首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A series of S-substituted 4-chloro-2-mercapto-5-methyl-benzenesulfonamides has been investigated as inhibitors of four isoforms of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), that is, the cytosolic, ubiquitous isozymes CA I and II, as well as the transmembrane, tumor-associated isozymes CA IX and XII. The new derivatives were inefficient inhibitors of isoform I (K(I)s in the range of 2.7-18.7 microM) but generally had low nanomolar affinity for the inhibition of the other three isoforms (K(I)s in the range of 2.4-214 nM against hCA II; 1.4-47.5 nM against hCA IX, and 1.7-569 nM against hCA XII, respectively). Some selectivity for the inhibition of the tumor-associated versus the cyctosolic isoform II with some of these compounds has also been evidenced. As CA IX is an important marker of tumor hypoxia and its predictive, prognostic, and druggability potentials for designing antitumor therapies were recently validated, detection of selective, potent CA IX inhibitors may be relevant in the fight against cancers overexpressing CA isozymes.  相似文献   

3.
Imine derivatives were obtained by condensation of sulfanilamide with substituted aromatic aldehydes. The Schiff bases were thereafter reduced with sodium borohydride, leading to the corresponding amines, derivatives of 4-sulfamoylphenyl-benzylamine. These sulfonamides were investigated as inhibitors of the human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms hCA I and II (cytosolic isozymes), as well as hCA IX and XII (transmembrane, tumor-associated enzymes). We noted that the compounds incorporating secondary amine moieties showed a better inhibitory activity against all CA isozymes compared to the corresponding Schiff bases. Low nanomolar CA II, IX and XII inhibitors were detected, whereas the activity against hCA I was less potent. The secondary amines incorporating sulfonamide or similar zinc-binding groups, poorly investigated chemotypes for designing metalloenzyme inhibitors, may offer interesting opportunities in the field due to the facile preparation and possibility to explore a vast chemical space.  相似文献   

4.
An inhibition study of the human cytosolic isozymes I, and II, the mitochondrial isoform VA, and the tumor-associated, transmembrane isozyme IX of carbonic anhydrase (CA, EC 4.2.1.1) with a library of aromatic/heteroaromatic/polycyclic difluoromethanesulfonamides is reported. Most of the inhibitors were derivatives of benzenedifluoromethanesulfonamide incorporating substituted-phenyl moieties, or were methylsulfonamide and difluoromethyl-sulfonamide derivatives of the sulfamates COUMATE and EMATE, respectively. Except for the methylsulfonamide-COUMATE derivative which behaved as a potent CA II inhibitor (K(I) of 32nM), these sulfonamides were moderate inhibitors of all isozymes, with inhibition constants in the range of 96-5200nM against hCA I, of 80-670nM against hCA II, and of 195-9280nM against hCA IX, respectively. Remarkably, some derivatives, such as 3-bromophenyl-difluoromethanesulfonamide, showed a trend to selectively inhibit the mitochondrial isoform CA VA, showing selectivity ratios for inhibiting CA VA over CA II of 3.53; over CA I of 6.84 and over CA IX of 9.34, respectively, although it is a moderate inhibitor (K(I) of 160nM). Some of these derivatives may be considered as leads for the design of isozyme selective CA inhibitors targeting the mitochondrial isozyme CA VA, with potential use as anti-obesity agents.  相似文献   

5.
A series of sulfonamides incorporating 4-thioureido-benzolamide moieties have been prepared from aminobenzolamide and thiophosgene followed by the reaction of the thiocyanato intermediate with aliphatic/aromatic amines or hydrazines. The new derivatives have been investigated as inhibitors of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), and more precisely of the cytosolic isozymes hCA I and II, as well as the tumor-associated isozyme hCA IX (all of human origin). The new compounds showed excellent inhibitory properties against all three isozymes with inhibition constants in the range of 0.6-62 nM against hCA I, 0.5-1.7 nM against hCA II and 3.2-23 nM against hCA IX, respectively. These derivatives are interesting candidates for the development of novel therapies targeting hypoxic tumors.  相似文献   

