首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe recent advances in understanding sphingolipid functions and metabolism in the baker’s yeast Saccharomyces cerevisiae. One milestone has been reached in yeast sphingolipid research with the complete or nearly complete identification of genes involved in sphingolipid synthesis and breakdown. Other advances include roles for sphingolipid long-chain bases as signaling molecules that regulate growth, responses to heat stress, cell wall synthesis and repair, endocytosis and dynamics of the actin cytoskeleton. We touch briefly on other sphingolipid functions so that readers unfamiliar with the field will gain a broader view of sphingolipid research. These functions include roles in protein trafficking/exocytosis, lipid rafts or microdomains, calcium homeostasis, longevity and cellular aging, nutrient uptake, cross-talk with other lipids and the interaction of sphingolipids and antifungal drugs.  相似文献   

2.
Our understanding of sphingolipid metabolism and functions in the baker's yeast Saccharomyces cerevisiae has progressed substantially in the past 2 years. Yeast sphingolipids contain a C26-acyl moiety, all of the genes necessary to make these long-chain fatty acids have been identified, and a mechanism for how chain length is determined has been proposed. Advances in understanding how the de novo synthesis of ceramide and complex sphingolipids is regulated have been made, and they demonstrate that the Target Of Rapamycin Complex 2 (TORC2) controls ceramide synthase activity. Other work shows that TORC2 regulates the level of complex sphingolipids in a pathway using the Slm1 and Slm2 proteins to control the protein phosphatase calcineurin, which regulates the breakdown of complex sphingolipids. The activity of Slm1 and Slm2 has also been shown to be regulated during heat stress by phosphoinositides and TORC2, along with sphingoid long-chain bases and the Pkh1 and Pkh2 protein kinases, to control the actin cytoskeleton, the trafficking of nutrient transporters, and cell viability. Together, these results provide the first molecular insights into understanding previous genetic interaction data that indicated a connection between sphingolipids and the TORC2 and phosphoinositide signaling networks. This new knowledge provides a foundation for greatly advancing our understanding of sphingolipid biology in yeast.  相似文献   

3.
Rafts are sphingolipid/cholesterol-rich lipid domains believed to exist within certain eukaryotic cell membranes. Model membrane studies have been key to understanding the basic physical principles behind raft formation. Recent fluorescence quenching studies have demonstrated that tight packing between sterols and sphingolipids is the driving force for raft formation, and have begun to decipher the rules governing how different molecules interact with rafts.  相似文献   

4.
A key but poorly studied domain of sphingolipid functions encompasses endocytosis, exocytosis, cellular trafficking, and cell movement. Recently, the ezrin, radixin and moesin (ERM) family of proteins emerged as novel potent targets regulated by sphingolipids. ERMs are structural proteins linking the actin cytoskeleton to the plasma membrane, also forming a scaffold for signaling pathways that are used for cell proliferation, migration and invasion, and cell division. Opposing functions of the bioactive sphingolipid ceramide and sphingosine-1-phosphate (S1P), contribute to ERM regulation. S1P robustly activates whereas ceramide potently deactivates ERM via phosphorylation/dephosphorylation, respectively. This recent dimension of cytoskeletal regulation by sphingolipids opens up new avenues to target cell dynamics, and provides further understanding of some of the unexplained biological effects mediated by sphingolipids. In addition, these studies are providing novel inroads into defining basic mechanisms of regulation and action of bioactive sphingolipids. This review describes the current understanding of sphingolipid regulation of the cytoskeleton, it also describes the biologies in which ERM proteins have been involved, and finally how these two large fields have started to converge. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.  相似文献   

5.
6.
In mammals and Saccharomyces cerevisiae, sphingolipids have been a subject of intensive research triggered by the interest in their structural diversity and in mammalian pathophysiology as well as in the availability of yeast mutants and suppressor strains. More recently, sphingolipids have attracted additional interest, because they are emerging as an important class of messenger molecules linked to many different cellular functions. In plants, sphingolipids show structural features differing from those found in animals and fungi, and much less is known about their biosynthesis and function. This review focuses on the sphingolipid modifications found in plants and on recent advances in the functional characterization of genes gaining new insight into plant sphingolipid biosynthesis. Recent studies indicate that plant sphingolipids may be also involved in signal transduction, membrane stability, host-pathogen interactions and stress responses.  相似文献   

