首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoreactivating enzyme (PRE) from yeast causes a light-dependent reduction of UV-induced unscheduled DNA synthesis (UDS) when injected into the cytoplasm of repair-proficieint human fibroblasts (Zwetsloot et al., 1985). This result indicates that the exogenous PRE monomerizers UV-induced dimers in these cells competing with the endogenous excision repair. In this paper we present the results of the injection of yeast PRE on (residual) UDS in fibroblasts from different excision-deficient XP-strains representing complementation groups A, C, D, E, F, H and I (all displaying more than 10% of the UDS of wild-type cells) and in fibroblasts from two excision-proficient XP-variant strains.In fibroblasts belonging to complementation groups C, F and I and in fibroblasts from the XP-variant strains UDS was significantly reduced, indicating that pyrimidine dimers in these cells are accessible to and can be monomerized by the injected yeast PRE. The UDS reduction in the XP-variant strains is comparable with the effect in wild-type cells. In cells from complementation groups C, F and I the reduction is less than in wild-type and XP-variant cells. Fibroblasts belonging to groups A, D, E and H did not show any reduction in UDS level after PRE injection and illumination with photoreactivating light. These result give evidence that the genetic repair defect in some XP-strains is probably due to an altered accessibility of the UV-damaged sites.  相似文献   

2.
3.
Cells from patients with xeroderma pigmentosum, complementation group A (XPA), are known to be defective in repair of pyrimidine dimers and other forms of damage produced by 254-nm ultraviolet (UVC) radiation. We have isolated a DNA endonuclease, pI 7.6, from the chromatin of normal human lymphoblastoid cells which recognizes damage produced by UVC light, and have introduced this endonuclease into UVC-irradiated XPA cells in culture to determine whether it can restore their markedly deficient DNA repair-related unscheduled DNA synthesis (UDS). Introduction of the normal endonuclease, which recognizes predominantly pyrimidine dimers, but not the corresponding XPA endonuclease into UVC-irradiated XPA cells restored their levels of UDS to approximately 80% of normal values. Electroporation of both the normal and the XPA endonuclease into normal human cells increases UDS in normal cells to higher than normal values. These results indicate that the normal endonuclease can restore UDS in UVC-irradiated XPA cells. They also indicate that XPA cells have an endonuclease capable of increasing the efficiency of repair of UVC damage in normal cells.  相似文献   

4.
To obtain more information on the well-documented low excision-repair capacity of rodent cells in comparison with human cells, we have studied this form of DNA repair in UV-irradiated human and rat skin fibroblasts. For this purpose, we have determined (i) unscheduled DNA synthesis (UDS), using autoradiography, (ii) the number and size of repaired sites with the bromodeoxyuridine (BrdU) photolysis assay and (iii) the removal of Micrococcus luteus UV-endonuclease susceptible sites (ESS). We found rat cells to be quite capable of performing DNA-repair synthesis, as demonstrated by both UDS and BrdU photolysis, whereas they almost completely lacked the capacity to remove pyrimidine dimers, as indicated by the persistence of ESS. This discrepancy will be discussed in terms of the types of mechanisms by which mammalian cells may recognize and remove UV-induced photoproducts.  相似文献   

5.
Crude extracts from ultraviolet (UV)-irradiated yeast cells compete with UV-irradiated transforming deoxyribonucleic acid (DNA) for photoreactivating enzyme. The amount of competition is taken as a measure of the level of cyclobutyl pyrimidine dimers in the yeast DNA. A calibration of the competition using UV-irradiated calf thymus DNA indicates that an incident UV dose (1,500 ergs/mm(2)) yielding 1% survivors of wild-type cells produces between 2.5 x 10(4) to 5 x 10(4) dimers per cell. Wild-type cells irradiated in the exponential phase of growth remove or alter more than 90% of the dimers within 220 min after irradiation. Pyrimidine dimers induced in stationary-phase wild-type cells appear to remain in the DNA; however, with incubation, they become less photoreactivable in vivo, although remaining photoreactivable in vitro. In contrast, exponentially growing or stationary-phase UV-sensitive cells (rad2-17) show almost no detectable alteration of dimers. We conclude that the UV-sensitive cells lack an early step in the repair of UV-induced pyrimidine dimers.  相似文献   