6.
A library of boron-containing carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, including sulfonamides, sulfamides, and sulfamates is reported. The new compounds have been synthesized by derivatization reactions of 4-carboxy-/amino-/hydroxy-phenylboronic acid pinacol esters with amino/isothiocyanato-substituted aromatic/heteroaromatic sulfonamides or by sulfamoylation reactions with sulfamoyl chloride. The new derivatives have been assayed for the inhibition of three physiologically relevant CA isozymes, the cytosolic CA I and II, and the transmembrane, tumor-associated isozyme CA IX. Effective inhibitors were detected both among sulfonamides, sulfamates, and sulfamides. Against the human isozyme hCA I the new compounds showed inhibition constants in the range of 34-94nM, against hCA II in the range of 3.1-48nM, and against hCA IX in the range of 7.3-89nM, respectively. As hypoxic tumors highly overexpress CA IX, the design of boron-containing inhibitors with high affinity for the tumor-associated CA isozymes may lead to important advances in boron neutron capture therapy (BNCT) applications targeting such tumors, which are non-responsive to both classical chemo- and radiotherapy.  相似文献   

7.
A series of 2-mercapto-substituted-benzenesulfonamides has been prepared by a unique two-step procedure starting from the corresponding 2-chloro-substituted benzenesulfonamides. Compounds bearing an unsubstituted mercapto group and the corresponding S-benzoyl derivatives were investigated as inhibitors of four isoforms of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), i.e., the cytosolic, ubiquitous isozymes CA I and II, as well as the transmembrane, tumor associated isozymes CA IX and XII. These derivatives were medium potency hCA I inhibitors (K(I)s in the range of 1.5-5.7 microM), two derivatives were strong hCA II inhibitors (K(I)s in the range of 15-16 nM), whereas the others showed weak activity. These compounds inhibited hCA IX with inhibition constants in the range 160-1950 nM and hCA XII with inhibition constants in the range 1.2-413 nM. Some of these derivatives showed a certain degree of selectivity for inhibition of the tumor-associated over the cytosolic isoforms, being thus interesting leads for the development of potentially novel applications in the management of hypoxic tumors which overexpress CA IX and XII.  相似文献   

8.
A small library of N-hydroxysulfamides was synthesized by an original approach in order to investigate whether this zinc-binding function is efficient for the design of inhibitors targeting the cytosolic (hCA I and II) and transmembrane, tumor-associated (hCA IX and XII) isozymes of carbonic anhydrase (CA, EC 4.2.1.1). The parent derivative, N-hydroxysulfamide was a more potent inhibitor as compared to sulfamide or sulfamic acid against all isozymes, with inhibition constants in the range of 473 nM-4.05 microM. Its substituted n-decyl-, n-dodecyl-, benzyl-, and biphenylmethyl-derivatives were less inhibitory against hCA I (K(I)s in the range of 5.8-8.2 microM) but more inhibitory against hCA II (K(I)s in the range of 50.5-473 nM). The same situation was true for the tumor-associated isozymes, with K(I)s in the range of 353-790 nM against hCA IX and 372-874 nM against hCA XII. Some sulfamides/sulfamates possessing similar substitution patterns have also been investigated for the inhibition of these isozymes, being shown that in some particular cases sulfamides are more efficient inhibitors as compared to the corresponding sulfamates. Potent CA inhibitors targeting the cytosolic or tumor-associated CA isozymes can thus be designed from various classes of sulfonamides, sulfamides, or sulfamates and their derivatives, considering the extensive interactions in which the inhibitor and the enzyme active site are engaged, based on recent X-ray crystallographic data.  相似文献   

9.
A series of heterocyclic mercaptans incorporating 1,3,4-thiadiazole- and 1,2,4-triazole rings have been prepared and assayed for the inhibition of three physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isozymes, the cytosolic human isozymes I and II, and the transmembrane, tumor-associated hCA IX. Against hCA I the investigated thiols showed inhibition constants in the range of 97 nM to 548 microM, against hCA II in the range of 7.9-618 microM, and against hCA IX in the range of 9.3-772 microM. Thiadiazoles were generally more active than triazoles against all investigated isozymes. Generally, the best inhibitors were the simple derivative 5-amino-1,3,4-thiadiazole-2-thiol and its N-acetylated derivative, which were anyhow at least two orders of magnitude less effective inhibitors when compared to the corresponding sulfonamides, acetazolamide, and its deacetylated derivative. An exception was constituted by 5-(2-pyridylcarboxamido)-1,3,4-thiadiazole-2-thiol, which is the first hCA I-selective inhibitor ever reported, possessing an inhibition constant of 97 nM against isozyme I, and being a 105 times less effective hCA II inhibitor, and 3154 times less effective hCA IX inhibitor. Thus, the thiol moiety may lead to effective CA inhibitors targeting isozyme I, whereas it is a less effective zinc-binding function for the design of CA II and CA IX inhibitors over the sulfonamide group.  相似文献   