7.
Sphingolipids are major lipid constituents of the eukaryotic plasma membrane. Without certain sphingolipids, cells and/or embryos cannot survive, indicating that sphingolipids possess important physiological functions that are not substituted for by other lipids. One such role may be signaling. Recent studies have revealed that some sphingolipid metabolites, such as long-chain bases (LCBs; sphingosine (Sph) in mammals), long-chain base 1-phosphates (LCBPs; sphingosine 1-phosphate (S1P) in mammals), ceramide (Cer), and ceramide 1-phosphate (C1P), act as signaling molecules. The addition of phosphate groups to LCB/Sph and Cer generates LCBP/S1P and C1P, respectively. These phospholipids exhibit completely different functions than those of their precursors. In this review, we describe recent advances in understanding the functions of LCBP/S1P and C1P in mammals and in the yeast Saccharomyces cerevisiae. Since LCB/Sph, LCBP/S1P, Cer, and C1P are mutually convertible, regulation of not only the total amount of the each lipid but also of the overall balance in cellular levels is important. Therefore, we describe in detail their metabolic pathways, as well as the genes involved in each reaction.  相似文献   

8.
The importance of sphingolipids in membrane biology was appreciated early in the twentieth century when several human inborn errors of metabolism were linked to defects in sphingolipid degradation. The past two decades have seen an explosion of information linking sphingolipids with cellular processes. Studies have unraveled mechanistic details of the sphingolipid metabolic pathways, and these findings are being exploited in the development of novel therapies, some now in clinical trials. Pioneering work in yeast has laid the foundation for identifying genes encoding the enzymes of the pathways. The advent of the era of genomics and bioinformatics has led to the identification of homologous genes in other species and the subsequent creation of animal knock-out lines for these genes. Discoveries from these efforts have re-kindled interest in the role of sphingolipids in membrane biology. This review highlights some of the recent advances in understanding sphingolipids' roles in membrane biology as determined from genetic models.  相似文献   

9.
Sphingolipids are important bioactive molecules that regulate basic aspects of cellular metabolism and physiology, including cell growth, adhesion, migration, senescence, apoptosis, endocytosis, and autophagy in yeast and higher eukaryotes. Since they have the ability to modulate the activation of several proteins and signaling pathways, variations in the relative levels of different sphingolipid species result in important changes in overall cellular functions and fate.Sphingolipid metabolism and their route of synthesis are highly conserved from yeast to mammalian cells. Studies using the budding yeast Saccharomyces cerevisiae have served in many ways to foster our understanding of sphingolipid dynamics and their role in the regulation of cellular processes. In the past decade, studies in S. cerevisiae have unraveled a functional association between the Target of Rapamycin (TOR) pathway and sphingolipids, showing that both TOR Complex 1 (TORC1) and TOR Complex 2 (TORC2) branches control temporal and spatial aspects of sphingolipid metabolism in response to physiological and environmental cues. In this review, we report recent findings in this emerging and exciting link between the TOR pathway and sphingolipids and implications in human health and disease.  相似文献   

10.
The intracellular routes of sphingolipid trafficking are related to the compartmentalized nature of sphingolipid metabolism, with synthesis beginning in the endoplasmic reticulum, continuing in the Golgi apparatus, and degradation occurring mainly in lysosomes. Whereas bulk sphingolipid transport between subcellular organelles occurs primarily via vesicle-mediated pathways, evidence is accumulating that sphingolipids are found in subcellular organelles that are not connected to each other by vesicular flow, implying additional trafficking routes. After discussing how sphingolipids are transported through the secretory pathway, I will review evidence for sphingolipid metabolism in organelles such as the mitochondria, and then discuss how this impacts upon our current understanding of the regulation of intracellular sphingolipid transport.  相似文献   

