首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 290 毫秒
1.
Elongated mesocotyl1, a phytochrome-deficient mutant of maize   总被引:3,自引:0,他引:3  
To begin the functional dissection of light signal transduction pathways of maize (Zea mays), we have identified and characterized the light-sensing mutant elm1 (elongated mesocotyl1). Seedlings homozygous for elm1 are pale green, show pronounced elongation of the mesocotyl, and fail to de-etiolate under red or far-red light. Etiolated elm1 mutants contain no spectrally active phytochrome and do not deplete levels of phytochrome A after red-light treatment. High-performance liquid chromatography analyses show that elm1 mutants are unable to convert biliverdin IX alpha to 3Z-phytochromobilin, preventing synthesis of the phytochrome chromophore. Despite the impairment of the phytochrome photoreceptors, elm1 mutants can be grown to maturity in the field. Mature plants retain aspects of the seedling phenotype and flower earlier than wild-type plants under long days. Thus, the elm1 mutant of maize provides the first direct evidence for phytochrome-mediated modulation of flowering time in this agronomically important species.  相似文献   

2.

Background

Etiolated seedlings initiate grana stacking and chlorophyll biosynthesis in parallel with the first exposure to light, during which phytochromes play an important role. Functional phytochromes are biosynthesized separately for two components. One phytochrome is biosynthesized for apoprotein and the other is biosynthesized for the chromophore that includes heme oxygenase (HO).

Methodology/Principal Finding

We isolated a ho1 homolog by map-based cloning of a maize elongated mesocotyl2 (elm2) mutant. cDNA sequencing of the ho1 homolog in elm2 revealed a 31 bp deletion. De-etiolation responses to red and far-red light were disrupted in elm2 seedlings, with a pronounced elongation of the mesocotyl. The endogenous HO activity in the elm2 mutant decreased remarkably. Transgenic complementation further confirmed the dysfunction in the maize ho1 gene. Moreover, non-appressed thylakoids were specifically stacked at the seedling stage in the elm2 mutant.

Conclusion

The 31 bp deletion in the ho1 gene resulted in a decrease in endogenous HO activity and disrupted the de-etiolation responses to red and far-red light. The specific stacking of non-appressed thylakoids suggested that the chlorophyll biosynthesis regulated by HO1 is achieved by coordinating the heme level with the regulation of grana stacking.  相似文献   

3.
4.
Cell extension in the mesocotyl elongation zone (MEZ) of maize ( Zea mays L.) seedlings is inhibited by light. The growth inhibition by blue light in the MEZ was reversible upon transfer to darkness. This experimental system was used for investigating the modification of mechanical cell-wall properties and the role of cell-wall lignification in cell elongation. The occurrence of lignin in the cortex and vascular bundle tissues of the MEZ was demonstrated by the isolation of diagnostic monomers released after thioacidolysis of the cell walls. Concomitantly with the inhibition of growth, blue light induces an increase in cell-wall stiffness (tensile modulus) as well as an increase in extractable lignin in the outer MEZ tissues (cortex+epidermis). Both effects are reversed when growth is resumed in the MEZ in darkness after a period of growth inhibition induced by 3 h light. In the vascular bundle light produces no comparable change in lignin content. Appearance and disappearance of phenylpropanoid material in MEZ cell walls in the light, or in darkness following a brief light treatment, respectively, can be visualized under the fluorescence microscope by characteristic changes in autofluorescence of tissue sections upon excitation with UV radiation. It is concluded from these results that light-induced lignification of primary walls is involved in cell-wall stiffening and thus inhibition of elongation growth in the MEZ of maize seedlings. Resumption of growth upon redarkening may be initiated by wall loosening in the uppermost MEZ region which displaces the lignified cell walls towards the lower mesocotyl region.  相似文献   

5.
Although elongation growth is reduced by ethylene, swelling responses do not occur. Ethylene reduces neither transport nor metabolism of applied IAA in either mesocotyl or coleoptile. We propose that maintenance of high auxin levels within these tissues sustains polar transport and contributes to the relative insensitivity of maize to applied ethylene.  相似文献   

