首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perceptual and neural olfactory similarity in honeybees   总被引:3,自引:1,他引:2       下载免费PDF全文
The question of whether or not neural activity patterns recorded in the olfactory centres of the brain correspond to olfactory perceptual measures remains unanswered. To address this question, we studied olfaction in honeybees Apis mellifera using the olfactory conditioning of the proboscis extension response. We conditioned bees to odours and tested generalisation responses to different odours. Sixteen odours were used, which varied both in their functional group (primary and secondary alcohols, aldehydes and ketones) and in their carbon-chain length (from six to nine carbons).The results obtained by presentation of a total of 16 × 16 odour pairs show that (i) all odorants presented could be learned, although acquisition was lower for short-chain ketones; (ii) generalisation varied depending both on the functional group and the carbon-chain length of odours trained; higher generalisation was found between long-chain than between short-chain molecules and between groups such as primary and secondary alcohols; (iii) for some odour pairs, cross-generalisation between odorants was asymmetric; (iv) a putative olfactory space could be defined for the honeybee with functional group and carbon-chain length as inner dimensions; (v) perceptual distances in such a space correlate well with physiological distances determined from optophysiological recordings of antennal lobe activity. We conclude that functional group and carbon-chain length are inner dimensions of the honeybee olfactory space and that neural activity in the antennal lobe reflects the perceptual quality of odours.  相似文献   

2.
We investigated recognition and identification of wine-relevant odours as a function of domain-specific expertise. Eleven wine experts and 11 wine novices participated in tasks measuring olfactory threshold, odour recognition, odour identification, and consistency of odour naming. Twenty-four wine-relevant odorants were sampled orthonasally by each participant in the semantic (identification; consistency of naming) and episodic (recognition) memory tasks. Results showed superior olfactory recognition by expert wine judges, despite their olfactory sensitivity and bias measures being similar to those of novices. Contrary to predictions based on reports of an association between odour memory and semantic processing, wine experts did not perform better than novices on the verbal memory tasks. Further, ability to recognize odours and ability to name odours were not positively correlated, although the novices' data showed a trend in this direction. The results imply that the source of superior odour recognition in wine experts was not enhanced semantic memory and linguistic capabilities for wine-relevant odours. One interpretation of the data is that wine experts were less susceptible than wine novices to verbal overshadowing. When forced to identify the odorants, experts' superior perceptual skills protected them from verbal interference, whereas novices' generated verbal representations of the odours were emphasized at the expense of the odorant itself. This has implications for training in wine-evaluation skills.  相似文献   

3.

Background

The honeybee has to detect, process and learn numerous complex odours from her natural environment on a daily basis. Most of these odours are floral scents, which are mixtures of dozens of different odorants. To date, it is still unclear how the bee brain unravels the complex information contained in scent mixtures.

Methodology/Principal Findings

This study investigates learning of complex odour mixtures in honeybees using a simple olfactory conditioning procedure, the Proboscis-Extension-Reflex (PER) paradigm. Restrained honeybees were trained to three scent mixtures composed of 14 floral odorants each, and then tested with the individual odorants of each mixture. Bees did not respond to all odorants of a mixture equally: They responded well to a selection of key odorants, which were unique for each of the three scent mixtures. Bees showed less or very little response to the other odorants of the mixtures. The bees'' response to mixtures composed of only the key odorants was as good as to the original mixtures of 14 odorants. A mixture composed of the other, non-key-odorants elicited a significantly lower response. Neither an odorant''s volatility or molecular structure, nor learning efficiencies for individual odorants affected whether an odorant became a key odorant for a particular mixture. Odorant concentration had a positive effect, with odorants at high concentration likely to become key odorants.

