, light scattering, and sedimentation. Aggregation, as assessed by light scattering, depended on the ionic strength and pH of the buffer, on the Ca(2+) concentration, and on the presence or absence of calpastatin. At low ionic strength, calpain aggregated rapidly in the presence of Ca(2+), but this was fully reversible by EDTA. With Ca(2+) in 0.2 m NaCl, no aggregation was visible but ultracentrifugation showed that a mixture of soluble high molecular weight complexes was present. Calpastatin prevented aggregation, leading instead to the formation of a calpastatin-calpain complex. Crystallization in the presence of Ca(2+) gave rise to crystals mixed with an amorphous precipitate. The crystals contained only the small subunit, thereby demonstrating subunit dissociation, and the precipitate was highly enriched in the large subunit. Reversible dissociation in the presence of Ca(2+) was also unequivocally demonstrated by the exchange of slightly different small subunits between mu-calpain and m-calpain. We conclude that subunit dissociation is a dynamic process and is not complete in most buffer conditions unless driven by factors such as crystal formation or autolysis of active enzymes. Exposure of the hydrophobic dimerization surface following subunit dissociation may be the main factor responsible for Ca(2+)-induced aggregation of calpain. It is likely that dissociation serves as an early step in calpain activation by releasing the constraints upon protease domain I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号