10.
A series of 2-mercapto-substituted-benzenesulfonamides has been prepared by a unique two-step procedure starting from the corresponding 2-chloro-substituted benzenesulfonamides. Compounds bearing an unsubstituted mercapto group and the corresponding S-benzoyl derivatives were investigated as inhibitors of four isoforms of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), i.e., the cytosolic, ubiquitous isozymes CA I and II, as well as the transmembrane, tumor associated isozymes CA IX and XII. These derivatives were medium potency hCA I inhibitors (KIs in the range of 1.5–5.7 μM), two derivatives were strong hCA II inhibitors (KIs in the range of 15–16 nM), whereas the others showed weak activity. These compounds inhibited hCA IX with inhibition constants in the range 160–1950 nM and hCA XII with inhibition constants in the range 1.2–413 nM. Some of these derivatives showed a certain degree of selectivity for inhibition of the tumor-associated over the cytosolic isoforms, being thus interesting leads for the development of potentially novel applications in the management of hypoxic tumors which overexpress CA IX and XII.  相似文献   

11.
A series of sulfonamides has been obtained by reacting sulfanilamide or 5-amino-1,3,4-thiadiazole-2-sulfonamide with omega-chloroalkanoyl chlorides, followed by replacement of the omega-chlorine atom with secondary amines. Tails incorporating heterocyclic amines belonging to the morpholine, piperidine and piperazine ring systems have been attached to these sulfonamides, by means of an alkanoyl-carboxamido linker containing from two to five carbon atoms. The new derivatives prepared in this way were tested as inhibitors of three carbonic anhydrase (CA, EC 4.2.1.1) isozymes, the cytosolic isozymes CA I and II, and the catalytic domain of the transmembrane, tumor-associated isozyme CA IX. Several low nanomolar CA I and CA II inhibitors were detected both in the aromatic and heterocyclic sulfonamide series, whereas the best hCA IX inhibitors (inhibition constants in the range of 22-35 nM) all belonged to the acetazolamide-like derivatives.  相似文献   

12.
Isocoumarins, isomeric to comarins which act as effective carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, were investigated for the first time as inhibitors of this enzyme. A series of 3-substituted and 3,4-disubstituted isocoumarins incorporating phenylhydrazone, 1-phenyl-pyrazole and pyrazolo-substituted pyrimidine trione/thioxo-pyrimidine dione moieties were investigated for their interaction with four human (h) CA isoforms, hCA I, II, IX and XII, known to be important drug targets. hCA I and II were not inhibited by these compounds, whereas hCA IX and XII were inhibited in the low micromolar range by the less bulky derivatives. The inhibition constants ranged between 2.7–78.9 µM against hCA IX and of 1.2–66.5 µM against hCA XII. As for the coumarins, we hypothesise that the isocoumarins are hydrolysed by the esterase activity of the enzyme with formation of 2-carboxy-phenylacetic aldehydes which act as CA inhibitors. Isocoumarins represent a new class of CA inhibitors.  相似文献   

13.
Reaction of o- or p-hydroxybenzaldehydes with sulfanilamide, homosulfanilamide and p-(2-aminoethyl)- benzene-sulfonamide afforded several new Schiff bases which were subsequently derivatized at the phenolic hydroxy moiety by reaction with arylsulfonylisocyanates. The new arylsulfonylcarbamates obtained in this way possessed interesting inhibitory properties against three carbonic anhydrase (CA) isozymes, hCA I, hCA II and bCA IV (h = human, b = bovine isozyme). All these new derivatives, the simple Schiff bases and the arylsulfonylcarbamates obtained as outlined above, were more inhibitory against all isozymes as compared to the corresponding parent sulfonamide from which they were obtained. Generally, the p-hydroxybenzaldehyde derivatives were more active than the corresponding ortho isomers. An interesting behavior was evidenced for some of the ortho-substituted arylsulfonylcarbamato-sulfonamides, which showed higher affinities for the isozyme hCA I, as compared to hCA II and bCA IV (generally hCA I is 10-1000 less sensitive to "normal" sulfonamide inhibitors, such as acetazolamide, methazolamide or dorzolamide, as compared to hCA II). This make the new derivatives attractive leads for designing isozyme I-specific inhibitors.  相似文献   

