首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We investigated the monophyletic status of the hoplonemertean taxon Tetrastemma by reconstructing the phylogeny for 22 specimens assigned to this genus, together with another 25 specimens from closely related hoplonemertean genera. The phylogeny was based on partial 18S rRNA sequences using Bayesian and maximum likelihood analyses. The included Tetrastemma-species formed a well-supported clade, although the within-taxon relationships were unsettled. We conclude that the name Tetrastemma refers to a monophyletic taxon, but that it cannot be defined by morphological synapomorphies, and our results do not imply that all the over 100 species assigned to this genus belong to it. The results furthermore indicate that the genera Amphiporus and Emplectonema are non-monophyletic.  相似文献   

2.
Eunicid annelids inhabit diverse marine habitats worldwide, have ecological and economic importance and have been pictured in the news as giant predator worms. They compose a traditional stable taxon recently supported as monophyletic but characterized by plesiomorphies. Most genera within the family have been recovered as paraphyletic in previous studies. We present a phylogenetic hypothesis for eunicid based on molecular (COI, 16S rDNA, 18S rDNA) and morphological data (213 characters), including an explicit attempt to account for serial homology. Eunicidae as well as monophyletic genera Marphysa sensu stricto and Lysidice is redefined based on synapomorphies. Nematonereis is synonymized to Lysidice. Leodice and Nicidion are resurrected to name monophyletic groups including species previously included in Eunice and Marphysa sensu lato. Traditional diagnostic characters such as the absence/presence of peristomial cirri, lateral antennae and branchiae are homoplasies and not informative at the generic level. Different coding of traditional characters (i.e. articulation of prostomial appendages) and novel characters of prostomial features and regionalization of the body support the monophyly of the family and genera level clades. Thus, the phylogenetic hypothesis presented here and the evolution of characters provided background information for taxonomic changes yielding evolutionary meaningful classification and diagnoses for the family and genera.  相似文献   

3.
Euptychiina is the most species‐rich subtribe of Neotropical Satyrinae, with over 450 known species in 47 genera (14 monotypic). Here, we use morphological characters to examine the phylogenetic relationships within Euptychiina. Taxonomic sampling included 105 species representing the majority of the genera, as well as five outgroups. A total of 103 characters were obtained: 45 from wing pattern, 48 from genitalia and 10 from wing venation. The data matrix was analysed using maximum parsimony under both equal and extended implied weights. Euptychiina was recovered as monophyletic with ten monophyletic genera, contrasting previous DNA sequence‐based phylogenies that did not recover the monophyly of the group. In agreement with sequence‐based hypotheses, however, three main clades were recognized: the ‘Megisto clade’ with six monophyletic and three polyphyletic genera, the ‘Taygetis clade’ with nine genera of which three were monophyletic, and the ‘Pareuptyhia clade’ with four monophyletic and two polyphyletic genera. This is the first morphology‐based phylogenetic hypothesis for Euptychiina and the results will be used to complement molecular data in a combined analysis and to provide critical synapomorphies for clades and genera in this taxonomically confused group.  相似文献   

4.
We present a mitochondrial gene tree for representative species of all the genera in the subfamily Myobatrachinae, with special emphasis on Crinia and Geocrinia. This group has been the subject of a number of long-standing taxonomic and phylogenetic debates. Our phylogeny is based on data from approximately 780 bp of 12S rRNA and 676 bp of ND2, and resolves a number of these problems. We confirm that the morphologically highly derived monotypic genera Metacrinia, Myobatrachus, and Arenophryne are closely related, and that Pseudophryne forms the sister group to these genera. Uperoleia and the recently described genus Spicospina are also part of this clade. Our data show that Assa and Geocrinia are reciprocally monophyletic and together they form a well-supported clade. Geocrinia is monophyletic and the phylogenetic relationships with the genus are fully resolved with two major species groups identified: G. leai, G. victoriana, and G. laevis; and G. rosea, G. alba, and G. vitellina (we were unable to sample G. lutea). We confirm that Taudactylus forms the sister group to the other myobatrachine genera, but our data are equivocal on the phylogenetic position of Paracrinia. The phylogenetic relationships among Crinia species are well resolved with strong support for a number of distinct monophyletic clades, but more data are required to resolve relationships among these major Crinia clades. Crinia tasmaniensis and Bryobatrachus nimbus form the sister clade to the rest of Crinia. Due to the lack of generic level synapomorphies for a Bryobatrachus that includes C. tasmaniensis, we synonymize Bryobatrachus with Crinia. Crinia georgiana does not form a clade distinct from other Crinia species and so our data do not support recognition of the genus Ranidella for other Crinia species. Crinia subinsignifera, C. pseudinsignifera, and C. insignifera are extremely closely related despite differences in male advertisement call. A preliminary investigation of phylogeographic substructure within C. signifera revealed significant divergence between samples from across the range of this species.  相似文献   

