首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The reactions catalyzed by gamma-glutamylcysteine synthetase and glutamine synthetase are thought to proceed via enzyme-bound gamma-glutamyl phosphate intermediates. We investigated the possibility that S-sulfocysteine and S-sulfohomocysteine might act as analogs of gamma-glutamyl phosphate or of the associated putative tetrahedral intermediates. The D- and L-enantiomers of S-sulfocysteine and S-sulfohomocysteine were found to rapidly inactivate rat kidney gamma-glutamylcysteine synthetase but to be reversible inhibitors of sheep brain glutamine synthetase. Inactivation of gamma-glutamylcysteine synthetase does not require ATP and is associated with noncovalent binding of close to 1 mol of inactivator/mol of enzyme. The findings indicate that the S-sulfo amino acids are transition-state analogs, and that binding of S-sulfo amino acid to the enzyme induces formation of a very stable enzyme-inactivator complex. The data suggest that stabilization of the enzyme-inactivator complex results from interactions involving the sulfenyl sulfur atom of the S-sulfo amino acid and the active site thiol group of the enzyme.  相似文献   

3.
Squalene synthetase (farnesyldiphosphate:farnesyldiphosphate farnesyltransferase, EC 2.5.1.21) is an intrinsic microsomal protein that catalyzes the synthesis of squalene from farnesyl pyrophosphate via the intermediate presqualene pyrophosphate. We have solubilized this enzyme from yeast with a mixture of the detergents N-octyl beta-D-glucopyranoside and Lubrol PX. Approximately 50-fold purification of the solubilized activities has been achieved by chromatography on DEAE-cellulose and hydroxylapatite and by isoelectric focusing. The most highly purified preparation has one major band of protein with a molecular weight of 53,000 as estimated by electrophoresis under denaturing conditions. The enzyme may also have been modified by proteolysis during isolation since a 47,000 molecular weight species was also found. The two activities, presqualene pyrophosphate synthetase and squalene synthetase, copurified during isolation.  相似文献   

4.
When the myeloperoxidase-catalyzed peroxidation of acetoacetate proceeds in the presence of piperidinooxy free radical, methyl glyoxal is formed, and the nitroxide group is reduced to the secondary amine. A mechanism is advanced wherein an alpha-carbon-centered acetoacetate radical, generated by the peroxidase, forms an unstable adduct with the nitroxide group, subsequently decomposing to the observed products. Formation of methyl glyoxal, detected as its bis-2,4-dinitrophenylhydrazone by radial thin-layer chromatography, represents a method of determining free radical acetoacetate peroxidation by other peroxidases. It is shown that lactoperoxidase, prostaglandin synthetase, and prostacyclin synthetase generate methyl glyoxal with requirements identical to those of myeloperoxidase. With prostaglandin synthetase, arachidonic acid could replace the supporting peroxide. Substantiation that the catalyst for the reaction in aortic microsomes was prostacyclin synthetase was obtained by showing that 15-hydroperoxyarachidonic acid strongly inhibited the activity (5). The finding that these peroxidases catalyze radical acetoacetate oxidation could have broad implications for cellular damage via lipid peroxidation (7). Specifically, radical oxidation of acetoacetate by prostacyclin synthetase is proposed to be a link between cardiovascular risk factors and the initiation of atherosclerosis.  相似文献   

5.
5-Aminoimidazole ribonucleotide (AIR) synthetase, glycinamide ribonucleotide (GAR) synthetase, and GAR transformylase activities from chicken liver exist on a single polypeptide of Mr 110,000 [Daubner, C. S., Schrimsher, J. L., Schendel, F. J., Young, M., Henikoff, S., Patterson, D., Stubbe, J., & Benkovic, S. J. (1985) Biochemistry 24, 7059-7062]. Details of copurification of these three activities through four chromatographic steps are reported. The ratios of these activities remain constant throughout the purification. AIR synthetase has an absolute requirement for K+ for activity and under these conditions has apparent molecular weights of 330,000, determined by Sephadex G-200 chromatography, and 133,000, determined by sucrose density gradient ultracentrifugation. Incubation of 18O-labeled formylglycinamidine ribonucleotide (FGAM) with AIR synthetase results in stoichiometric production of AIR, ADP, and [18O]Pi. NMR spectra of beta-FGAM and beta-AIR are reported.  相似文献   