14.
New C-glycosides and α,β-unsaturated ketones incorporating the 4-hydroxy-3-methoxyphenyl (vanillin) moiety as inhibitors of carbonic anhydrase (CA, EC 4.2.1.1) isoforms have been investigated. The inhibition profile of these compounds is presented against four human CA (hCA) isozymes, comprising hCAs I and II (cytosolic, ubiquitous enzymes) and hCAs IX and XII (tumour associated isozymes). Docking analysis of the inhibitors within the active sites of these enzymes has been performed and is discussed, showing that the observed selectivity could be explained in terms of an alternative pocket out of the CA active site where some of these compounds may bind. Several derivatives were identified as selective inhibitors of the tumour-associated hCA IX and XII. Their discovery might be a step in the strategy for finding an effective non-sulfonamide CA inhibitor useful in therapy/diagnosis of hypoxic tumours or other pathologies in which CA isoforms are involved.  相似文献   

15.
A series of benzenesulfonamide derivatives incorporating triazine moieties in their molecules was obtained by reaction of cyanuric chloride with sulfanilamide, homosulfanilamide, or 4-aminoethylbenzenesulfonamide. The dichlorotriazinyl-benzenesulfonamides intermediates were subsequently derivatized by reaction with various nucleophiles, such as water, methylamine, or aliphatic alcohols (methanol and ethanol). The library of sulfonamides incorporating triazinyl moieties was tested for the inhibition of three physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isozymes, the cytosolic hCA I and II, and the transmembrane, tumor-associated hCA IX. The new compounds reported here inhibited hCA I with K(I)s in the range of 75-136nM, hCA II with K(I)s in the range of 13-278nM, and hCA IX with K(I)s in the range of 0.12-549nM. The first hCA IX-selective inhibitors were thus detected, as the chlorotriazinyl-sulfanilamide and the bis-ethoxytriazinyl derivatives of sulfanilamide/homosulfanilamide showed selectivity ratios for CA IX over CA II inhibition in the range of 166-706. Furthermore, some of these compounds have subnanomolar affinity for hCA IX, with K(I)s in the range 0.12-0.34nM. These derivatives are interesting candidates for the development of novel unconventional anticancer strategies targeting the hypoxic areas of tumors. Clear renal cell carcinoma, which is the most lethal urologic malignancy and is both characterized by very high CA IX expression and chemotherapy unresponsiveness, could be the leading candidate of such novel therapies.  相似文献   

16.
The synthesis of a new class of sulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitors (CAIs), also possessing carboxylate/hydroxamate moieties in their molecule, is reported. These compounds may act on dual antitumor targets, the tumor-associated CA isozymes (CA IX) and some matrix metalloproteinases (MMPs). The compounds were prepared by an original method starting from iminodiacetic acid, and assayed as inhibitors of three isozymes, hCA I, II (cytosolic), and IX (transmembrane). The new derivatives showed weak inhibitory activity against isozyme I (K(I)s in the range of 95-8300 nM), were excellent to moderate CA II inhibitors (K(I)s in the range of 8.4-65 nM), and very good and selective CA IX inhibitors (K(I)s in the range of 3.8-26 nM). The primary sulfonamide moiety is a better zinc-binding group in the design of CAIs as compared to the carboxylate/hydroxamate one, but the presence of hydroxamate functionalities in the molecule of CAIs leads to selectivity for the tumor-associated isozyme IX over the ubiquitous, cytosolic isoform II.  相似文献   