6.
Photoreactivating enzyme (PRE) from yeast (as semi-crude extract, or in highly purified form) shows increased activity if its is illuminated with near UV or short wavelength visible light prior to its use for photoenzymatic repair of UV-induced pyrimidine dimers in transforming DNA in vitro. This effect results from an alternation in PRE molecules changing those with low activity in the light-dependent step of the reaction to a higher activity. Light-induced activation of PRE preparations is slowly lost by dark storage for several hours to 1 day (faster at 23°C than at 5°C), but can be recovered repeatedly by renewed preillumination. The action spectrum for these preillumination effects generally resembles that for the photoenzymatic repair reaction itself, having its maximum in the same 355–385 nm region as the latter, but light of somewhat longer wavelengths (546 nm) is still effective. Preilluminated PRE is also more stable to thermal inactivation (65°C) than untreated enzyme.  相似文献   

7.
UV-induced apoptosis is a protective mechanism that is primarily caused by DNA damage. Cyclobutane pyrimidine dimers (CPD) and 6-4 photoproducts are the main DNA adducts triggered by UV radiation. Because the formation of DNA lesions in the chromatin is modulated by the structure of the nucleosomes, we postulated that modification of chromatin compaction could affect the formation of the lesions and consequently apoptosis. To verify this possibility we treated human colon carcinoma RKO cells with the histone deacetylase inhibitor trichostatin A (TSA) prior to exposure to UV radiation. Our data show that pre-treatment with TSA increased UV killing efficiency by more than threefold. This effect correlated with increased formation of CPDs and consequently apoptosis. On the other hand, TSA treatment after UV exposure rather than before had no more effect than UV radiation alone. This suggests that a primed (opened) chromatin status is required to sensitize the cells. Moreover, TSA sensitization to UV-induced apoptosis is p53 dependent. p53 and acetylation of the core histones may thus contribute to UV-induced apoptosis by modulating the formation of DNA lesions on chromatin.  相似文献   

8.
UV-induced DNA degradation was studied in mycellial cells of Aspergillus nidulans wild type and several uvs mutants. It was shown to be an enzymatic specific process which possibly reflects the excision of pyrimidine dimers from UV-damaged DNA. Inhibition of DNA degradation by caffeine and 2,4-dinitrophenol shows the connection between degradation and repair of DNA. Two ways of DNA degradation were found in A. nidulans cells, one of them being glucose dependent and the other--glucose independent. The dependence of DNA degradation on protein synthesis before and after UV-irradiation was demonstrated. The scheme of ways of DNA degradation and its genetic control were suggested on the basis of uvs mutations effect on UV-induced DNA degradation.  相似文献   

9.
Efficiency of formation of pyrimidine dimers in SV40 chromatin in vitro   总被引:1,自引:0,他引:1  
R M Snapka  S Linn 《Biochemistry》1981,20(1):68-72
The efficiency of formation of pyrimidine dimers by 254-nm light was studied in mixtures of SV40 chromatin and DNA extracted from that chromatin. At high doses (beyond 380 J/m2), fewer dimers are formed in chromatin than in DNA for a given dose of radiation. This difference is about 10% as saturation with pyrimidine dimers is approached at 6840 J/m2. Conversely, at biologically repairable doses (up to 40 J/m2, less than 2 dimers/genome), significantly more dimers are produced in the chromatin than in the DNA. A maximum increase of about 50% occurs at doses producing 0.5--20 dimers/genome. With isolated nucleosomes from this chromatin, a maximum increase in dimer formation of 77% was observed. Therefore, the increased dimer formation in the whole chromatin can be wholly accounted for in the nucleosome portion.  相似文献   

