首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The histochemical pattern of red, pink and white muscle of fish living in fresh, brackish, and salt water is reported. The muscle fibres were stained routinely during the year for lactate dehydrogenase (LDH), menadione α-glycerophosphate dehydrogenase (Mα—GPDH), succinic dehydrogenase (SDH), myosin adenosine triphosphatase (myosin ATPase), phosphorylase, lipids and glycogen. The pink and red muscles contain more glycogen and lipids and have a higher SDH activity, which is in accord with their aerobic metabolism and function in sustained swimming activity. The acid labile myosin ATPase activity characteristic of fast twitch fibres is present in the white fibres of most species, however in the white muscle of Gobius paganellus the enzyme activity is stable to both acid and alkali and, in addition, there is a scattered distribution of different fibre types in red and, especially, pink muscle. A study of seasonal variation patterns of myosin ATPase in white muscle of mugilidae over a period of two years has demonstrated, in late summer, the appearance of new small diameter fibres, with a high acid stable enzyme activity, that develop into the large diameter acid labile fibres.  相似文献   

2.
Carp show a partial compensation in metabolic rate and activity following temperature acclimation. In the present study crucian carp, Carassius carassius , were acclimated for eight weeks to either 2deg; C or 28deg; C. The effects of temperature acclimation on muscle fibre ultrastructure has been investigated. The fractional volume (%) of each fibre type occupied by mitochondria and myofibrils was determined using a point counting morphometric method. Mitochondrial density was found to be higher in the muscles of cold (red fibres 25%; pink fibres 20% and white fibres 4%) than in those of warm acclimated fish (red fibres 14%, pink fibres 11%, white fibres 1%). The proportion of subsarcolemmal to intra-myofibrillar mitochondria was significantly lower in the red fibres of cold acclimated fish. Metabolic compensation to low temperatures are therefore associated with an increase in the number of mitochondria per cell. In contrast, the fractional volume occupied by myofibrils actually decreased following cold acclimation. Evidence is reviewed that temperature compensation of contractile activity results from qualitative rather than quantitative changes in myofibrillar proteins.  相似文献   

3.
Using cytochrome C-oxidase staining, different types of somatic musculature were clearly distinguished in the gymnotoid fish Eigenmannia virescens. Except for a few thin fibres in the region of the horizontal septum, which stained faintly, no others in the trunk muscle stained. Strong staining appeared in the fibres of the anal fin muscles. According to the classification of fish musculature into white, intermediate and red, only the locomotory organ of this fish has red fibres, whereas the trunk muscles are white. The red muscles along the horizontal septum, found in all other fish which have been investigated in this respect, seem to be absent. This is noteworthy since the anal fin alone provides locomotion while the trunk muscles are responsible for posture only.  相似文献   

4.
The activity of the antioxidant enzymes superoxide dismutase and glutathione peroxidase in loach and sturgeon embryogenesis as well as in red and white skeletal muscles of loach was studied. The specific activity of cytoplasmic and mitochondrial forms of superoxide dismutase in developing sturgeon embryos was higher than in loach embryos, which may be due to oxygen conditions under which these species develop in nature. A similar dependence was also observed for the activity of glutathione peroxidase in embryos of these fish species. A comparative study of specific superoxide dismutase activity in loach and sturgeon embryos and in loach skeletal muscles showed that the activity of cytoplasmic superoxide dismutase is maximum in red and white muscles and minimum in loach embryos, whereas the activity of the mitochondrial form of this enzyme is maximum in red skeletal muscles.  相似文献   

5.
AMP-deaminase activity was measured in white muscle from a wide range of fish, including one cyclostome, 13 chondrosteans, and one teleost to elucidate the pattern of the AMP-deaminase activity in white muscle of fish. Compared to a mammalian (rat) muscle extract, low enzyme activities are found in the cyclostome and two elasmobranchs from two families (Scyliorhinidae, Hexanchidae). In contrast, higher AMP-deaminase activities, similar to mammals, are expressed in Squalidae, all families of skates, Chimaeridae and in the teleostean fish. We then compared AMP-deaminase activities in red and white muscles from two representative elasmobranch fish, the dogfish (Scyliorhinus canicula) and the thornback ray (Raja clavata). The fibre type composition and distribution of the locomotory musculature were determined in these two elasmobranchs to establish a relationship between the morphology, the type of fibres of the locomotion-implicated muscles and the AMP-deaminase activity. Experimental data are discussed with respect to the layout of fibres in the myotome. In both species, three fibre types were identified. In the two fish myotomes, most of the axial muscles are white fibres while red fibres constitute a thin sheet. Some differences were observed between the two species in the distribution of intermediate fibres: in dogfish, these are located between the red and white fibres; in thornback ray, some are dispersed within the white fibre region, while others form an intermediary layer like in dogfish. These results suggest that in the course of evolution, an amplification of the AMP-deaminase activity in muscle was coupled with increase of complexity of the muscular structure.  相似文献   