6.
The axial (longitudinal) red-light gradient (632 nanometers) of 4 day old dark-grown maize seedlings is increased by staining the peripheral cells of the coleoptile. The magnitude of increase in the light gradient is dependent solely on the light-absorbing qualities of the stain used. Metanil yellow has no effect on the axial red-light gradient, while methylene blue causes a large increase in this light gradient. These stains did not affect growth in darkness or the sensitivity of mesocotyl elongation to red light. However, mesocotyl elongation was altered for the dark-grown seedlings stained with methylene blue when these seedlings were transplanted, covered with soil, and permitted to emerge under natural lighting conditions. These observations are consistent with the idea that there is a single perceptive site below the coleoptilar node, and suggest that this perceptive site receives the actinic light which has traveled downward through the length of the shoot from an entry point in the plant tip region.  相似文献   

7.
8.
陈兆进  丁传雨  郑远 《遗传》2016,38(5):436-443
光信号在植物生长发育过程中具有非常重要的作用。不同的光信号通过调节植物下游基因的表达,进而影响细胞分化、结构和功能的改变,以及组织和器官的形成,参与植物光形态建成。QUA1 (QUASIMODO1)是拟南芥糖基转移酶家族中的一个成员,参与植物细胞壁中果胶的合成。本文以拟南芥qua1-1/cry1以及qua1-1/phyB双突变体为材料,对QUA1基因在光信号途径中的功能进行了分析。结果显示,qua1-1突变体在暗、蓝光、红光以及远红外光培养条件下下胚轴的伸长均受到抑制,QUA1基因的表达同样受到光信号的调节,而且突变体中多种光信号调节基因的表达也受到了影响。通过对qua1-1突变体下胚轴的观察发现,突变体下胚轴表皮细胞长度明显变短。与cry1以及phyB突变体相比,qua1-1/cry1和qua1-1/phyB双突变体下胚轴长度明显变短,而且双突变体中光信号调节基因的表达也有明显变化,表明QUA1可能参与了CRY1以及PHYB介导的蓝光及红光信号传导。以上结果表明QUA1影响了下胚轴细胞的伸长以及光信号调节基因的表达,并参与调控多种光信号传导途径。  相似文献   

