首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
σ S, the stationary phase sigma factor of Escherichia coli and Salmonella , is regulated at multiple levels. The σS protein is unstable during exponential growth and is stabilized during stationary phase and after various stress treatments. Degradation requires both the ClpXP protease and the adaptor RssB. The small antiadaptor protein IraP is made in response to phosphate starvation and interacts with RssB, causing σS stabilization under this stress condition. IraP is essential for σS stabilization in some but not all starvation conditions, suggesting the existence of other anti-adaptor proteins. We report here the identification of new regulators of σS stability, important under other stress conditions. IraM (inhibitor of RssB activity during Magnesium starvation) and IraD (inhibitor of RssB activity after DNA damage) inhibit σS proteolysis both in vivo and in vitro . Our results reveal that multiple anti-adaptor proteins allow the regulation of σS stability through the regulation of RssB activity under a variety of stress conditions.  相似文献   

2.
3.
4.
5.
6.
In Escherichia coli the response regulator SprE (RssB) facilitates degradation of the sigma factor RpoS by delivering it to the ClpXP protease. This process is regulated: RpoS is degraded in logarithmic phase but becomes stable upon carbon starvation, resulting in its accumulation. Because SprE contains a CheY domain with a conserved phosphorylation site (D58), the prevailing model posits that this control is mediated by phosphorylation. To test this model, we mutated the conserved response regulator phosphorylation site (D58A) of the chromosomal allele of sprE and monitored RpoS levels in response to carbon starvation. Though phosphorylation contributed to the SprE basal activity, we found that RpoS proteolysis was still regulated upon carbon starvation. Furthermore, our results indicate that phosphorylation of wild-type SprE occurs by a mechanism that is independent of acetyl phosphate.  相似文献   

7.
To determine whether the stationary sigma factor, σS, influences polyhydroxyalkanoate metabolism in Pseudomonas putida KT2440, an rpoS -negative mutant was constructed to evaluate polyhydroxyalkanoate accumulation and expression of a translational fusion to the promoter region of the genes that code for polyhydroxyalkanoate synthase 1 ( phaC1 ) and polyhydroxyalkanoate depolymerase ( phaZ ). By comparison with the wild-type, the rpoS mutant showed a higher polyhydroxyalkanoate degradation rate and increased expression of the translational fusion during the stationary growth phase. These results suggest that σS might control the genes involved in polyhydroxyalkanoate metabolism, possibly in an indirect manner. In addition, survival and oxidative stress assays performed under polyhydroxyalkanoate- and nonpolyhydroxyalkanoate- accumulating conditions demonstrated that the accumulated polyhydroxyalkanoate increased the survival and stress tolerance of the rpoS mutant. According to this, polyhydroxyalkanoate accumulation would help cells to overcome the adverse conditions encountered during the stationary phase in the strain that lacks RpoS.  相似文献   

8.
9.
10.
In growing Escherichia coli cells, the master regulator of the general stress response, sigmaS (RpoS), is subject to rapid proteolysis. In response to stresses such as sudden carbon starvation, osmotic upshift or shift to acidic pH, sigmaS degradation is inhibited, sigmaS accumulates and numerous sigmaS-dependent genes with stress-protective functions are activated. sigmaS proteolysis is dependent on ClpXP protease and the response regulator RssB, whose phosphorylated form binds directly to sigmaS in vitro. Here, we show that substitutions of aspartate 58 (D58) in RssB, which result in higher sigmaS levels in vivo, produce RssB variants unable to bind sigmaS in vitro. Thus, RssB is the direct substrate recognition factor in sigmaS proteolysis, whose affinity for sigmaS depends on phosphorylation of its D58 residue. RssB does not dimerize or oligomerize upon this phosphorylation and sigmaS binding, and RssB and sigmaS exhibit a 1:1 stoichiometry in the complex. The receiver as well as the output domain of RssB are required for sigmaS binding (as shown in vivo and in vitro) and for complementation of an rssB null mutation. Thus, the N-terminal receiver domain plays an active and positive role in RssB function. Finally, we demonstrate that RssB is not co-degraded with sigmaS, i.e. RssB has a catalytic role in the initiation of sigmaS turnover. A model is presented that integrates the details of RssB-sigmaS interaction, the RssB catalytic cycle and potential stress signal input in the control of sigmaS proteolysis.  相似文献   

11.
The RsbT serine kinase has two known functions in the signal transduction pathway that activates the general stress factor σB of Bacillus subtilis . First, RsbT can phosphorylate and inactivate its specific antagonist protein, RsbS. Second, upon phosphorylation of RsbS, RsbT is released to stimulate RsbU, a PP2C phosphatase, thereby initiating a signalling cascade that ultimately activates σB. Here we describe a mutation that separates these two functions of RsbT. Although the mutant RsbT protein had essentially no kinase activity, it still retained the capacity to stimulate the RsbU phosphatase in vitro and to activate σB when overexpressed in vivo . These results support the hypothesis that phosphatase activation is accomplished via a long-lived interaction between RsbT and RsbU. In contrast, RsbT kinase activity was found to be integral for the transmission of external stimuli to σB. Thus, one route by which environmental stress signals could enter the σB network is by modulation of the RsbT kinase activity, thereby controlling the magnitude of the partner switch between the RsbS–RsbT complex and the RsbT–RsbU complex.  相似文献   