5.
Few Neotropical plant species seem to depend on the same animal type both for pollination and seed dispersal, and the known instances refer mostly to birds as the agents in these two phases of a plant reproductive cycle. Dyssochroma viridiflorum (Solanaceae), an epiphyte endemic to the Atlantic rainforest in south-eastern Brazil, was found to be visited by phyllostomid bats for nectar as well as for fruits, with the pollination and seed dispersal of the plant ensured by these flying mammals. The greenish flowers open at night and are visited by the nectar-feeding bat Glossophaga soricina, whereas the yellowish-white fruits are consumed by two species of fruit-eating bats, Carollia perspicillata and Sturnira lilium. Only clinging visits, an uncommon behavioural pattern for glossophagine bats while feeding on flowers, were recorded. The small seeds of D. viridiflorum are swallowed along with the fruit pulp and later defecated on the bats' flying pathways. It is suggested that species of Dyssochroma and two other solanaceous bat-pollinated genera, Merinthopodium and Trianaea, form a derived and bat-dependent clade within the Juanulloeae.  相似文献   

6.
Shrimps of the genus Palaemon Weber, 1795 comprise of 86 species with a wide morphological and ecological variability along the tropical and temperate regions. Studies based on molecular data have indicated that despite a recent taxonomic rearrangement, it may remain not monophyletic. On the other hand, cladistic, morphological analyses have suggested the presence of synapomorphies, implying a natural status for the genus. In this work, a broad taxonomic and molecular sampling is applied to verify whether Palaemon is a monophyletic taxon and, based on the recovered phylogeny, identify geographical and morphological patterns related to the lineages. Partial sequences of 16S rRNA, histone H3 and 18S rRNA from 60 species of Palaemon and 15 species from other genera of Palaemonidae were analysed. In addition, previously used characters as well as novel diagnostic characters were scrutinized. The present phylogeny indicates that the species of Palaemon fall into three distinct lineages and that the colonization of America and Europe likely occurred multiple times. Morphological characters allow for the identification of at least four monophyletic groups in Palaemon; two of which are monospecific at the moment. Based on the present results, it may become necessary to establish two new genera (to accommodate Palaemon concinnus and Palaemon mercedae, respectively), as well as re‐erect the genus Alaocaris Holthuis, 1949 for Palaemon antrorum, potentially including a further six American species.  相似文献   

7.
Within the tribe Stenodermatini the systematics of the complex of species allied with the genus Artibeus has generated several alternative phylogenetic hypotheses. The most recent treatment recognized four genera (Artibeus, Dermanura, Enchisthenes, and Koopmania) and suggested that the most recent common ancestor of these four genera would include the common ancestor of all other currently recognized Stenodermatini genera except Sturnira. To test this hypothesis, we examined an EcoRI-defined nuclear satellite DNA repeat and 402 bp of DNA sequence variation from the mitochondrial cytochrome b gene. Phylogenetic conclusions based on Southern blot analyses, in situ hybridization, and mitochondrial DNA sequence data indicate that Enchisthenes is not closely related to Dermanura, Artibeus, or Koopmania and that Dermanura, Artibeus, and Koopmania shared a common ancestor after diverging from the remainder of the Stenodermatini. If our conclusions are correct, then justification for recognizing Dermanura and Koopmania as generically distinct from Artibeus must be based on the magnitude of difference that distinguishes each rather than on the conclusion that to place them as congeneric with Artibeus creates a paraphyletic taxon.   相似文献   