9.
Developmental responses associated with end-of-day far-red light (EOD-FR) signaling were investigated in maize (Zea mays subspecies mays) seedlings. A survey of genetically diverse inbreds of temperate and tropical/semitropical origins, together with teosinte (Zea mays subspecies parviglumis) and a modern hybrid, revealed distinct elongation responses. A mesocotyl elongation response to the EOD-FR treatment was largely absent in the tropical/semitropical lines, but both hybrid and temperate inbred responses were of the same magnitude as in teosinte, suggesting that EOD-FR-mediated mesocotyl responses were not lost during the domestication or breeding process. The genetic architecture underlying seedling responses to EOD-FR was investigated using the intermated B73 × Mo17 mapping population. Among the different quantitative trait loci identified, two were consistently detected for elongation and responsiveness under EOD-FR, but none were associated with known light signaling loci. The central role of phytochromes in mediating EOD-FR responses was shown using a phytochromeB1 phytochromeB2 (phyB1 phyB2) mutant series. Unlike the coleoptile and first leaf sheath, EOD-FR-mediated elongation of the mesocotyl appears predominantly controlled by gibberellin. EOD-FR also reduced abscisic acid (ABA) levels in the mesocotyl for both the wild type and phyB1 phyB2 double mutants, suggesting a FR-mediated but PHYB-independent control of ABA accumulation. EOD-FR elongation responses were attenuated in both the wild type and phyB1 phyB2 double mutants when a chilling stress was applied during the dark period, concomitant with an increase in ABA levels. We present a model for the EOD-FR response that integrates light and hormonal control of seedling elongation.Plants utilize a complex network of photoreceptors to monitor the spectral quality, fluence, direction, and duration of light (Smith, 1995). These photosensory pigments include phytochromes that sense red light (R; 580–690 nm) and far-red light (FR; 690–800 nm) and the cryptochromes, phototropins, and zeitlupes for blue light (380–495 nm) and UV-A light (320–380 nm). The light reflected and transmitted by the vegetation creates a canopy characterized by reductions in both the R-to-FR ratio (R:FR) and the photosynthetically active radiation (400–700 nm). This light environment induces adaptive biochemical and morphological responses known as the shade avoidance syndrome (Smith and Whitelam, 1997). These responses can be induced early in development, before canopy closure, through FR reflected from adjacent neighbor plants (Ballare et al., 1990) or from low-lying weeds (Rajcan and Swanton, 2001), which can negatively impact yields in maize (Zea mays subspecies mays; Rajcan et al., 2004), even if only present early in the growing season (Liu et al., 2009).R:FR signals are transduced by the phytochrome family of photoreceptors (Franklin and Whitelam, 2007b). In rice (Oryza sativa) and sorghum (Sorghum bicolor), three genes constitute the phytochrome family: PhytochromeA (PhyA), PhytochromeB (PhyB), and PhytochromeC (PhyC). In maize, an ancient alloploidization has doubled the family size to six: PhyA1, PhyA2, PhyB1, PhyB2, PhyC1, and PhyC2 (Sheehan et al., 2004). Although many similarities are apparent between maize and Arabidopsis (Arabidopsis thaliana) light response, there are significant differences between members of the phytochrome gene family in copy number and selection pressures that have resulted in the divergence of phytochrome signaling networks (Sawers et al., 2005; Sheehan et al., 2007). Thus far, only three phytochrome mutants have been characterized in maize: elongated mesocotyl1 (elm1), phyB1, and phyB2. The elm1 mutant carries a mutation in phytochromobilin synthase, necessary for the biosynthesis of the chromophore common to all phytochromes (Sawers et al., 2004). The mutation severely reduces the total phytochrome pool, but the weak nature of the allele enables a partial responsiveness to R and FR (Markelz et al., 2003). At maturity, elm1 mutants have elongated internodes, pale green leaves, and flower early (Sawers et al., 2002). Mutations at phyB1 and phyB2 also impair light signal transduction. At maturity, both PHYB1 and PHYB2 contribute to plant height, stem diameter, and