6.
Summary The pink muscle of several Teleosts was examined immunohistochemically using antisera specific for the myosins of red and white muscle, and histochemically using various methods for demonstrating myosin ATPase (in ATPase) activity.In the catfish the pink muscle consists of 2 different layers of fibres. The superficial layer has a low mATPase activity after both acid and alkali pre-incubation, whereas the deeper layer has a high mATPase activity after acid and alkali pre-incubation, being more resistent to these conditions even than is the white muscle.In the trout the pink muscle is composed of fibres with the same mATPase activity as in the superficial pink muscle of the catfish, whereas in the rock goby, goldfish, mullet and guppy the pink muscle is like the deep pink layer of the catfish.Immunohistochemically the fibres of the pink muscle behave like the white muscle fibres except in the guppy and rock goby in which at the level of the lateral line there occurs a transition zone between red and pink fibres. The fibres of this region react with both anti-fast and (to a lesser extent) anti-slow myosin antisera, and have a mATPase activity which, going from the superficial to the deeper fibres, gradually loses the red muscle characteristics to acquire those of the main pink muscle layer.  相似文献   

7.
Parvalbumin isotypes PA II, PA III, PA IVa, and PA IVb were isolated by chromatography from trunk white muscle of barbel and physicochemically characterized. Electrospray ionization mass spectroscopy revealed that PA II has a lower molecular weight than the other isotypes and that PA IVa and PA IVb each consist of two subforms. Isotype distribution was studied by polyacrylamide gel electrophoresis. In adult fish, the total parvalbumin titre decreased and the isotype distribution varied from the anterior to the posterior myotomes. In the course of barbel development, the total parvalbumin titre increased rapidly as fish standard length increased from 1·3 to 5 cm; then sloped down gently as the length increased to 60 cm. At least six parvalbumin isotypes were identified, three of which are different forms (a, b, and c) of PA II. These three forms were present together at the larval stage, but PA IIc and chiefly PA IIb appeared as early isotypes, contrary to PA IIa which was present until the adult period. Later PA IVb accounted for up to 90% of the total parvalbumin content; PA III and PA IVa are minor adult isotypes. Temporal and spatial variations in the total parvalbumin titre and in the differential expression of barbel parvalbumin isotypes very likely reflected the functional requirements of the fish axial musculature according to fish size and myotome location. Physiologically, the larval isotypes could promote faster relaxation of fast fibres than the adult isotypes, and hence favour shorter contraction times.  相似文献   

8.
The innervation pattern and fibre types of the axial musculature of two closely related catfish species with differing lifestyles, Ictalurus nebulosus (Lesueur) and I. punctatus (Rafinesque) were investigated. Both fish displayed the multiple innervation pattern in the red muscle. However, the white muscle of I. nebulosus demonstrated terminal innervation while I. puncrurus displayed multiply innervated white muscle fibres. Fibre typing utilizing histochemical techniques for glyco-gen, lipid, succinic dehydrogenase and glucose-6-phosphate dehydrogenase revealed the typical teleostean distribution of red, intermediate and white muscle fibres in both fish. Staining was greatest in the red muscle fibres and least in the white muscle fibres. The white muscle fibres of I. punctatus stained slightly more for lipid than the white fibres of I. nebulosus which may be correlated with a greater aerobic capacity related to lifestyle and possibly innervation.  相似文献   