8.
Cladistic analyses of plastid DNA sequences rbcL and trnL-F are presented separately and combined for 48 genera of Amaryllidaceae and 29 genera of related asparagalean families. The combined analysis is the most highly resolved of the three and provides good support for the monophyly of Amaryllidaceae and indicates Agapanthaceae as its sister family. Alliaceae are in turn sister to the Amaryllidaceae/Agapanthaceae clade. The origins of the family appear to be western Gondwanaland (Africa), and infrafamilial relationships are resolved along biogeographic lines. Tribe Amaryllideae, primarily South African, is sister to the rest of Amaryllidaceae; this tribe is supported by numerous morphological synapomorphies as well. The remaining two African tribes of the family, Haemantheae and Cyrtantheae, are well supported, but their position relative to the Australasian Calostemmateae and a large clade comprising the Eurasian and American genera, is not yet clear. The Eurasian and American elements of the family are each monophyletic sister clades. Internal resolution of the Eurasian clade only partially supports currently accepted tribal concepts, and few conclusions can be drawn on the relationships of the genera based on these data. A monophyletic Lycorideae (Central and East Asian) is weakly supported. Galanthus and Leucojum (Galantheae pro parte) are supported as sister genera by the bootstrap. The American clade shows a higher degree of internal resolution. Hippeastreae (minus Griffinia and Worsleya) are well supported, and Zephyranthinae are resolved as a distinct subtribe. An Andean clade marked by a chromosome number of 2n = 46 (and derivatives thereof) is resolved with weak support. The plastid DNA phylogenies are discussed in the context of biogeography and character evolution in the family.  相似文献   

9.
Abstract— The sister group of the monophyletic tribe Argostemmateae, including Argostemma and Neurocalyx , is not the tribe Hedyotideae, or a part of it, as earlier assumed, but the monophyletic tribe Hamelieae, here redefined. It comprises the genera Hamelia, Hoffmannia (here including Xerococcus), Deppea (here including Schenckia), Pinarophyllon , and Omiltemia . The two tribes Argostemmateae and Hamelieae are a monophyletic group characterized by seven synapomorphies. A cladogram is presented showing the relationships of the seven genera based on 31 characters. One group of characters, the aestivation of the corolla, is shown to be much more complicated than hitherto assumed. In the Hamelieae the aestivation can be imbricate (to the right or to the left and quincuncial or not), contorted (to the right), alternative, or even valvate. The Argostemmateae occur in the Old World Tropics, and their distribution supports the hypothesis that at least parts of southeast Asia are a part of Gondwanaland. The vicariant pattern within the Argostemmateae indicates that the large area from west Africa through northern India to southeast Asia is vicariant to Ceylon and southern India. The distribution of the Old World tribe Argostemmateae is vicariant to the essentially Central American tribe Hamelieae.  相似文献   

10.
The phylogeny of cetaceans is still unresolved. Two hypotheses prevail for the position of cetaceans among ungulates. The first hypothesis shows that Artiodactyla is monophyletic and is sister taxon to a clade composed of cetaceans and mesonychians. The second one shows that Artiodactyla is paraphyletic and contains Cetacea that is sister taxon of Hippopotamida. These hypotheses are based on fossil records and molecular studies. The behaviour of extant species can provide as much phylogenetic information as other classical parameters. I considered the behaviour observed during male agonistic interactions in placental mammals in order to determine which of these hypotheses was supported by the behaviour of extant species. Headbutting was only observed in ruminants, hippopotamids and cetaceans, supporting the paraphyletic nature of Artiodactyla. Primitive ruminants (tragulids) and two genera of ruminants (Moschus and Oreamnos) were not observed headbutting. These secondary losses were only present in 6.25% of the 48 surveyed ruminant genera. Head-to-head attacks emerged in pigs, which have developed dermal protusions. Yet, these confrontations are not based on mutual blow delivery. The behavioural evidence supports the inclusion of cetaceans in Artiodactyla.  相似文献   