Conclusions/Significance

Our study suggests that the brain processes complex scent mixtures by predominantly learning information from selected key odorants. Our observations on key odorant learning lend significant support to previous work on olfactory learning and mixture processing in honeybees.  相似文献   

4.
The fact that most types of sensory stimuli occur naturally over a large range of intensities is a challenge to early sensory processing. Sensory mechanisms appear to be optimized to extract perceptually significant stimulus fluctuations that can be analysed in a manner largely independent of the absolute stimulus intensity. This general principle may not, however, extend to olfaction; many studies have suggested that olfactory stimuli are not perceptually invariant with respect to odour intensity. For many animals, absolute odour intensity may be a feature in itself, such that it forms a part of odour identity and thus plays an important role in discrimination alongside other odour properties such as the molecular identity of the odorant. The experiments with honeybees reported here show a departure from odour-concentration invariance and are consistent with a lower-concentration regime in which odour concentration contributes to overall odour identity and a higher-concentration regime in which it may not. We argue that this could be a natural consequence of odour coding and suggest how an 'intensity feature' might be useful to the honeybee in natural odour detection and discrimination.  相似文献   

5.
Odours are received by olfactory receptors, which send their axons to the first sensory neuropils, the antennal lobes (in insects) or the olfactory bulb (in vertebrates). From here, processed olfactory information is relayed to higher-order brain centres. A striking similarity in olfactory systems across animal phyla is the presence of glomeruli in this first sensory neuropil. Various experiments have shown that odours elicit a mosaic of activated glomeruli, suggesting that odour quality is coded in an 'across-glomeruli' activity code. In recent years, studies using optical recording techniques have greatly improved our understanding of the resulting 'across-glomeruli pattern', making it possible to simultaneously measure responses in several, often identifiable, glomeruli. For the honeybee Apis mellifera, a functional atlas of odour representation is being created: in this atlas, the glomeruli that are activated by different odorants are named. However, several limitations remain to be investigated. In this paper, we review what optical recording of odour-evoked glomerular activity patterns has revealed so far, and discuss the necessary next steps, with emphasis on the honeybee.  相似文献   

6.
7.
The presence of background odour was found to have a small but significant effect on the sensitivity of the antennal olfactory system of houseflies, Musca domestica Linnaeus (Diptera: Muscidae), to new pulses of odour. We show that cross-adaptation and cross-sensitization between a background odour of (+/-)-1-octen-3-ol and pulses of (+/-)-1-octen-3-ol, 2-pentanone and R-(+)-limonene can occur, confirming that olfactory receptor cells are sensitive to different odours. Background odour can increase the responses to low concentration odour pulses and decrease the responses to higher concentration odour pulses. It is suggested that background odour has a larger effect on olfactory receptor cells that respond with a tonic increase of spike frequency, giving information about the level of odour concentration, i.e. the 'static' environment. Cells that respond in a phasic way only provide information on the dynamics of the olfactory environment.  相似文献   

8.
Primary olfactory neuronal cultures exposed to odorant stimulation have previously exhibited concentration-related effects in terms of intracellular cAMP levels and adenylate cyclase activity [Ronnett, G.V., Parfitt, D.J., Hester, L.D. & Snyder, S.H. (1991) PNAS88, 2366-2369]. Maximal stimulation occurred for intermediate concentrations, whereas AC activity declined for both low and high odorant concentrations. We suspected that this behavior might be ascribed to the intrinsic response of the first molecular species concerned by odorant detection, i.e. the olfactory receptor itself. In order to check this hypothesis, we developed an heterologous expression system in mammalian cells to characterize the functional response of receptors to odorants. Two mammalian olfactory receptors were used to initiate the study, the rat I7 olfactory receptor and the human OR17-40 olfactory receptor. The cellular response of transfected cells to an odorant stimulation was tested by a spectrofluorimetric intracellular calcium assay, and proved in all cases to be dose-dependent for the known ligands of these receptors, with an optimal response for intermediate concentrations. Further experiments were carried out with the rat I7 olfactory receptor, for which the sensitivity to an odorant, indicated by the concentration yielding the optimal calcium response, depended on the carbon chain length of the aldehydic odorant. The response is thus both ligand-specific and dose-dependent. We thus demonstrate that a differential dose-response originates from the olfactory receptor itself, which is thus capable of efficient discrimination between closely related agonists.  相似文献   