9.
A study has been made of the maximum sustained swimming speed of Crucian carp Carassius carassius (L.) using a fixed velocity technique. The data obtained from swimming tests on 214 carp have been analysed using the method of probit analysis. The 50% fatigue level for 13–16 cm fish acclimated to 9.5±0.6°C has been estimated to be 3.35 lengths/sec. Biochemical measurements have been made on the red and white myotomal muscles and liver of fish subjected to both varying intensities of sustained swimming and short periods of vigorous swimming. Free creatine was found to increase only during high speed swimming in the white muscle. Elevated lactate concentrations occurred at both low and high sustained swimming speeds in the red superficial muscle but not during short periods of strenuous exercise. Glycogen depletion from the red musculature also only took place at the sustained swimming speeds investigated. The reverse situation was operative in the white muscle, significant glycogen depletion occurring only at the highest swimming speed studied. Lactate levels were only significantly different from non-exercised fish in the fish swimming at the higher velocities. The effects of periods of recovery following 200 min of sustained swimming were also investigated. White muscle lactate was at a higher level than non-exercise fish 5 h post-exercise, while both red muscle glycogen and lactate rapidly returned to pre-exercise concentrations. Biochemical measurements on the myotomal muscle types have been discussed in relation to the swimming performance of the fish and the division of labour between red and white fibres.  相似文献   

10.
Sound production in carapid fishes results from the action of extrinsic muscles that insert into the swim bladder. Biochemical, histochemical and morphological techniques were used to examine the sonic muscles and compare them with epaxial muscles in Carapus acus. Sonic fibres are thicker than red and thinner than white epaxial fibres, and sonic fibres and myofibrils exhibit an unusual helicoidal organization: the myofibrils of the centre are in a straight line whereas they are more and more twisted towards the periphery. Sonic muscles have both features of red (numerous mitochondria, high glycogen content) and white (alkali-stable ATPase) fibres. They differ also in the isoforms of the light chain (LC3) and heavy chain (HC), in having T tubules at both the Z-line and the A-I junction and in a unique parvalbumin isoform (PAI) that may aid relaxation. All these features lead to the expression of two assumptions about sound generation: the sonic muscle should be able to perform fast and powerful contractions that provoke the forward movement of the forepart of the swim bladder and the stretching and "flapping" of the swim bladder fenestra; the helicoidal organization allows progressive drawing of the swim bladder fenestra which emits a sound when rapidly released in a spring-like manner.  相似文献   

11.
Functional morphology including the origin, insertion, and innervation of the respiratory muscles in relation to buccal pressure pump and opercular suction pumps in a fresh-water bottom dwelling siluroid fish, Bagarius bagarius have been studied. Histochemical studies were made on the succinic dehydrogenase activity of adductor mandibulae, retractor tentaculi, levator operculi, dilatator operculi, adductor operculi, intermandibularis, interhyoideus, hyohyoideus superior and constrictor branchialis. The intensity of reaction reveals the presence of three types of muscle fibres in some of the respiratory muscles. The muscle containing red muscle fibres are mostly innervated by the branches of the VIIth cranial nerve. The retractor tentaculi consists of superficial white muscle fibres and the interior part is dominated by red muscle fibres. The muscles (adductor operculi, levator operculi, dilatator operculi, interhyoideus, hyohyoideus superior) concerned with the opercular suction pumps are of mixed type and consist of white and red muscle fibres, whereas adductor mandibulae and intermandibularis are made up entirely of white muscle fibres. The adductor muscle bundles of the constrictor branchialis, which are responsible for movement of gill filaments, are dominated by the red muscle fibres. The abductor part, however, is made up entirely of white muscle fibres.  相似文献   

12.
Our investigation of muscle tissue of fishes, inhabiting the regions with unfavorable ecological conditions (the river Volga), permitted to select four types of degenerative changes in muscle tissue. These alterations are associated with both the phylogenetic status of fish species and ecological dispositions of species. Using different methods of investigation several types of muscle destruction were shown. I. Destruction of myofibrillar apparatus (lysis of protofibrils), with sarcolemma remaining intact. II. Destruction of the myofibrillar apparatus, with sarcolemma, T-system, and sarcoplasmic reticulum being disrupted. III. Invasion of muscle fibers by lymphoid cells and macrophages; with sarcolemma being intact. IV. Lysis of sarcolemma by proteolytic enzymes of lymphoid elements; with muscle fibers being disintegrated. The objects of this study were muscle tissues of 8 fish species (Acipenser gueldenstadti, A. stellatus, A. ruthenus, Lucioprerca lucioperca, Esox lucius, Perca fluviatilis, Tinca tinca, Caprinus carpio). The white muscle degeneration followed the patterns of types I and II, while that of red muscles corresponded to types III and IV. White and red muscles of the Chondrostei fishes (sturgeon, stellate, sterlet) undergo destruction more frequently, than muscles of the Holostei fishes (pike, perch, zander, sazan, tench). Degenerative processes of white and red muscles of fish-eating fishes were more obvious than those of herbivorous fishes.  相似文献   