6.
A single injection of the anti-glutamine drug, acivicin (NSC 163501), in tumor-bearing rats in 30 min decreased the activities of amidophosphoribosyltransferase, carbamoyl-phosphate synthetase II and CTP synthetase to 56, 50 and 7% of those of the controls. By 1 hr the activities were down to 32, 13 and 3% and they remained low for 12 hr, after which they slowly returned towards normal range in 72 hr. The decline of the activity of CTP synthetase (a loss of 80% in 10 min) was the most rapid, and the activity only returned to 60% of the controls by 3 days after the acivicin injection. In the hepatoma the concentrations of ATP and UTP changed little, but those of GTP and CTP rapidly decreased, reaching at the lowest point 32 and 2%, respectively, of control values 2 hr after acivicin; concentrations started to rise at 12 hr, reaching normal levels by 48 hr. The drop in enzyme activities preceded the decline in the pools of GTP and CTP. The behavior of enzyme activities and nucleotide concentrations in the host liver had a pattern similar to that in the hepatoma; however, the changes were less extensive than those in the tumor. The differential response between tumor and liver is attributed, in part at least, to the tissue L-glutamine concentration which in the hepatoma (0.5 mM) was 9 times lower than in the liver (4.5 mM). The selectivity of acivicin action in inhibiting glutamine-utilizing enzymes is also demonstrated by the lack of effect on aspartate carbamoyltransferase, a an enzymic activity which resides in the same complex as that of carbamoyl-phosphate synthetase II. The rapid decline in the activities of glutamine-utilizing enzymes is attributed to an in-activation of the enzymes by acivicin which functions as an active site-directed affinity analog of L-glutamine. The rapid modulation of the enzymic phenotype and ribonucleotide concentrations by acivicin provides a useful tool for elucidating the role of enzymic and nucleotide imbalance in the commitment of cancer cells to replication and in the targeting of anticancer chemotherapy.  相似文献   

7.
The functions of evolved mammalian supramolecular assemblies and extensions of enzymes are not well understood. Human lysyl-tRNA synthetase (hKRS) only upon the removal of the amino-terminal extension (hKRSΔ60) bound to EF1α and was stimulated by EF1α in vitro. HKRS and hKRSΔ60 were also differentially stimulated by aspartyl-tRNA synthetase (AspRS) from the multi-synthetase complex. The non-synthetase protein from the multi-synthetase complex p38 alone did not affect hKRS lysylation but inhibited the AspRS-mediated stimulation of hKRS. These results revealed the functional interactions of hKRS and shed new lights on the functional significance of the structural evolution of multienzyme complexes and appended extensions.  相似文献   

8.
Thiophosphate analogs of adenine nucleotides were used to establish the absolute stereochemistry of nucleotide substrates in the reactions of carbamate kinase (Streptococcus faecalis), unadenylylated glutamine synthetase (Escherichia coli), and carbamoyl-phosphate synthetase (E. coli). 31P NMR was used to determine that carbamate kinase uses the B isomer of Ado-5′-(2-thioPPP) in the presence of Mg2+. The stereospecificity of the reaction with carbamate kinase was not reversed by Cd2+ suggesting that the metal ion does not bind to the β-phosphoryl group or that both Mg2+ and Cd2+ bind to the sulfur atom. Carbamate kinase uses both A and B isomers of Ado-5′-(1-thioPP) with Mg2+ and Cd2+. We have previously reported that carbamoyl-phosphate synthetase uses the A isomer of Ado-5′-(2-thioPPP) at both ATP sites with Mg2+ (Raushel et al., 1978J. Biol. Chem.253, 6627). Current experiments show that the stereospecificity is reversed by Cd2? and that both A and B isomers are used when Zn2+ is present. With Ado-5′-(1-thioPPP), the B isomer is used with Mg2+, the A isomer with Cd2+, and both isomers with Zn2+. Neither carbamate kinase nor carbamoyl-phosphate synthetase utilized Co(III)(NH3)4ATP as a substrate and thus we can only speculate that the Δ chelate ring configuration is the chelate structure utilized by carbamoyl-phosphate synthetase (based on the analogy between thiophosphate-ATP analogs and Co3+-ATP analogs utilized by hexokinase (E. K. Jaffe, and M. Cohn, 1978Biochemistry17, 652). If the sulfur of the β-phosphoryl of Ado-5′-(2-thioPPP) binds to the metal ion with carbamate kinase, then the Δ chelate ring is also used in this enzyme that catalyzes one of the steps in the overall reaction catalyzed by carbamoyl-phosphate synthetase. Glutamine synthetase reacts with the B isomer of both Ado-5′-(2-thioPPP) and Ado-5′-(1-thioPPP) in the presence of Mg2+. When Co2+ is used with this enzyme the A and B isomers of both thio-ATP compounds are substrates. Co(III)(NH3)4ATP is not a substrate for glutamine synthetase. Glutamine synthetase is therefore different from the two previously mentioned enzymes in that it used the opposite A ring configuration for the metal-ATP chelate.  相似文献   