9.
10.
The foraging behaviour of bumble bees is well documented for nectar and/or pollen gathering, but little is known about the learning processes underlying such behaviour. We report olfactory conditioning in worker bumble bees Bombus terrestris L. (Hymenoptera: Apidae) obtained under laboratory conditions on restrained individuals. The protocol was adapted from the proboscis extension conditioning previously described in the honey bee Apis mellifera L. Bumble bees were found to be able to learn a pure odorant when it was presented in paired association with a sugar reward, but not when odour and reward were presented in an explicitly unpaired procedure. This suggests an associative basis for this olfactory learning. Bumble bees showed similar conditioning abilities when stimulated with two different floral odours. An effect of the sugar reward concentration on the learning performances was found.  相似文献   

11.
The value of olfactory enrichment for captive-housed animals is now well recognised. Large cats have been shown to benefit from the introduction of odours to their captive environment, but to date the effect of odour introduction on the behaviour of small cats remains unknown. This study investigated the behaviour of six zoo-housed black-footed cats, Felis nigripes, in response to four odours (no odour [control], nutmeg, catnip and body odour of prey) introduced individually on cloths into the animals’ pens over a period of 5 days. It was hypothesised that the cats’ behaviour would differ significantly between the control and experimental odours and that interest in the experimental odours would wane over time. All of the experimental odours influenced the cats’ behaviour, resulting in an increase in the amount of time that the animals spent in active behaviours, i.e. moving (average increase of 8.3%), grooming (average increase of 5.9%), exploring the cloth (average increase of 10.9%) and exploring the pen (average increase of 9.2%). The experimental odours also resulted in a decrease in the amount of time that the cats spent in sedentary behaviours, i.e. standing (average decrease of 2.8%), sitting (average decrease of 5.2%) and resting (average decrease of 25.9%). Nutmeg exerted less of an effect on the cats’ behaviour than catnip or odour of prey. The cats’ response to all of the experimental odours waned over the course of the 5-day observation period, suggesting that the animals habituated to the stimuli. The results highlight the potential for odour to be employed as a method of environmental enrichment for small captive-housed felids, if presented in an appropriate manner.  相似文献   

12.
In several mammalian species, prenatal exposure to odours can elicit later positive consummatory behaviour in response to substrates bearing that odorant. In birds, the sense of smell has been considerably underestimated, and very little is known about the effects of early sensory experience on the regulation of feeding behaviour. We tested the hypothesis that the feeding behaviour of the domestic chicken could be regulated by olfactory learning during the embryonic life. To that end, chicken embryos were exposed to an olfactory stimulus (blend of essential oil of orange and nature identical vanillin) from embryonic day (ED) 12 to ED20, and chicks were tested between 4 and 9 d of age. In short‐term choice tests, at day 4 and 5, chickens previously exposed to a low concentration (LC) of the olfactory stimulus spent a higher proportion of time eating a familiar or an unfamiliar food bearing the olfactory stimulus compared to non‐exposed control chickens. Conversely, chickens previously exposed to a high concentration (HC) of the olfactory stimulus were found to avoid all foods bearing the olfactory stimulus. On a 24‐ h time scale at day 7–8, LC and HC birds, but not controls, ingest significantly less familiar food containing the olfactory stimulus. This result indicated a long‐term effect of the early olfactory experience on feeding preferences. We demonstrated that chickens can utilize information from their pre‐hatch chemosensory environment to guide their later feeding behaviour. A pre‐hatch effect of the intensity of odour signals in the regulation of feeding behaviour is reported here for the first time.  相似文献   