12.
13.
Vibrio anguillarum is a gram-negative halophilic bacterium that causes vibriosis in marine fish, freshwater fish and other aquatic animals. Bacteria have developed strategies to survive in harsh environments. The alternative σ factor, RpoS (σS), plays a key role in surviving under stress conditions in some gram-negative bacteria. An rpoS mutant of pathogenic V. anguillarum W-1 was constructed by homologous recombination. The sensitivity of the rpoS mutant to osmotic stress [2.4 M NaCl in artificial seawater (ASW)] did not change obviously, but the sensitivity of the rpoS mutant to high temperature (45 °C in ASW), UV-irradiation and oxidative stress (5 mM H2O2 in ASW) increased 33-fold, sixfold and 10-fold, respectively. The production of extracellular phospholipase, diastase, lipase, caseinase, hemolysin, catalase and protease of the rpoS mutant decreased markedly compared with those of the wild-type strain. Virulence of the rpoS mutant strain was also decreased when it was inoculated intraperitoneally into zebra fish; the lethal dose 50% of the wild type and the mutant was 8.66 × 104 and 2.55 × 106 CFU per fish, respectively. These results indicated that the RpoS of V. anguillarum plays important roles in bacterial adaptation to environmental stresses and its pathogenicity.  相似文献   

14.
15.
sigmaS (RpoS) is the master regulator of the general stress response in Escherichia coli. Several stresses increase cellular sigmaS levels by inhibiting proteolysis of sigmaS, which under non-stress conditions is a highly unstable protein. For this ClpXP-dependent degradation, the response regulator RssB acts as a recognition factor, with RssB affinity for sigmaS being modulated by phosphorylation. Here, we demonstrate that RssB can also act like an anti-sigma factor for sigmaS in vivo, i.e. RssB can inhibit the expression of sigmaS-dependent genes in the presence of high sigmaS levels. This becomes apparent when (i) the cellular RssB/sigmaS ratio is at least somewhat elevated and (ii) proteolysis is reduced (for example in stationary phase) or eliminated (for example in a clpP mutant). Two modes of inhibition of sigmaS by RssB can be distinguished. The 'catalytic' mode is observed in stationary phase cells with a substoichiometric RssB/sigmaS ratio, requires ClpP and therefore probably corresponds to sequestering of sigmaS to Clp protease (even though sigmaS is not degraded). The 'stoichiometric' mode occurs in clpP mutant cells upon overproduction of RssB to levels that are equal to those of sigmaS, and therefore probably involves binary complex formation between RssB and sigmaS. We also show that, under standard laboratory conditions, the cellular level of RssB is more than 20-fold lower than that of sigmaS and is not significantly controlled by stresses that upregulate sigmaS. We therefore propose that antisigma factor activity of RssB may play a role under not yet identified growth conditions (which may result in RssB induction), or that RssB is a former antisigma factor that during evolution was recruited to serve as a recognition factor for proteolysis.  相似文献   

16.
In the model organism Escherichia coli and related species, the general stress response relies on tight regulation of the intracellular levels of the promoter specificity subunit RpoS. RpoS turnover is exclusively dependent on RssB, a two‐domain response regulator that functions as an adaptor that delivers RpoS to ClpXP for proteolysis. Here, we report crystal structures of the receiver domain of RssB both in its unphosphorylated form and bound to the phosphomimic BeF3 . Surprisingly, we find only modest differences between these two structures, suggesting that truncating RssB may partially activate the receiver domain to a “meta‐active” state. Our structural and sequence analysis points to RssB proteins not conforming to either the Y–T coupling scheme for signaling seen in prototypical response regulators, such as CheY, or to the signaling model of the less understood FATGUY proteins.  相似文献   

17.
18.
The alternative sigma factor σE is activated by unfolded outer membrane proteins (OMPs) and plays an essential role in Salmonella pathogenesis. The canonical pathway of σE activation in response to envelope stress involves sequential proteolysis of the anti-sigma factor RseA by the PDZ proteases DegS and RseP. Here we show that σE in Salmonella enterica sv. Typhimurium can also be activated by acid stress. A σE-deficient mutant exhibits increased susceptibility to acid pH and reduced survival in an acidified phagosomal vacuole. Acid activation of σE-dependent gene expression is independent of the unfolded OMP signal or the DegS protease but requires processing of RseA by RseP. The RseP PDZ domain is indispensable for acid induction, suggesting that acid stress may disrupt an inhibitory interaction between RseA and the RseP PDZ domain to allow RseA proteolysis in the absence of antecedent action of DegS. These observations demonstrate a novel environmental stimulus and activation pathway for the σE regulon that appear to be critically important during Salmonella –host cell interactions.  相似文献   

19.
MucA sequesters extracytoplasmic function (ECF) σ22 ( algT/U encoded) from target promoters including P algD for alginate biosynthesis. We have shown that cell wall stress (e.g. d -cycloserine) is a potent inducer of the algD operon. Here we showed that MucB, encoded by the algT-mucABCD operon, interacts with MucA in the sigma–sequestration complex. We hypothesized that AlgW protease (a DegS homologue) is activated by cell wall stress to cleave MucA and release σ22. When strain PAO1 was exposed to d -cycloserine, MucA was degraded within just 10 min, and σ22 was activated. However, in an algW mutant, MucA was stable with no increased σ22 activity. Studies on a yaeL mutant, defective in an RseP/YaeL homologue, suggest that YaeL protease cleaves MucA only after cleavage by AlgW. A defect in mucD , encoding a periplasmic HtrA/DegP homologue, caused MucA instability, suggesting MucD degrades cell wall stress signals. Overall, these data indicate that cell wall stress signals release σ22 by regulated intramembrane proteolysis (RIP). Microarray analyses identified genes of the early and late cell wall stress stimulon, which included genes for alginate production. The subset of genes in the σ22 regulon was then determined, which included gene products predicted to contribute to recovery from cell wall stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号