13.
To test the hypothesis that white muscle fibre portions of the myotomes are used at sustainable swimming speeds, skipjack tuna, Katsuwonus pelamis , were forced to swim against various current velocities in a water tunnel while electrical activity of the red and white muscle fibres was simultaneously recorded. Eight fish were tested, five fish graded white muscle fibres into activity at swimming speeds above their minimum hydrostatic equilibrium speed, but well below the estimated maximum sustainable swimming speed of skipjack tuna. Three other fish showed white muscle fibre activity at minimum swimming speeds, a possibly abnormal condition.  相似文献   

14.
The dependence of adenosine-triphosphatase (ATPase) and succinic dehydrogenase (SDH) histochemical reactions on the pH of the preincubation medium was studied in serial cross sections of 1- to 6-month-old rat extensor digitorum longus (EDL) and soleus (SOL) muscles. The use of a wide spectrum of pH values confirmed the previous results showing that: (1) according to their ATPase and SDH reactions 3 types of extrafusal muscle fibres, i.e., fast-twitch glycolytic (FG), fast-twitch oxidative-glycolytic (FOG) and slow-twitch oxidative (SO) and 3 types of intrafusal muscle fibres, i.e. typical and intermediate nuclear bag fibres and nuclear chain fibres were observed; (2) only acid preincubation (pH 4.35) is necessary to demonstrate the reversal of the ATPase reaction; while (3) alkali preincubation (pH 10.4) does not provide any new important information as compared with ATPase without preincubation. Furthermore, it was shown that: (4) fast-twitch muscle fibres exhibited high ATPase activity on preincubations at pH 4.9 to 10.4, slow-twitch fibres had very high ATPase activity on preincubation at pH 4.3 and 4.5; (5) after preincubation at pH 4.5 two types of FOG fibres were observed, differing in their ATPase activity; (6) in both muscles there were fibres with intermediate ATPase activity both after acid and/or alkali preincubations; (7) the intrafusal muscle fibres exhibited some specific characteristics when compared with extrafusal fibres. In contrast to the ATPase reactions, SDH activity was decreased equally, in both extra- and intrafusal fibres, with increasing acidity and alkality of the preincubation medium.  相似文献   

15.
The pink muscle of several Teleosts was examined immunohistochemically using antisera specific for the myosins of red and white muscle, and histochemically using various methods for demonstrating myosin ATPase (mATPase) activity. In the catfish the pink muscle consists of 2 different layers of fibres. The superficial layer has a low mATPase activity after both acid and alkali pre-incubation, whereas the deeper layer has a high mATPase activity after acid and alkali pre-incubation, being more resistent to these conditions even than is the white muscle. In the trout the pink muscle is composed of fibres with the same mATPase activity as in the superficial pink muscle of the catfish, whereas in the rock goby, goldfish, mullet and guppy the pink muscle is like the deep pink layer of the catfish. Immunohistochemically the fibres of the pink muscle behave like the white muscle fibres except in the guppy and rock goby in which at the level of the lateral line there occurs a transition zone between red and pink fibres. The fibres of this region react with both anti-fast and (to a lesser extent) anti-slow myosin antisera, and have a mATPase activity which, going from the superficial to the deeper fibres, gradually loses the red muscle characteristics to acquire those of the main pink muscle layer.  相似文献   

16.
A histochemical study of the myotomal muscles in the grass pickerel, Esox americanus vermiculatus , and the muskellunge, E. masquinongy , was performed using actomyosin ATPase and NADH diaphorase activities. Three fibre types, i.e., red, white and pink were distinguished on the basis of their enzyme activities. White muscle fibres comprised the bulk of the myotomal musculature. The relative proportion of red muscle fibres was greater in the caudal region than in more anterior regions of the body. Pink fibres formed only a few layers between red and white. These findings are discussed in relation to the possible functional significance of the muscle fibre types in swimming and feeding behaviour in these species.  相似文献   