10.
The formation and removal of UV-induced pyrimidine dimers were measured in restriction fragments near and within the essential dihydrofolate reductase (DHFR) gene in Chinese hamster ovary cells in order to map the genomic fine structure of DNA repair. Dimer frequencies were determined at 0, 8, and 24 h after irradiating the cells with 20 J/m2 UV light (254 nm). Within 8 h, the cells had removed more than 40% of the dimers from sequences near the 5' end of the gene, somewhat fewer from the 3' end, but only 2% from the 3' flanking region and 10% from a region upstream from the gene. The corresponding extent of repair in the genome as a whole is 5-10% in the 8-h period. Isoschizomeric restriction enzyme analysis was used to detect the level of methylation in the fragments in which repair was measured. We found that the only hypomethylated sites in and around the DHFR gene were in the fragment near its 5' end, which displayed maximal DNA repair efficiency. The size of the region of preferential DNA repair at the DHFR locus appears to be in the range of 50-80 kilobases, and this finding is discussed in relation to genomic domains and the structure of mammalian chromatin.  相似文献   

11.
12.
DNA lesions caused by UV radiation are highly recombinogenic. In wild-type cells, the recombinogenic effect of UV partially reflects the processing of UV-induced pyrimidine dimers into DNA gaps or breaks by the enzymes of the nucleotide excision repair (NER) pathway. In this study, we show that unprocessed pyrimidine dimers also potently induce recombination between homologs. In NER-deficient rad14 diploid strains, we demonstrate that unexcised pyrimidine dimers stimulate crossovers, noncrossovers, and break-induced replication events. The same dose of UV is about six-fold more recombinogenic in a repair-deficient strain than in a repair-proficient strain. We also examined the roles of several genes involved in the processing of UV-induced damage in NER-deficient cells. We found that the resolvase Mus81p is required for most of the UV-induced inter-homolog recombination events. This requirement likely reflects the Mus81p-associated cleavage of dimer-blocked replication forks. The error-free post-replication repair pathway mediated by Mms2p suppresses dimer-induced recombination between homologs, possibly by channeling replication-blocking lesions into recombination between sister chromatids.  相似文献   

13.
Repair of plasmid and genomic DNA in a rad7 delta mutant of yeast.   总被引:3,自引:0,他引:3       下载免费PDF全文
Repair of UV-induced cyclobutane pyrimidine dimers (CPDs) was examined in a yeast plasmid of known chromatin structure and in genomic DNA in a radiation-sensitive deletion mutant of yeast, rad7 delta, and its isogenic wild-type strain. A whole plasmid repair assay revealed that only approximately 50% of the CPDs in plasmid DNA are repaired after 6 h in this mutant, compared with almost 90% repaired in wild-type. Using a site-specific repair assay on 44 individual CPD sites within the plasmid we found that repair in the rad7 delta mutant occurred primarily in the transcribed regions of each strand of the plasmid, however, the rate of repair at nearly all sites measured was less than in the wild-type. There was no apparent correlation between repair rate and nucleosome position. In addition, approximately 55% of the CPDs in genomic DNA of the mutant are repaired during the 6 h period, compared with > 80% in the wild-type.  相似文献   

14.
The effect of low doses of ionizing and nonionizing radiation on the radiation response of yeast Saccharomyces cerevisiae toward ionizing and nonionizing radiation was studied. The wild-type strain D273-10B on exposure to 54 Gy gamma radiation (resulting in about 10% cell killing) showed enhanced resistance to subsequent exposure to UV radiation. This induced UV resistance increased with the incubation time between the initial gamma radiation stress and the UV irradiation. Exposure to low doses of UV light on the other hand showed no change in gamma or UV radiation response of this strain. The strains carrying a mutation at rad52 behaved in a way similar to the wild type, but with slightly reduced induced response. In contrast to this, the rad3 mutants, defective in excision repair, showed no induced UV resistance. Removal of UV-induced pyrimidine dimers in wild-type yeast DNA after UV irradiation was examined by analyzing the sites recognized by UV endonuclease from Micrococcus luteus. The samples that were exposed to low doses of gamma radiation before UV irradiation were able to repair the pyrimidine dimers more efficiently than the samples in which low gamma irradiation was omitted. The nature of enhanced repair was studied by scoring the frequency of induced gene conversion and reverse mutation at trp and ilv loci respectively in strain D7, which showed similar enhanced UV resistance induced by low-dose gamma irradiation. The induced repair was found to be essentially error-free. These results suggest that irradiation of strain D273-10B with low doses of gamma radiation enhances its capability for excision repair of UV-induced pyrimidine dimers.  相似文献   

