首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Ikaros is a hematopoietic cell-specific zinc finger DNA binding protein that plays an important role in lymphocyte development. Genetic disruption of Ikaros results in T-cell transformation. Ikaros null mice develop leukemia with 100% penetrance. It has been hypothesized that Ikaros controls gene expression through its association with chromatin remodeling complexes. The development of leukemia in Ikaros null mice suggests that Ikaros has the characteristics of a tumor suppressor gene. In this report, we show that the introduction of Ikaros into an established mouse Ikaros null T leukemia cell line leads to growth arrest at the G0/G1 stage of the cell cycle. This arrest is associated with up-regulation of the cell cycle-dependent kinase inhibitor p27kip1, the induction of expression of T-cell differentiation markers, and a global and specific increase in histone H3 acetylation status. These studies provide strong evidence that Ikaros possesses the properties of a bona fide tumor suppressor gene for the T-cell lineage and offer insight into the mechanism of Ikaros's tumor suppressive activity.  相似文献   

4.
Through alternate splicing, the Ikaros gene produces multiple proteins. Ikaros is essential for normal hematopoiesis and possesses tumor suppressor activity. Ikaros isoforms interact to form dimers and potentially multimeric complexes. Diverse Ikaros complexes produced by the presence of different Ikaros isoforms are hypothesized to confer distinct functions. Small dominant-negative Ikaros isoforms have been shown to inhibit the tumor suppressor activity of full-length Ikaros. Here, we describe how Ikaros activity is regulated by the coordinated expression of the largest Ikaros isoforms IK-1 and IK-H. Although IK-1 is described as full-length Ikaros, IK-H is the longest Ikaros isoform. IK-H, which includes residues coded by exon 3B (60 bp that lie between exons 3 and 4), is abundant in human but not murine hematopoietic cells. Specific residues that lie within the 20 amino acids encoded by exon 3B give IK-H DNA-binding characteristics that are distinct from those of IK-1. Moreover, IK-H can potentiate or inhibit the ability of IK-1 to bind DNA. IK-H binds to the regulatory regions of genes that are upregulated by Ikaros, but not genes that are repressed by Ikaros. Although IK-1 localizes to pericentromeric heterochromatin, IK-H can be found in both pericentromeric and non-pericentromeric locations. Anti-silencing activity of gamma satellite DNA has been shown to depend on the binding of IK-H, but not other Ikaros isoforms. The unique features of IK-H, its influence on Ikaros activity, and the lack of IK-H expression in mice suggest that Ikaros function in humans may be more complex and possibly distinct from that in mice.  相似文献   

5.
6.
7.
8.
9.
10.
To ensure the B cell differentiation stage specificity of the intronic Emu element and of the locus control region (LCR) that lies downstream of the IgH chain locus, we generated transgenic mice harboring a V(H) promoter-GFP reporter gene linked to the 3'LCR region and the Emu element. By flow cytometry, GFP(+) lymphocytes were observed amongst pro-B cells (B220(+)CD43(+)CD117(+)) and at all stages of differentiation up to mature B cells (B220(+)IgM(+)IgD(+)). Expression was strictly confined to cells committed to the B lymphocyte lineage as judged by the lack of GFP(+)Thy1,2(+) cells (T lymphocytes) and GFP(+)B220(-)CD117(+)CD43(+) cells (uncommitted lymphohematopoietic progenitors). Therefore, the Emu-GFP-3'LCR transgene is not expressed by hematopoietic stem cells, begins its expression in pro-B cells and is specifically active at all stages of B cell maturation. The combination of 3' and 5' IgH regulatory elements thus appears as a potentially useful cassette in transgenes that require a stringent and early B lineage-specific expression.  相似文献   

11.
Embryonic stem cells (ESCs) can differentiate into any given cell type and therefore represent a versatile model to study the link between gene regulation and differentiation. To quantitatively assess the dynamics of enhancer activity during the early stages of murine ESC differentiation, we analyzed accessible genomic regions using STARR-seq, a massively parallel reporter assay. This resulted in a genome-wide quantitative map of active mESC enhancers, in pluripotency and during the early stages of differentiation. We find that only a minority of accessible regions is active and that such regions are enriched near promoters, characterized by specific chromatin marks, enriched for distinct sequence motifs, and modeling shows that active regions can be predicted from sequence alone. Regions that change their activity upon retinoic acid-induced differentiation are more prevalent at distal intergenic regions when compared to constitutively active enhancers. Further, analysis of differentially active enhancers verified the contribution of individual TF motifs toward activity and inducibility as well as their role in regulating endogenous genes. Notably, the activity of retinoic acid receptor alpha (RARα) occupied regions can either increase or decrease upon the addition of its ligand, retinoic acid, with the direction of the change correlating with spacing and orientation of the RARα consensus motif and the co-occurrence of additional sequence motifs. Together, our genome-wide enhancer activity map elucidates features associated with enhancer activity levels, identifies regulatory regions disregarded by computational prediction tools, and provides a resource for future studies into regulatory elements in mESCs.  相似文献   