13.
Most animals rely on olfaction to find sexual partners, food or a habitat. The olfactory system faces the challenge of extracting meaningful information from a noisy odorous environment. In most moth species, males respond to sex pheromone emitted by females in an environment with abundant plant volatiles. Plant odours could either facilitate the localization of females (females calling on host plants), mask the female pheromone or they could be neutral without any effect on the pheromone. Here we studied how mixtures of a behaviourally-attractive floral odour, heptanal, and the sex pheromone are encoded at different levels of the olfactory pathway in males of the noctuid moth Agrotis ipsilon. In addition, we asked how interactions between the two odorants change as a function of the males' mating status. We investigated mixture detection in both the pheromone-specific and in the general odorant pathway. We used a) recordings from individual sensilla to study responses of olfactory receptor neurons, b) in vivo calcium imaging with a bath-applied dye to characterize the global input response in the primary olfactory centre, the antennal lobe and c) intracellular recordings of antennal lobe output neurons, projection neurons, in virgin and newly-mated males. Our results show that heptanal reduces pheromone sensitivity at the peripheral and central olfactory level independently of the mating status. Contrarily, heptanal-responding olfactory receptor neurons are not influenced by pheromone in a mixture, although some post-mating modulation occurs at the input of the sexually isomorphic ordinary glomeruli, where general odours are processed within the antennal lobe. The results are discussed in the context of mate localization.  相似文献   

14.
We have studied the effect of concanavalin A (Con A) on the rat electro-olfactogram response to several odorants. Each odorant was applied over a range of concentrations. For hydrophobic odorants whose response was affected by Con A, the diminution in response was maximal at odorant concentrations of about 1 microM in the olfactory mucus. The (odour) concentration-dependence of the change is compatible with the idea that Con A inactivates one or more types of olfactory receptor that normally bind odorants with dissociation constants of the order of 100 nM. With hydrophilic odorants we had to apply concentrations very much higher than this to elicit any response from the system. At these high concentrations we could observe Con A-induced diminutions in response.  相似文献   

15.
Jumping spiders (Salticidae) are known for having good eyesight, but the extent to which they rely on olfaction is poorly understood. Here we demonstrate for the first time that olfactory pheromones are used by two species from the salticid genus Cyrba (C. algerina and C. ocellata). Using a Y-shape olfactometer, we investigated the ability of adult males and females of both species to discriminate between mate and non-mate odour. A hidden spider or a spider’s draglines (no spider present) were used as odour sources. There was no evident response by females of either Cyrba species to any tested odour. Males of both species chose odour from conspecific females, or their draglines, significantly more often than the no-odour control, but there was no evident response by males to any of the other odours (conspecific male and heterospecific female). Our findings demonstrate that C. algerina and C. ocellata males can make sex- and species-specific discriminations even when restricted to using olfaction alone. Also, by showing that draglines can be a source of olfactory pheromones, our findings illustrate the difficulty of ruling out olfaction when attempting to test for chemotactile cues.  相似文献   

16.
The expression of a subset of mammalian genes is subject to parent of origin effects (POE), most of which can be explained by genomic imprinting. Analysis of mutant animals has demonstrated that a number of imprinted genes influence brain development and behaviour. Here we provide evidence for POE on olfactory related behaviour and sensitivity to maternal odour cues. This was investigated by examining the odour preference behaviour of reciprocal cross F(1) mice made by embryo transfer to genetically unrelated foster parents. We determined that both adult males and females show an avoidance of female urinary odours of their genetic maternal but not paternal origin. This was found not to be due to any previous exposure to these odours or due to self-learning, but may be related to direct effects on the olfactory system, as reciprocal F(1) males show differential sensitivity to female odour cues. Currently the most robust theory to explain the evolution of imprinting is the conflict hypothesis that focuses on maternal resource allocation to the developing foetus. Kinship considerations are also likely to be important in the selection of imprinted genes and we discuss our findings within this context, suggesting that imprinted genes act directly on the olfactory system to promote post-weaning dispersal from the natal area.  相似文献   

17.
The study of olfactory lateralization in human subjects has given rise to many publications, but the findings have often been contradictory. Most research used either birhinal or monorhinal stimulations, but rarely a comparison between these two types of olfactory input. The aim of this study was to investigate variations in psychophysiological measurements and test each side of the nose and binasal performances. This work used bilateral electrodermal recordings and compared the skin conductance responses (SCRs) for a pleasant odorant (isoamyl acetate) and an unpleasant odorant (triethylamine) in a suprathreshold concentration on 30 dextral subjects (16 females and 14 males). First, the results reported no differences between the two nostrils but differences in electrodermal activity (EDA) in relation to the odorant: 1) higher amplitude in response to unpleasant versus pleasant odorant; 2) no differences between monorhinal and birhinal stimulations for the unpleasant odour but higher amplitude in response to birhinal versus monorhinal for the pleasant odour. Second, the results showed constant bilateral differences in EDA recordings and are discussed in terms of hemispheric asymmetry activation.  相似文献   