17.
A new series of aromatic benzenesulfonamides incorporating 1,3,5-triazine moieties in their molecules is reported. This series was obtained by reaction of cyanuric chloride with sulfanilamide, homosulfanilamide or 4-aminoethylbenzenesulfonamide. The prepared dichlorotriazinyl-benzenesulfonamides were subsequently derivatized by reacting them with various nucleophiles, such as ammonia, hydrazine, primary and secondary amines, amino acid derivatives or phenol. The library of sulfonamides incorporating triazinyl moieties was tested for the inhibition of three physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isozymes, the cytosolic hCA I and II, and the transmembrane, tumour-associated hCA IX. The new compounds inhibited hCA I with inhibition constants in the range of 31-8500 nM, hCA II with inhibition constants in the range of 14-765 nM and hCA IX with inhibition constants in the range of 1.0-640 nM. Structure-activity relationship was straightforward and rather simple in this class of CA inhibitors, with the compounds incorporating compact moieties at the triazine ring (such as amino, hydrazino, ethylamino, dimethylamino or amino acyl) being the most active ones, and the derivatives incorporating such bulky moieties (n-propyl, n-butyl, diethylaminoethyl, piperazinylethyl, pyridoxal amine or phenoxy) being less effective hCA I, II and IX inhibitors. Some of the new derivatives also showed selectivity for inhibition of hCA IX over hCA II (selectivity ratios of 23.33-32.00), thus constituting excellent leads for the development of novel approaches for the management of hypoxic tumours.  相似文献   

18.
A series of spin-labeled sulfonamides incorporating TEMPO moieties were synthesized by a procedure involving the formation of a thiourea functionality between the benzenesulfonamide and free radical fragment of the molecules. The new compounds were tested as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) and showed efficient inhibition of the physiologically relevant isozymes hCA II and hCA IX (hCA IX being predominantly found in tumors) and moderate to weak inhibitory activity against hCA I. Some derivatives were also selective for inhibiting the tumor-associated isoform over the cytosolic one CA II, and presented significant changes in their ESR signals when complexed to the enzyme active site, being interesting candidates for the investigation of hypoxic tumors overexpressing CA IX by ESR techniques, as well as for imaging/treatment purposes.  相似文献   

19.
A library of glycoconjugate benzenesulfonamides that contain diverse carbohydrate-triazole tails were investigated for their ability to inhibit the enzymatic activity of the three human transmembrane carbonic anhydrase (CA) isozymes hCA IX, hCA XII and hCA XIV. These isozymes have their CA domains located extracellularly, unlike the physiologically dominant hCA II, and are of immense current interest as druggable targets. Elevated expression of isozymes IX and XII is a marker for a broad spectrum of hypoxic tumors-this physiology may facilitate a novel approach to discriminate between healthy cells and cancerous cells. Many of these glycoconjugates were potent inhibitors (low nM), but importantly exhibited different isozyme selectivity profiles. The most potent hCA IX inhibitor was the glucuronic acid derivative 20 (K(i)=23nM). This compound was uniquely hCA IX selective cf. all other isozymes (16.4-, 16.8- and 4.6-fold selective against hCA II, XII, and XIV, respectively). At hCA XII there were many inhibitors with K(i)s<10nM that also demonstrated excellent selectivity (up to 344-fold) against other isozymes. Potent hCA XIV inhibitors were also identified, several with K(i)s approximately 10nM, however no hCA XIV-selective derivatives were evidenced from this library. The sugar tails of this study have shown promise as a valuable approach to both solubilize the aromatic sulfonamide CA recognition pharmacophore and to deliver potent inhibition and isozyme differentiation of the transmembrane CAs.  相似文献   

20.
We report the synthesis and characterisation of a novel series of triazole benzenesulfonamide derivatives, which incorporate the general pharmacophore associated with carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. The synthesised compounds were tested in vitro against four human carbonic anhydrase (hCA, EC 4.2.1.1) isozymes, hCA I, hCA II, hCA IV and hCA IX. The obtained results showed that the tumour-associated hCA IX was the most sensitive to inhibition with the synthesised derivatives, with the triazolo-pyridine benzenesulfonamides 14, 16 and 17 being the most effective inhibitors. Some selected compounds were chosen for a single dose anti-proliferative activity testing against a panel of 57 human tumour cell lines and show some anti-proliferative activity ex vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号