9.
Human tyrosyl-tRNA synthetase is a homodimeric enzyme and each subunit is near 58 KD. It catalyzes the aminoacylation of tRNA(Tyr) by L-tyrosine. The His(6)-tagged human TyrS gene was obtained by RT-PCR from total RNA of human lung giant-cell cancer strain 95 D. It was confirmed by sequencing and cloned into the expression vector pET-24 a (+) to yield pET-24 a (+)-HTyrRS, which was transfected into Escherichia coli BL21-CodonPlus-RIL. The induced-expression level of His(6)-tagged human TyrRS was about 24% of total cell proteins under IPTG inducing. The recombinant protein was conveniently purified in a single step by metal (Ni(2+)) chelate affinity chromatography. About 22.3mg purified enzyme could be obtained from 1L cell culture. The k(cat) value of His(6)-tagged human TyrRS in the second step of tRNA(Tyr) aminoacylation was 1.49 s(-1). The K(m) values of tyrosine and tRNA(Tyr) were 0.3 and 0.9 microM. Six His residues at the C terminus of human TyrRS have little effect on the activities of the enzyme compared with other eukaryotic TyrRSs.  相似文献   

10.
11.
The x-ray crystallographic structure of selenomethionyl cytosine-5'-monophosphate-acylneuraminate synthetase (CMP-NeuAc synthetase) from Neisseria meningitidis has been determined at 2.0-A resolution using multiple-wavelength anomalous dispersion phasing, and a second structure, in the presence of the substrate analogue CDP, has been determined at 2.2-A resolution by molecular replacement. This work identifies the active site residues for this class of enzyme for the first time. The detailed interactions between the enzyme and CDP within the mononucleotide-binding pocket are directly observed, and the acylneuraminate-binding pocket has also been identified. A model of acylneuraminate bound to CMP-NeuAc synthetase has been constructed and provides a structural basis for understanding the mechanism of production of "activated" sialic acids. Sialic acids are key saccharide components on the surface of mammalian cells and can be virulence factors in a variety of bacterial species (e.g. Neisseria, Haemophilus, group B streptococci, etc.). As such, the identification of the bacterial CMP-NeuAc synthetase active site can serve as a starting point for rational drug design strategies.  相似文献   

12.
Triacsins A,B,C, and D are newly discovered compounds isolated from the culture filtrate of streptomyces which are known to inhibit nonspecific long chain acyl-CoA synthetase (EC 6.2.1.3.). These inhibitors have not been previously studied with regard to their effects on arachidonoyl-CoA synthetase, an enzyme which specifically utilizes arachidonate and other icosanoid precursor fatty acids. To explore his question, we used triacsin C, a potent inhibitor of the nonspecific acyl-CoA synthetase. Triacsin C was found to inhibit the action of arachidonoyl-CoA synthetase and the nonspecific enzyme in sonicates of HSDM1C1 mouse fibrosarcoma cells. Importantly, however, the triacsin concentration and length of pre-incubation with the enzymes could be adjusted to almost completely inhibit (>80%) the nonspecific long chain acyl CoA-synthetase, with less than 20% inhibition of arachidonoyl-CoA synthetase. Using intact cultured cells exposed to 1 ug/ml traicsin for up to 15 minutes, we unexpectedly observed preferential inhibition of arachidonoyl-CoA synthetase activity. In intact cell studies, arachidonoyl-CoA synthetase was inhibited > 90%, with 55–60% inhibition of the nonspecific acyl-CoA synthetase. As additional evidence of its inhibition of acyl-CoA synthetase enzymes in intact cells, triacsin c inhibited both fatty acid uptake into cells and icosanoid production, metabolic processes which in certain cell types appear to be dependent on acyl-CoA synthetase activity. Thus, triacsin C is a novel inhibitor which can alter the fatty metabolism of intact cells. This compound can be of significant value in determining the specific cellular functions of the two acyl-CoA synthetase enzymes.  相似文献   