12.
The complete chicken lysozyme gene locus is expressed copy number dependently and at a high level in macrophages of transgenic mice. Gene expression independent of genomic position can only be achieved by the concerted action of all cis regulatory elements located on the lysozyme gene domain. Position independency of expression is lost if one essential cis regulatory region is deleted. Here we compared the DNase I hypersensitive site (DHS) pattern formed on the chromatin of position independently and position dependently expressed transgenes in order to assess the influence of deletions within the gene domain on active chromatin formation. We demonstrate, that in position independently expressed transgene all DHSs are formed with the authentic relative frequency on all genes. This is not the case for position dependently expressed transgenes. Our results show that the formation of a DHS during cellular differentiation does not occur autonomously. In case essential regulatory elements of the chicken lysozyme gene domain are lacking, the efficiency of DHS formation on remaining cis regulatory elements during myeloid differentiation is reduced and influenced by the chromosomal position. Hence, no individual regulatory element on the lysozyme domain is capable of organizing the chromatin structure of the whole locus in a dominant fashion.  相似文献   

13.
14.
15.
Ikaros是一种重要的造血细胞分化与发育调控因子,其基因结构、蛋白质活性的改变与淋巴细胞白血病的发生密切相关。致癌基因c-KIT与白血病的发生有直接联系,但Ikaros与c-KIT之间的调控关系尚未见报道。本研究报道,在人急性B淋巴细胞白血病(B-acute lymphoblastic leukemia, B-ALL)细胞中,Ikaros可靶向调控c KIT基因的转录与蛋白质表达。通过在人B ALL细胞系Nalm6中分别高表达和shRNA干扰Ikaros后,qRT-PCR与 Western 印迹结果显示,Ikaros可直接抑制c-KIT基因的表达。双荧光素酶报告实验检测Ikaros及其突变体对c-KIT基因的直接靶向作用。结果显示,野生型Ikaros可明显抑制c-KIT的表达,而突变体则不能。进一步利用染色质免疫共沉淀技术(chromatin immunoprecipitation,ChIP),检测Ikaros对c-KIT上游启动子序列的结合活力。结果显示,Ikaros蛋白在c KIT的上游调控区约-500 bp处有明显的结合。Ikaros通过靶向c-KIT上游启动子,抑制c-KIT表达,抑制B-ALL细胞的增殖,为临床治疗白血病提供了新思路。  相似文献   

16.
Kuan TC  Yang TH  Wen CH  Chen MY  Lee IL  Lin CS 《Peptides》2011,32(9):1832-1839
Angiotensin-converting enzyme 2 (ACE2) has been proposed as a potential target for cardioprotection in regulating cardiovascular functions, owing to its key role in the formation of the vasoprotective peptides angiotensin-(1-7) from angiotensin II (Ang II). The regulatory mechanism of ace2 expression, however, remains to be explored. In this study, we investigated the regulatory element within the upstream of ace2. The human ace2 promoter region, from position −2069 to +20, was cloned and a series of upstream deletion mutants were constructed and cloned into a luciferase reporter vector. The reporter luciferase activity was analyzed by transient transfection of the constructs into human cardiofibroblasts (HCFs) and an activating domain was identified in the −516/−481 region. Deletion or reversal of this domain within ace2 resulted in a significant decrease in promoter activity. The nuclear proteins isolated from the HCFs formed a DNA-protein complex with double stranded oligonucleotides of the −516/−481 domain, as detected by electrophoretic mobility shift assay. Site-directed mutagenesis of this region identified a putative protein binding domain and a potential binding site, ATTTGGA, homologous to that of an Ikaros binding domain. This regulatory element was responsible for Ang II stimulation via the Ang II-Ang II type-1 receptor (AT1R) signaling pathway, but was not responsible for pro-inflammatory cytokines TGF-β1 and TNF-α. Our results suggest that the nucleotide sequences −516/−481 of human ace2 may be a binding domain for an as yet unidentified regulatory factor(s) that regulates ace2 expression and is associated with Ang II stimulation.  相似文献   

17.
18.
19.
S Carson 《Nucleic acids research》1991,19(18):5007-5014
The mouse class II major histocompatibility complex (MHC) encodes a polymorphic, multigene family important in the immune response, and is expressed mainly on mature B cells, on certain types of dendritic cells and is also inducible by gamma-interferon on antigen presenting cells. To study the regulatory elements which control this expression pattern, we have examined the chromatin structure flanking the class II MHC region, in particular during B cell differentiation. Using a panel of well-characterised mouse cell lines specific for different stages of B cell development (pre-B, B, plasma cell) as well as non-B cell lines, we have mapped the DNase I hypersensitive (DHS) sites adjacent to the mouse MHC class II region. The results presented show, for the first time that there are specific hypersensitive sites flanking the class II MHC locus during pre B cell, B cell and plasma cell stages of B cell differentiation, irrespective of the status of class II MHC expression. These hypersensitive sites are not found in T cell, fibroblast or uninduced myelomonocytic cell lines. This suggests that these DHS sites define a developmentally stable, chromatin structure, which can be used as a marker of B cell lineage commitment and may indicate that a combination of these hypersensitive sites reflect regulatory proteins involved in the immediate expression of a particular class II MHC gene or possibly control of the entire locus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号