sheath-internode length, but PHYB2 predominates in the control of flowering (Sheehan et al., 2007). Like the sorghum and rice phyB mutants (Childs et al., 1997; Takano et al., 2005; Kebrom et al., 2010), both elm1 and phyB1 phyB2 double mutants constitutively display several traits associated with low R:FR response (Sawers et al., 2002; Markelz et al., 2003; Sheehan et al., 2007).In Arabidopsis, R/FR-mediated responses are developmentally complex and involve the PIF proteins (Duek and Fankhauser, 2005) and many hormones including auxins (Tao et al., 2008), ethylene (Khanna et al., 2007), jasmonate (Moreno et al., 2009), and GA (Djakovic-Petrovic et al., 2007). In particular, there is a direct interaction between PIF and DELLA proteins that govern phytochrome-mediated elongation (de Lucas et al., 2008; Feng et al., 2008; Lorrain et al., 2008). DELLA proteins also regulate FR inhibition of germination by abscisic acid (ABA; Piskurewicz et al., 2009), suggesting an interaction between the PIFs and ABA signaling. Complex cross talk between light and temperature has also been reported (Franklin, 2009). In Arabidopsis, colder temperatures can repress the early-flowering phenotype of the phyB mutant (Halliday et al., 2003). These studies suggest a complex interplay between light, hormone, and temperature to fine-tune the elongation response.The end-of-day far-red light (EOD-FR) treatment consists of a pulse of FR given at subjective dusk (Kasperbauer, 1971) and triggers a circadian clock-gated response (Salter et al., 2003). EOD-FR treatments result in a minimal pool of active Pfr during the dark period (Fankhauser and Casal, 2004), and plants submitted to daily treatments display similar developmental responses to those elicited by a continuous photoperiod with low R:FR (Smith, 1994). One of the key features that contributed to the discovery of the phytochromes is the photoreversibility of the response (Borthwick et al., 1952). These low-fluence responses (LFRs) are induced or repressed by alternating R and FR treatments (Mancinelli, 1994). The LFR nature of EOD-FR in maize was previously demonstrated in 5-d-old mesocotyl and coleoptile tissues (Gorton and Briggs, 1980). The EOD-FR treatment offers several advantages over growing plants in continuous low R:FR, including exposing plants to relatively brief treatment periods, thus potentially reducing genotype × environment effects. It also facilitates kinetic assays of phytochrome response, as treatments are limited to a single point in the diurnal cycle and can be delivered at any stage in plant development. Finally, as relatively low fluences of light are needed to saturate EOD-FR responses, large populations of seedlings can be screened without the need for large numbers of FR light-emitting diodes (LEDs) or sophisticated light chambers.Here, we have examined EOD-FR-mediated responses in maize and its closest relative, teosinte (Zea mays subspecies parviglumis). A survey of genetically diverse maize and teosinte accessions revealed extensive tissue-specific variations in mesocotyl, coleoptile, and first leaf sheath elongation. EOD-FR responses were greatly attenuated in tropical/semitropical (TS) accessions but present in teosinte, temperate inbreds, and a modern commercial hybrid, suggesting that the EOD-FR response is plastic in Z. mays. To investigate the genetic regulation underlying seedling responses to EOD-FR, we performed a quantitative trait locus (QTL) analysis using the intermated B73 × Mo17 (IBM) recombinant inbred population. We identified several QTLs that regulate mesocotyl and first leaf sheath response to EOD-FR and show that these QTLs mediate tissue-specific responses. The phyB1 phyB2 mutant series was also evaluated, indicating that the two PhyB paralogs are largely redundant in mediating the EOD-FR response. Pharmacological assays revealed a major role for GA in promoting mesocotyl, but not coleoptile or first leaf sheath, elongation in response to EOD-FR treatments. In contrast, EOD-FR reduced mesocotyl ABA levels. A chill treatment (10°C) applied during dark breaks attenuated EOD-FR elongation responses. Based on these observations, we discuss a model that integrates temperature, light, and hormonal inputs in the regulation of mesocotyl elongation.  相似文献   