11.
The intracellular routes of sphingolipid trafficking are related to the compartmentalized nature of sphingolipid metabolism, with synthesis beginning in the endoplasmic reticulum, continuing in the Golgi apparatus, and degradation occurring mainly in lysosomes. Whereas bulk sphingolipid transport between subcellular organelles occurs primarily via vesicle-mediated pathways, evidence is accumulating that sphingolipids are found in subcellular organelles that are not connected to each other by vesicular flow, implying additional trafficking routes. After discussing how sphingolipids are transported through the secretory pathway, I will review evidence for sphingolipid metabolism in organelles such as the mitochondria, and then discuss how this impacts upon our current understanding of the regulation of intracellular sphingolipid transport.  相似文献   

12.
13.
Plant Sphingolipids Today ‐ Are They Still Enigmatic?   总被引:2,自引:0,他引:2  
Abstract: Sphingolipids are a diverse group of lipids found in all eukaryotes and some bacteria, consisting of a hydrophobic ceramide and a hydrophilic head group. We have summarised the contemporary understanding of the structure of plant sphingolipids with an emphasis on glucosylceramides and inositolphosphorylceramides. Plant glucosylceramides are important structural components of plasma and vacuole membranes. Inositolphosphorylceramides have been identified as moieties of the glycosylphosphorylinositol (GPI) anchors of plant proteins targeted to the plasma membrane. In the last few years, progress has been made in the cloning of plant genes coding for enzymes involved in sphingolipid metabolism. As found in yeast and mammals, the plant sphingolipid pathway is a potential generator of powerful cell signals. The role of plant sphingolipid metabolites in programmed cell death and calcium influx is discussed.  相似文献   

14.
Sphingolipids comprise a large, widespread family of complex eucaryotic-membrane constituents of poorly defined function. The yeast Saccharomyces cerevisiae is particularly suited for studies of sphingolipid function because it contains a small number of sphingolipids and is amenable to molecular genetic analysis. Moreover, it is the only eucaryote in which mutants blocked in sphingolipid biosynthesis have been isolated. Beginning with a nonreverting sphingolipid-defective strain that requires the addition of the long-chain-base component of sphingolipids to the culture medium for growth, we isolated two strains carrying secondary, suppressor mutations that permit survival in the absence of exogenous long-chain base. Remarkably, the suppressor strains made little if any sphingolipid. A study of how the suppressor gene products compensate for the lack of sphingolipids may reveal the function(s) of these membrane lipids in yeast cells.  相似文献   

15.
To study sphingolipid function(s) in Saccharomyces cerevisiae, we have investigated the effects of environmental stress on mutant (SLC) strains (R. C. Dickson, G. B. Wells, A. Schmidt, and R. L. Lester, Mol. Cell. Biol. 10:2176-2181, 1990) that either contain or lack sphingolipids, depending on whether they are cultured with a sphingolipid long-chain base. Strains lacking sphingolipid were unable to grow at low pH, at 37 degrees C, or with high salt concentrations in the medium; these environmental stresses are known to inhibit the growth of some S. cerevisiae strains with a defective plasma membrane H(+)-ATPase. We found that sphingolipids were essential for proton extrusion at low pH and furthermore found that cells lacking sphingolipid no longer exhibited net proton extrusion at normal pH after a 1-min exposure to pH 3. Cells lacking sphingolipid appeared to rapidly become almost completely permeable to protons at low pH. The deleterious effects of low pH could be partially prevented by 1 M sorbitol in the suspension of cells lacking sphingolipid. Proton extrusion at normal pH (pH 6) was significantly inhibited at 39 degrees C only in cells lacking sphingolipid. Thus, the product of an SLC suppressor gene permits life without sphingolipids only in a limited range of environments. Outside this range, sphingolipids appear to be essential for maintaining proton permeability barriers and/or for proton extrusion.  相似文献   