13.
14.
Quinolinate synthetase catalyzes the second step of the de novo biosynthetic pathway of pyridine nucleotide formation. In particular, quinolinate synthetase is involved in the condensation of dihydroxyacetone phosphate and iminoaspartate to form quinolinic acid. To study the mechanism of action, the specificity of the enzyme and the interaction with l-aspartate oxidase, the other component of the so-called "quinolinate synthetase complex," the cloning, the overexpression, and the purification to homogeneity of Escherichia coli quinolinate synthetase were undertaken. The results are presented in this paper. Since the overexpression of the enzyme resulted in the formation of inclusion bodies, a procedure of renaturation and refolding had to be set up. The overexpression and purification procedure reported in this paper allowed the isolation of 12 mg of electrophoretically homogeneous quinolinate synthetase from 1 liter of E. coli culture. A new, continuous, method for the evaluation of quinolinate synthetase activity was also devised and is presented. Finally, our data definitely exclude the possibility that other enzymes are involved in the biosynthesis of quinolinic acid in E. coli, since it is possible to synthesize quinolinic acid from l-aspartate, dihydroxyacetone phosphate, and O(2) by using only nadA and nadB gene overexpressed products.  相似文献   

15.
To expand our knowledge about the relationship of nitrogen use efficiency and glutamine synthetase (GS) activity in the mangrove plant, a cytosolic GS gene from Avicennia marina has been heterologously expressed in and purified from Escherichia coli. Synthesis of the mangrove GS enzyme in E. coli was demonstrated by functional genetic complementation of a GS deficient mutant. The subunit molecular mass of GSI was ~40 kDa. Optimal conditions for biosynthetic activity were found to be 35 °C at pH 7.5. The Mg2+-dependent biosynthetic activity was strongly inhibited by Ni2+, Zn2+, and Al3+, whereas was enhanced by Co2+. The apparent K m values of AmGLN1 for the substrates in the biosynthetic assay were 3.15 mM for glutamate, and 2.54 mM for ATP, 2.80 mM for NH4 + respectively. The low affinity kinetics of AmGLN1 apparently participates in glutamine synthesis under the ammonium excess conditions.  相似文献   

16.
17.
18.
Three activities on the pathway of purine biosynthesis de novo in chicken liver, namely, glycinamide ribonucleotide synthetase, glycinamide ribonucleotide transformylase, and aminoimidazole ribonucleotide synthetase, have been found to reside on the same polypeptide chain. Three diverse purification schemes, utilizing three different affinity resins, give rise to the same protein since the final material has identical specific activities for all three enzymatic reactions and a molecular weight on sodium dodecyl sulfate gels of about 110 000. A single antibody preparation precipitates all three activities and binds to the multifunctional protein obtained by two methods in Western blots. Partial chymotryptic digestion of the purified protein gives rise to two fragments, one possessing glycinamide ribonucleotide synthetase activity and the other containing glycinamide ribonucleotide transformylase activity.  相似文献   

19.
C Leitzmann  J Y Wu  P D Boyer 《Biochemistry》1970,9(11):2338-2346
  相似文献   

20.
We have cloned the murine glutamine synthetase (GS) gene and measured GS enzyme activity and mRNA in five tissues (retina, brain, liver, kidney, and skeletal muscle) during perinatal development. Retinal GS enzyme activity increases 200-fold between Day 1 and Day 21 and is accompanied by an increase in the level of GS mRNA; developmental regulation in other tissues is much less dramatic. Based on Southern blotting analysis, a single GS gene gives rise to the tissue-specific patterns of GS mRNA expression. The increase in murine retinal GS observed during perinatal development is similar in magnitude to that observed in the chicken retina just prior to hatching. In the embryonic chicken retina, glucocorticoid hormones mediate a large increase in the level of GS mRNA. However, although glucocorticoids induce a 12-fold increase in GS mRNA in murine skeletal muscle, expression of the retinal enzyme and mRNA is only modestly glucocorticoid-inducible in the mouse. Therefore, despite the hormonal responsiveness of the murine GS gene, it is not likely that glucocorticoids are important physiological modulators of the developmental rise in murine retinal GS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号