15.
A reduction in the amount of UV-induced unscheduled DNA synthesis (UDS), and reduced cell survival and host-cell reactivation against UV exposure in Hutchinson-Gilford progeria syndrome cell strains were shown. UV-induced UDS in 4 progeria cell strains was 33-50% of the normal level. A similar reduction in the UV-induced UDS in normal cells was caused by gamma-ray irradiation to the cells before UV irradiation. The dose of gamma-rays required to cause a reduction in UDS of normal cells to the level of progeria cells was 40 Gy and the reduction was reversible after 2 days. In progeria cells, gamma-ray irradiation further reduced UDS with a lower gamma-ray dose required than in normal cells, and the reduction was also reversible but with less relative recovery than in normal cells. The presence of a 'built-in' defect in progeria cells responsible for the reduced DNA-repair capacity was suggested, and such defect may share a common mechanism with the reduction of UV-induced UDS in normal cells caused by gamma-ray irradiation.  相似文献   

16.
17.
Cultured cells (line PtK-2) from the marsupial mammal rat-kangaroo, or potoroo (Potorous tridactylis), which photoreactivate (PR) both UV-induced dimers and lethality, excise few dimers, and are only slightly sensitized by post-UV exposure to caffeine, were subjected to caffeine and hydroxyurea (HU) treatments during the 30-min PR period. It was found that neither caffeine nor HU inhibited PR of lethality as measured by colony-forming ability. Further, the cells exhibited no photoprotective properties and 3 mM caffeine potentiated the same slight survival decrease in both photoreactivated and unphotoreactivated cells. It is evident that caffeine does not inhibit PR or the survival-related dark repair systems to any great extent, and hence the caffeine-sensitive post-UV dark repair found in this (and possibly other) mammalian cell lines may not be related directly to survival-dependent pyrimidine dimer removal, but instead to lesions or repair processes other than, but not excluding, pyrimidine dimers.  相似文献   

18.
19.
BRG1 is a catalytic subunit of the human SWI/SNF-like BAF chromatin remodeling complexes. Recent findings have shown that inactivation of BRG1 sensitizes mammalian cells to various DNA damaging agents, including ultraviolet (UV) and ionizing radiation. However, it is unclear whether BRG1 facilitates nucleotide excision repair (NER). Here we show that re-expression of BRG1 in cells lacking endogenous BRG1 expression stimulates nucleotide excision repair of UV induced DNA damage. Using a micropore UV radiation technique, we demonstrate that recruitment of the DNA damage recognition protein XPC to sites of UV lesions is significantly disrupted when BRG1 is depleted. Chromatin immunoprecipitation of the endogenous DDB2 protein, which is involved in recruiting XPC to UV-induced CPDs (cyclobutane pyrimidine dimers), shows that elevated levels of BRG1 are associated with DDB2 in chromatin in response to UV radiation. Additionally, we detected slow BRG1 accumulation at sites of UV lesions. Our findings suggest that the chromatin remodeling factor BRG1 is recruited to sites of UV lesions to facilitate NER in human chromatin.  相似文献   

20.
Two rad mutants of yeast, rad10 and rad16, are shown to be defective in the removal of UV-induced pyrimidine dimers since DNAs obtained from irradiated cells following a post-irradiation incubation in the dark still retain UV-endonuclease-sensitive sites. Both rad10 and rad16 mutants are in the same pathway of excision-repair as the rad1, rad2, rad3 and rad4 mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号