17.
Summary Electromyography has been used to study the recruitment of red, pink and white muscle fibres of the Mirror carp at different swimming speeds. Locomotion below 0.3–0.5 L/S (lengths per second) is achieved primarily by fin movements after which the red myotomal muscle becomes active. Pink muscle fibres are the next type to be recruited at speeds around 1.1–1.5 L/S. White muscle is only used for fast cruising in excess of 2–2.5 L/S and during bursts of acceleration.Studies of the myofibrillar ATPase activities of these muscles have shown a ratio of 124 for the red, pink and white fibres respectively. The myosin low molecular weight components, which are characteristic of the myosin phenotype, have been investigated by SDS polyacrylamide electrophoresis. The light chain patterns of the pink and white muscles were identical and characteristic of the fast myosin phenotype. Red muscle myosin had a light chain pattern characteristic of slow muscles. It would appear that there is a relationship between the speed of contraction of the fibre types and the locomotory speed at which they are recruited.The activities of some enzymes of energy metabolism have also been determined in the three muscle types. Enzymes associated with oxidate metabolism have high, intermediate and low activities in the red, pink and white muscles respectively. Pyruvate kinase and lactate dehydrogenase activities were considerably higher in the pink than in either red or white muscles. It is suggested that the high capacity for anaerobic glycolysis of the pink muscle is associated with its recruitment for sustained effort at swimming speeds above which the fish can no longer meet all its energy requirements by gas exchange at the gills.Abbreviations used EDTA ethylenediamine tetraacetic acid - L/S lengths, sec–1 - LDH Lactate dehydrogenase - PFK phosphofructokinase - SDS sodium dodecyl sulphate - TCA trichloroacetic acid  相似文献   

18.
Fibre type distributions in the vastus lateralis muscles of six male subjects (age 18 to 22 years) have been compared at rest and during exercise. Exercise consisted of one leg cycling at 60% VO2 max (one leg) for 120 min. The increased contractile activity was associated with a 28.8% (p less than 0.05) decrease in the distribution of Type I fibres in the exercised leg. This change in fibre type distribution was manifested early in the exercise (15 min), and was also evident in muscle samples obtained after 60 and 120 min of activity. Reductions in the Type I fibre distribution was accompanied by an increase in the Type II fibres, specifically the Type IIA distribution (p less than 0.05). Comparable alterations in the specific fibre distribution were also found in the non exercising leg. These observations indicate that alterations in the muscle cell induced either directly or indirectly by the increased contractile activity interact with normal pre-incubation conditions to effect changes in the stability of the myofibrillar ATPase reaction. Specifically, it appears that a percentage of the Type I fibre population becomes acid labile and alkali stable.  相似文献   

19.
The cartilaginous fish Chimaera monstrosa swims slowly by means of pectoral fin movements, and fast by undulations of the tail. In order to compare the fibres in the corresponding muscles, they were studied by histochemistry and electron microscopy. Three fibre types were identified by microphotometry and morphometry. Most of the axial muscles are white fibres, containing little mitochondria and glycogen. Red fibres, with glycogen and about 5 % mitochondria constitute a thin sheet in the axial muscles, composed of one fibre layer only. Pink fibres, with intermediate amounts of glycogen and mitochondria are situated between these two types, but are often not covered by red fibres. Pectoral muscles contain numerous red and intermediate fibres, partially mixed, superficially, and white fibres deeper. Pectoral muscle red fibres contain about 25 % mitochondria, half of which are situated in subsarcolemmal accummulations. The sarcotubular system has T-tubules at the Z discs, and the terminal cisternae are partially divided by regularly spaced clefts.  相似文献   

20.
The histochemical profile of calcium activated acid stable myofibrillar ATPase (mATPase) activity in developing larval and juvenile carp was investigated. In the larval fish, differentiation of pink muscle fibres occurred after metamorphosis which was delayed by a week at 17° C compared to larvae grown at 27° C. After metamorphosis the 27° C group exhibited some small myofibres with acid stable mATPase activity in the deep white muscle. This was similar for the juvenile carp which were acclimated for more than a month at 25° C. In contrast, the cold (12° C) acclimated juvenile fish, contained very few small white muscle fibres with acid stable mATPase activity. It was also noted that the cold acclimated fish had lower background acid stable mATPase activity than the warm acclimated fish. Results indicate that after metamorphosis and more evidently in juveniles, temperature can influence the rate of myofibre hyperplasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号