10.
Abstract. Responses to red light irradiation of discrete areas along the intact, etiolated oat seedling indicate that illumination of the region around the coleoptilar node results in maximal coleoptile growth stimulation and mesocotyl growth suppression. Quantitation of the fibre optic properties of these etiolated tissues shows that the amount of axially transmitted light is log linear as a function of distance for both the mesocotyl and coleoptile (plus primary leaf). Using the fibre optic properties of the tissues to predict the response of the etiolated seedling to defined illumination fields allows one to localize two sites of photoperception: although the mesocotyl response pattern can be explained by the action of a single site found near the top of the mesocotyl itself, the coleoptile response depends on irradiation of both the mesocotyl site and an additional site located just above the node. The very low- and the low-fluence responses of etiolated oats independently predict similar regions of the seedling as sites of photo-perception. The fibre optic properties of the seedling could allow the seedling to increase the effective light signal received by the photosensitive area significantly.  相似文献   

11.
In C(4) plants, mesophyll (M) chloroplasts are randomly distributed along the cell walls, whereas bundle sheath chloroplasts are located in either a centripetal or centrifugal position. It was reported previously that only M chloroplasts aggregatively redistribute to the bundle sheath side in response to extremely strong light or environmental stresses. The aggregative movement of M chloroplasts is also induced in a light-dependent fashion upon incubation with abscisic acid (ABA). The involvement of reactive oxygen species (ROS) and red/blue light in the aggregative movement of M chloroplasts are examined here in two distinct subtypes of C(4) plants, finger millet and maize. Exogenously applied hydrogen peroxide or ROS scavengers could not change the response patterns of M chloroplast movement to light and ABA. Blue light irradiation essentially induced the rearrangement of M chloroplasts along the sides of anticlinal walls, parallel to the direction of the incident light, which is analogous to the avoidance movement of C(3) chloroplasts. In the presence of ABA, most of the M chloroplasts showed the aggregative movement in response to blue light but not red light. Together these results suggest that ROS are not involved in signal transduction for the aggregative movement, and ABA can shift the blue light-induced avoidance movement of C(4)-M chloroplasts to the aggregative movement.  相似文献   

12.
Dark-grown maize seedlings (hybrid WF-9 × 38-11) exposed for 1 or more hours to white light and then returned to darkness developed mesocotyls with enlarged apical diameters. This swelling response was an all-or-none response, and the fraction of the seedling population that showed the response depended on seedling age at irradiation. Irradiation of the coleoptile alone was nearly as effective in causing this response as was irradiation of the nodal region of the epicotyl, but irradiation of the mesocotyl base was ineffective. Removal of the coleoptile prior to irradiation did not prevent the formation of the light-induced swelling. Exogenously applied C2H4 (10 microliters per liter) for 24 hours in dark also induced swelling of the mesocotyl. The swelling induced in the intact seedlings was localized in the apical mesocotyl tissues with either light or C2H4 treatment, and maximal response to both treatments occurred with 3- to 4-day-old seedlings. Swelling of the mesocotyl was the result of transverse cell enlargement, not increase of cell numbers. The evidence suggests that light and C2H4 induce mesocotyl swelling in intact maize shoots by a common mechanism.  相似文献   

13.
F. Waller  P. Nick 《Protoplasma》1997,200(3-4):154-162
Summary In seedlings of maize (Zea mays L. cv. Percival), growth is controlled by the plant photoreceptor phytochrome. Whereas coleoptile growth is promoted by continuous far-red light, a dramatic block of mesocotyl elongation is observed. The response of the coleoptile is based entirely upon light-induced stimulation of cell elongation, whereas the response of the mesocotyl involves light-induced inhibition of cell elongation. The light response of actin microfilaments was followed over time in the epidermis by staining with fluorescence-labelled phalloidin. In contrast to the underlying tissue, epidermal cells are characterized by dense longitudinal bundles of microfilaments. These bundles become loosened during phases of rapid elongation (between 2–3 days in irradiated coleoptiles, between 5–6 days in dark-grown coleoptiles). The condensed bundles re-form when growth gradually ceases. The response of actin to light is fast. If etiolated mesocotyls are transferred to far-red light, condensation of microfilaments can be clearly seen 1 h after the onset of stimulation together with an almost complete block of mesocotyl elongation. The observations are discussed in relation to a possible role of actin microfilaments in the signal-dependent control of cell elongation.  相似文献   

14.
15.
16.
In order to elucidate the physiological mechanism of maize mesocotyl elongation induced by auxin under different seeding depths, seeds of five maize inbred lines, including 3681-4 line tolerant to deep seeding, were treated with IAA and triiodobenzoic acid (TIBA) under seeding depths of 20 or 2 cm. Under deep seeding conditions, maize mesocotyls grew by 1.5–2.0 times faster than under shallow seeding conditions. IAA (10−6 to 10−4 M) applied to roots stimulated mesocotyl elongation only of 3681-4 line and only under deep seeding conditions. TIBA (10−5 and 10−4 M) applied to roots inhibited mesocotyl elongation in all lines, but only 3681-4 was sensitive to 10−6 M TIBA. IAA promoted only cell elongation, and TIBA inhibited both cell elongation and cell division. After IAA and TIBA treatments, endogenous IAA content changed in parallel with the mesocotyl growth rate under different seeding depths. Furthermore, ABP1 gene expression changed in parallel with the mesocotyl growth rate under deep seeding conditions. Therefore, deep seeding tolerance of 3681-4 line was achieved due to auxin-regulated rapid mesocotyl elongation.  相似文献   