11.
We examined taxa from 13 of the 17 chiropteran families, using single-copy DNA hybridization. Five taxa that either represented points of controversy in systematics or were members of problematic families were included in the experiment. The resulting data were used to build phylogenetic trees of 14 and 19 taxa, and by combining this study's data with those from two previous studies, a supertree of 36 taxa was constructed. The trees based on the three different matrices are compared and contrasted, and a phylogenetic hypothesis supporting the association of the rhinolophoid and the pteropodid groups of bats is presented. On the basis of this study, we conclude that the phylogenetically correct placement of the family Nycteridae is in a clade that does not include their putative relatives, the Rhinolophoidea. Our results suggest that the Emballonuridae, while a monophyletic group, are well embedded within the Yangochiroptera, and do not comprise the sister taxon to all other microbats. This study supports earlier DNA-hybridization results with respect to the placement of Mystacinidae within the Noctilionoidea, replicating those earlier findings. Finally, we determine that Miniopterus may well warrant recognition as a family distinct from the Vespertilionidae in which it is usually placed.  相似文献   

12.
A comprehensive phylogenetic investigation was performed to elucidate the cladistic relationships and possible monophyly of therocephalian therapsids (Amniota: Synapsida). The phylogenetic positions of 30 therapsid taxa were examined under maximum parsimony, including 23 therocephalian genera. The analysis incorporated 110 cranial and postcranial characters in order to assess the interrelationships of basal therocephalians and eutherocephalians and their relationships to Cynodontia, representing the most complete review of therocephalian phylogeny to date. The analysis supports the hypothesis that Therocephalia represents the monophyletic sister taxon to Cynodontia, with as many as 15 morphological synapomorphies, in contrast with other recent analyses of lesser taxon sampling. The results also support the hypothesis that Scylacosauridae is more closely related to Eutherocephalia than to the basal therocephalian family Lycosuchidae, supporting a ‘Scylacosauria’ clade. The taxa suggested here to be neotenic forms (e.g. Ictidosuchoides and Ictidosuchops) are positioned near the base of a monophyletic Baurioidea. Neotenic development of the therocephalian feeding apparatus and evolutionary parallelism with cynodonts are suggested to have been important trends in the early evolution of baurioid therocephalians into the Late Permian and Early Triassic.  相似文献   

13.
We have analyzed the phylogenetic relationships of 52 species representing all defined species groups (J. J. Scheel, 1990, Atlas of Killifishes of the Old World, 448 pp.) of the African aplocheiloid fish genera Aphyosemion and Fundulopanchax in order to examine their interrelationships and to reveal trends of karyotypic evolution. The data set comprised 785 total nucleotides from the mitochondrial 12S rRNA and cytochrome b genes. The molecular-based topologies analyzed by both maximum parsimony and neighbor-joining support the monophyly of most previously defined species groups within these two killifish genera. The genus Aphyosemion is monophyletic except for the nested position of Fundulopanchax kunzi (batesi group; subgenus Raddaella) within this clade, suggesting that this taxon was improperly assigned to Fundulopanchax. The remaining Fundulopanchax species sampled were supported as being monophyletic in most analyses. Relationships among the species groups in both genera were not as strongly supported, suggesting that further data will be required to resolve these relationships. Additional sampling from the 16S rRNA gene allowed further resolution of relationships within Fundulopanchax, more specifically identifying the nonannual scheeli group as the basal lineage of this otherwise annual genus. Chromosomal evolution within Aphyosemion has been episodic, with the evolution of a reduced n = 9-10 metacentric complement having occurred in multiple, independent lineages. Polarity of chromosomal reductions within the elegans species group appears to support previous hypotheses concerning mechanisms of karyotypic change within the genus Aphyosemion.  相似文献   