18.
Floral to green: mating switches moth olfactory coding and preference   总被引:1,自引:0,他引:1  
Mating induces profound physiological changes in a wide range of insects, leading to behavioural adjustments to match the internal state of the animal. Here, we show for the first time, to our knowledge, that a noctuid moth switches its olfactory response from food to egg-laying cues following mating. Unmated females of the cotton leafworm (Spodoptera littoralis) are strongly attracted to lilac flowers (Syringa vulgaris). After mating, attraction to floral odour is abolished and the females fly instead to green-leaf odour of the larval host plant cotton, Gossypium hirsutum. This behavioural switch is owing to a marked change in the olfactory representation of floral and green odours in the primary olfactory centre, the antennal lobe (AL). Calcium imaging, using authentic and synthetic odours, shows that the ensemble of AL glomeruli dedicated to either lilac or cotton odour is selectively up- and downregulated in response to mating. A clear-cut behavioural modulation as a function of mating is a useful substrate for studies of the neural mechanisms underlying behavioural decisions. Modulation of odour-driven behaviour through concerted regulation of odour maps contributes to our understanding of state-dependent choice and host shifts in insect herbivores.  相似文献   

19.
《Animal behaviour》1988,36(2):541-553
This study demonstrates that ferrets can use variations in odours from anal sac secretions as a communication system. Odour preference tests showed that ferrets can discriminate between male and female ferret anal sac odours, between strange and familiar, familiar and their own, and fresh and 1-day-old odours. They did not discriminate between fresh and 2-h-old odours, nor did male ferrets discriminate between the odours of oestrous and anoestrous females. Ferrets were more attracted to the odours of the opposite sex than to those of their own sex. When faced by an opponent, male ferrets were more aggressive in the presence of their own rather than their opponent's odour, and less aggressive with their opponent's odour than with that of a known, dominant animal's odour. These results are consistent with both a sex attraction role and a territorial defence role for anal sac odours. A scent-matching mechanism for territorial defence is supported, although a neighbour-neighbour recognition/avoidance mechanism cannot be rejected. Gas chromatography revealed sexually and individually distinct profiles of volatile compounds in anal sac extracts, but no consistent seasonal trends. Females had high concentrations of 2,3-dimethylthietane and/or 3,4-dimethyl-1,2-dithiolane. Males usually had high concentrations of indole. 2-Propylthietane was an important constituent in most individuals. These differences in concentration were significant and could provide an olfactory recognition system of sex and individual identity.  相似文献   

20.
The application of an odorant binding protein for odour control and fragrance delayed release from a textile surface was first explored in this work. Pig OBP-1 gene was cloned and expressed in Escherichia coli, and the purified protein was biochemically characterized. The IC50 values (concentrations of competitor that caused a decay of fluorescence to half-maximal intensity) were determined for four distinct fragrances, namely, citronellol, benzyl benzoate, citronellyl valerate and ethyl valerate. The results showed a strong binding of citronellyl valerate, citronellol and benzyl benzoate to the recombinant protein, while ethyl valerate displayed weaker binding. Cationized cotton substrates were coated with porcine odorant binding protein and tested for their capacity to retain citronellol and to mask the smell of cigarette smoke. The immobilized protein delayed the release of citronellol when compared to the untreated cotton. According to a blind evaluation of 30 assessors, the smell of cigarette smoke, trapped onto the fabrics’ surface, was successfully attenuated by porcine odorant binding protein (more than 60 % identified the weakest smell intensity after protein exposure compared to β-cyclodextrin-treated and untreated cotton fabrics). This work demonstrated that porcine odorant binding protein can be an efficient solution to prevent and/or remove unpleasant odours trapped on the large surface of textiles. Its intrinsic properties make odorant binding proteins excellent candidates for controlled release systems which constitute a new application for this class of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号