17.
UV and blue light signal transduction in Arabidopsis   总被引:8,自引:0,他引:8  
  相似文献   

18.
Phototropins and phytochromes are the major photosensory receptors in plants and they regulate distinct photomorphogenic responses. The molecular mechanisms underlying functional interactions of phototropins and phytochromes remain largely unclear. We show that the tomato (Lycopersicon esculentum) phytochrome A deficient mutant fri lacks phototropic curvature to low fluence blue light, indicating requirement for phytochrome A for expression of phototropic response. The hp1 mutant that exhibits hypersensitive responses to blue light and red light reverses the impairment of second-positive phototropic response in tomato in phytochrome A-deficient background. Physiological analyses indicate that HP1 functions as a negative regulator of phototropic signal transduction pathway, which is removed via action of phytochrome A. The loss of HP1 gene product in frihp1 double mutant allows the unhindered operation of phototropic signal transduction chain, obviating the need for the phytochrome action. Our results also indicate that the role of phytochrome in regulating phototropism is restricted to low fluence blue light only, and at high fluence blue light, the phytochrome A-deficient fri mutant shows the normal phototropic response.  相似文献   

19.
Chilling stress is an important constraint of global production of maize. This study was undertaken to compare the chilling responses of different maize seedling tissues and to analyze changes in polyamines as a result of chilling stress. Reponses to chilling were characterized in two maize (Zea mays L.) inbred lines, ‘HuangC’ and ‘Mo17’, that putatively differ in chilling sensitivity. Seedlings were exposed to low temperature (5°C) and chilling injury was estimated by electrical conductivity (EC), malonaldehyde (MDA) concentration, and by changes in putrescine (Put), spermidine (Spd) and spermine (Spm) concentrations in root, mesocotyl, and coleoptile tissues. Membrane permeability (as measured by EC), MDA concentrations and Put concentrations in the three tissue of maize seedlings increased after chilling stress, except for the Put concentration in roots. Spd and Spm concentrations in the three tissues of seedlings decreased after chilling stress. The EC for cold stressed tissues were lower in HuangC than Mo17. Also, the EC of coleoptile tissues were lower than for mesocotyl in both inbred lines. We suggest that mesocotyl tissue can be used to evaluate cold tolerance in maize. Stepwise regression analyses showed that chilling injury in roots was generally correlated with Spd concentration while in the mesocotyl injury was mainly correlated with Put and Spd concentrations. Spermidine and Spm concentrations in the coleoptile were correlated with chilling injury. Characteristics changes of polyamines in chill-tolerant maize seedling combined with regression analysis are a reliable method for evaluating chill tolerance in maize lines.  相似文献   

20.
Phytochrome-mediated cellular photomorphogenesis   总被引:3,自引:2,他引:1       下载免费PDF全文
Red light-induced cell elongation and division in intact, etiolated oat (Avena sativa cv Lodi) seedlings have been assessed. The middle of coleoptile was especially responsive in the very low fluence range whereas the region immediately below the coleoptile tip and the two regions just above the coleoptilar node were more responsive than the entire organ in the low fluence range. These responses in the coleoptile are both the result of an increase in cell elongation. Coleoptile cell division is slightly inhibited in the very low and slightly stimulated by red light in the low fluence range.

The one-sixth of the mesocotyl closest to the node is more suppressed in its growth than is any other region in the very low fluence range. However, the low fluence response involved the entire mesocotyl equally. In the apical one-sixth of the mesocotyl, a strong suppression of cell division and a weak suppression of cell elongation occurs. In the lower five regions of the mesocotyl, red light in both fluence ranges suppresses only cell elongation. Apparently, the difference between red light-induced oat growth stimulation and suppression primarily involves differences in the response of the cell elongation process.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号