14.
Conoesucidae (Trichoptera, Insecta) are restricted to SE Australia, Tasmania and New Zealand. The family includes 42 described species in 12 genera, and each genus is endemic to either New Zealand or Australia. Although monophyly has been previously assumed, no morphological characters have been proposed to represent synapomorphies for the group. We collected molecular data from two mitochondrial genes (16S and cytochrome oxidase I), one nuclear gene (elongation factor 1-α) (2237–2277 bp in total), and 12 morphological characters to produce the first phylogeny of the family. We combined the molecular and morphological characters and performed both a maximum parsimony analysis and a Bayesian analysis to test the monophyly of the family, and to hypothesize the phylogeny among its genera. The parsimony analysis revealed a single most parsimonious tree with Conoesucidae being a monophyletic taxon and sistergroup to the Calocidae. The Bayesian inference produced a distribution of trees, the consensus of which is supported with posterior probabilities of 100% for 15 out of 22 possible ingroup clades including the most basal branch of the family, indicating strong support for a monophyletic Conoesucidae. The most parsimonious tree and the tree from the Bayesian analysis were identical except that the ingroup genus Pycnocentria changed position by jumping to a neighbouring clade. Based on the assumption that the ancestral conoesucid species was present on both New Zealand and Australia, a biogeographical analysis using the dispersal-vicariance criteria demonstrated that one or two (depending on which of the two phylogenetic reconstructions were applied) sympatric speciation events took place on New Zealand prior to a single, late dispersal from New Zealand to Australia.  相似文献   

15.
The freshwater African catfish family Amphiliidae had been reviewed based on the 73 osteological characters with Diplomystidae, 2 Hypsidoridae, Amblycipitidae, Sisoridae, and Bagridae as out-groups. Because the family position of Leptoglanis (Bagridae/Amphiliidae) is under debate, this genus has been taken as an out-group too. Results of the study indicate that: 1) the Amphiliidae is not a monophyletic group and must now be restricted to the genera Amphilius and Paramphilius; the two subfamilies Amphiliinae and Doumeinae are separated by the sisorids Euchiloglanis (with most of the glyptosternid fishes) and Glyptothorax (with most of the non-glyptosternid fishes); 2) no synapomorphies were found for the subfamily Amphiliinae. 3) The five genera of subfamily Doumeinae constitute a monophyletic group, Andersonia being the sister-group of the four other genera; subfamily Doumeinae + Leptoglanis form the family Doumeidae. The glyptosternids no longer belong to the Sisoridae (family restricted to the non-glyptosternids) and represent the new family Glyptosternidae.  相似文献   

16.
Sugarcane moth borers are a diverse group of species occurring in several genera, but predominately within the Noctuidae and Pyraloidea. They cause economic loss in sugarcane and other crops through damage to stems and stalks by larval boring. Partial sequence data from two mitochondrial genes, COII and 16S, were used to construct a molecular phylogeny based on 26 species from ten genera and six tribes. The Noctuidae were found to be monophyletic, providing molecular support for the taxonomy within this subfamily. However, the Pyraloidea are paraphyletic, with the noctuids splitting Galleriinae and Schoenobiinae from the Crambinae. This supports the separation of the Pyralidae and Crambinae, but does not support the concept of the incorporation of the Schoenobiinae in the Crambidae. Of the three crambine genera examined, Diatraea was monophyletic, Chilo paraphyletic, and Eoreuma was basal to the other two genera. Within the Noctuidae, Sesamia and Bathytricha were monophyletic, with Busseola basal to Bathytricha. Many species in this study (both noctuids and pyraloids) had different biotypes within collection localities and across their distribution; however the individual biotypes were not phylogenetically informative. These data highlight the need for taxonomic revisions at all taxon levels and provide a basis for the development of DNA-based diagnostics for rapidly identifying many species at any developmental stage. This ability is vital, as the species are an incursion threat to Australia and have the potential to cause significant losses to the sugar industry.  相似文献   

17.
Current phylogenetic hypotheses on the African Crocidurinae (Soricidae) are based upon morpho-anatomical, karyological, and allozyme studies. The present study attempts to resolve the interrelationships among African Crocidurinae and their relationships to Eurasian Crocidurinae and to the subfamily Soricinae, on the basis of partial mitochondrial 16s rRNA sequences (549 bp). This is the first molecular study to include all but one of the nine currently recognized African shrew genera. In agreement with current views, two major lineages emerge. The first lineage includes Myosorex and Congosorex and supports the existence of a myosoricine taxon. The second lineage includes the six remaining genera. The genus Sylvisorex appears to be polyphyletic, whereas species of the controversial genus Crocidura are monophyletic. The genus Suncus presumably originated in Africa. The monospecific genera Ruwenzorisorex and Scutisorex and the two representatives of Paracrocidura cluster with species of other genera. Grouping patterns of species from different continents suggest that there have been multiple exchanges between Africa and Eurasia. The time estimates of these exchanges, inferred from two independent fossil-based calibrations of a molecular clock, coincide with the time estimates for migration events in other mammalian taxa.  相似文献   