16.
A selection method for sphingolipid long-chain-base auxotrophs of Saccharomyces cerevisiae was devised after observing that strains that require a long-chain base for growth become denser when starved for this substance. Genetic analysis of over 60 such strains indicated only two complementation classes, lcb1 and lcb2. Mutant strains from each class grew equally well with 3-ketodihydrosphingosine, erythrodihydrosphingosine or threodihydrosphingosine, or phytosphingosine. Since these metabolites represent the first, second, and last components, respectively, of the long-chain-base biosynthetic pathway, it is likely that the LCB1 and LCB2 genes are involved in the first step of long-chain-base synthesis. The results of long-chain-base starvation in the Lcb- strains suggest that one or more sphingolipids have a vital role in S. cerevisiae. Immediate sequelae of long-chain-base starvation were loss of viability, exacerbated in the presence of alpha-cyclodextrin, and loss of phosphoinositol sphingolipid synthesis but not phosphatidylinositol synthesis. Loss of viability with long-chain-base starvation could be prevented by also blocking either protein or nucleic acid synthesis. Without a long-chain-base, cell division, dry mass accumulation, and protein synthesis continued at a diminished rate and were further inhibited by the detergent Tergitol. The cell density increase induced by long-chain-base starvation is thus explained as a differential loss of cell division and mass accumulation. Long-chain-base starvation in Lcb- S. cerevisiae and inositol starvation of Inos- S. cerevisiae share common features: an increase in cell density and a loss of cell viability overcome by blocking macromolecular synthesis.  相似文献   

17.
AIMS: To highlight the importance of sphingolipids and their metabolites in plant biology. SCOPE: The completion of the arabidopsis genome provides a platform for the identification and functional characterization of genes involved in sphingolipid biosynthesis. Using the yeast Saccharomyces cerevisiae as an experimental model, this review annotates arabidopsis open reading frames likely to be involved in sphingolipid metabolism. A number of these open reading frames have already been subject to functional characterization, though the majority still awaits investigation. Plant-specific aspects of sphingolipid biology (such as enhanced long chain base heterogeneity) are considered in the context of the emerging roles for these lipids in plant form and function. CONCLUSIONS: Arabidopsis provides an excellent genetic and post-genomic model for the characterization of the roles of sphingolipids in higher plants.  相似文献   

18.
Sphingolipid metabolites have become recognized for their participation in cell functions and signaling events that control a wide array of cellular activities. Two main sphingolipids, ceramide and sphingosine-1-phosphate, are involved in signaling pathways that regulate cell proliferation, apoptosis, motility, differentiation, angiogenesis, stress responses, protein synthesis, carbohydrate metabolism, and intracellular trafficking. Ceramide and S1P often exert opposing effects on cell survival, ceramide being pro-apoptotic and S1P generally promoting cell survival. Therefore, the conversion of one of these metabolites to the other by sphingolipid enzymes provides a vast network of regulation and provides a useful therapeutic target. Here we provide a survey of the current knowledge of the roles of sphingolipid metabolites in cancer and in lipid storage disease. We review our attempts to interfere with this network of regulation and so provide new treatments for a range of diseases. We synthesized novel analogs of sphingolipids which inhibit the hydrolysis of ceramide or its conversion to more complex sphingolipids. These analogs caused elevation of ceramide levels, leading to apoptosis of a variety of cancer cells. Administration of a synthetic analog to tumor-bearing mice resulted in reduction and even disappearance of the tumors. Therapies for sphingolipid storage diseases, such as Niemann-Pick and Gaucher diseases were achieved by two different strategies: inhibition of the biosynthesis of the substrate (substrate reduction therapy) and protection of the mutated enzyme (chaperone therapy). Sphingolipid metabolism was monitored by the use of novel fluorescent sphingolipid analogs. The results described in this review indicate that our synthetic analogs could be developed both as anticancer drugs and for the treatment of sphingolipid storage diseases.  相似文献   

19.
20.
Principles of bioactive lipid signalling: lessons from sphingolipids   总被引:1,自引:0,他引:1  
It has become increasingly difficult to find an area of cell biology in which lipids do not have important, if not key, roles as signalling and regulatory molecules. The rapidly expanding field of bioactive lipids is exemplified by many sphingolipids, such as ceramide, sphingosine, sphingosine-1-phosphate (S1P), ceramide-1-phosphate and lyso-sphingomyelin, which have roles in the regulation of cell growth, death, senescence, adhesion, migration, inflammation, angiogenesis and intracellular trafficking. Deciphering the mechanisms of these varied cell functions necessitates an understanding of the complex pathways of sphingolipid metabolism and the mechanisms that regulate lipid generation and lipid action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号