18.
We test the hypothesis that conochilid rotifers represent an independent family‐level taxon within Superorder Gnesiotrocha, by analysing their phylogenetic position based on the 18S rDNA sequence of a large number of representatives of this taxon and its putative relatives. Both Bayesian and maximum likelihood analysis confirm a monophyletic clade of all gnesiotrochans with strong branch supports. Within Gnesiotrocha, Conochilidae form a strongly supported clade with representatives of all but some genera of Flosculariidae. These results refute Conochilidae as separate family‐level taxon within Gnesiotrocha. This finding is also supported by a phylogenetic analysis using morphology, in particular new observations on trophi morphology. Conochilid rotifers are likely specialized Flosculariidae, which evolved to a planktonic lifestyle and reduction of coloniality within the group, in contrast to other Flosculariidae. Furthermore, our analysis reveals that two genera of Flosculariidae, Beachampia and Limnias, form a single, strongly supported clade in a sister‐group relation to a clade consisting of representatives of Order Collothecacea. The present results, both regarding position of the conochild rotifers and of two genera of Flosculariidae, highlight the need for a more extensive analysis of relationships within Gnesiotrocha.  相似文献   

19.
A molecular phylogenetic study of eastern North American Coreopsis and representatives of other genera of tribe Coreopsideae was conducted using combined sequences from nuclear ITS and two plastid regions (matK, rpl16). A total of 25-30 species has been recognized in five sections of Coreopsis in eastern North America. Based on morphological characters, these taxa have generally been considered a monophyletic group. Our well-resolved phylogeny supports the monophyly of sections that have been recognized in Coreopsis, but the sections collectively do not comprise a monophyletic group because species of north temperate Bidens occur within one of the two major Coreopsis clades. The most notable departure of present results from prior views of relationships among sections is the lack of a sister group relationship between sections Calliopsis and Eublepharis; the shared presence of four-lobed disk floret corollas had been used to support a close relationship between these two sections. Relationships within sections show both similarities and differences with the results of previous studies based primarily on morphological characters. Mapping of morphological characters used taxonomically in Coreopsis and related genera onto the phylogeny indicates that the evolution of these characters has been complex, and this compromises their value for defining monophyletic groups. Examples include the annual habit, alternate leaves, winged fruits, red or brown basal spots on the yellow ligules, and four-lobed disk floret corollas.  相似文献   

20.
The Asian (nandid) and Afro‐Neotropical (polycentrid) leaffishes represent two superficially similar, but historically poorly diagnosed families – a situation resulting in a convoluted systematic history. Here, and including for the first time in a molecular study all leaffish genera, we generate a hypothesis of the phylogenetic history of both groups. We analyse a multilocus molecular data set encompassing 257 acanthomorph taxa, carry out a survey and assessment of selected osteological characters for the polycentrid leaffishes and also provide a reanalysis of previously published morphological data. Our results confirm: (1) that the Polycentridae and Nandidae are only remotely related, and hence, the classic leaffishes are diphyletic; (2) that the Polycentridae is monophyletic, with new skeletal synapomorphies being congruent with molecular data in placing the enigmatic Afronandus – a taxon that thus far has never been included in any molecular study – as sistergroup to the remaining genera; (3) the monophyly of the Nandidae + Badidae and their inclusion into a larger monophyletic group – along with the Pristolepididae, Anabantoidei and Channoidei – comprising the Labyrinthici sensu Rosen & Patterson. We also review the morphological and molecular evidence for both the conflicting placement of Pristolepis and the putative sistergroup relationship between the labyrinth fishes (Anabantoidei) and snakeheads (Channoidei).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号