首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The activities of pyruvate dehydrogenase in rat lymphocytes and mouse macrophages are much lower than those of the key enzymes of glycolysis and glutaminolysis. However, the rates of utilization of pyruvate (at 2 mM), from the incubation medium, are not markedly lower than the rate of utilization of glucose by incubated lymphocytes or that of glutamine by incubated macrophages. This suggests that the low rate of oxidation of pyruvate produced from either glucose or glutamine in these cells is due to the high capacity of lactate dehydrogenase, which competes with pyruvate dehydrogenase for pyruvate. 2. Incubation of either macrophages or lymphocytes with dichloroacetate had no effect on the activity of subsequently isolated pyruvate dehydrogenase; incubation of mitochondria isolated from lymphocytes with dichloroacetate had no effect on the rate of conversion of [1-14C]pyruvate into 14CO2, and the double-reciprocal plot of [1-14C]pyruvate concentration against rate of 14CO2 production was linear. In contrast, ADP or an uncoupling agent increased the rate of 14CO2 production from [1-14C]pyruvate by isolated lymphocyte mitochondria. These data suggest either that pyruvate dehydrogenase is primarily in the a form or that pyruvate dehydrogenase in these cells is not controlled by an interconversion cycle, but by end-product inhibition by NADH and/or acetyl-CoA. 3. The rate of conversion of [3-14C]pyruvate into CO2 was about 15% of that from [1-14C]pyruvate in isolated lymphocytes, but was only 1% in isolated lymphocyte mitochondria. The inhibitor of mitochondrial pyruvate transport, alpha-cyano-4-hydroxycinnamate, inhibited both [1-14C]- and [3-14C]-pyruvate conversion into 14CO2 to the same extent, and by more than 80%. 4. Incubations of rat lymphocytes with concanavalin A had no effect on the rate of conversion of [1-14C]pyruvate into 14CO2, but increased the rate of conversion of [3-14C]pyruvate into 14CO2 by about 50%. This suggests that this mitogen causes a stimulation of the activity of pyruvate carboxylase.  相似文献   

2.
The effects of glucagon and the alpha-adrenergic agonist, phenylephrine, on the rate of 14CO2 production and gluconeogenesis from [1-14C]lactate and [1-14C]pyruvate were investigated in isolated perfused livers of 24-h-fasted rats. Both glucagon and phenylephrine stimulated the rate of 14CO2 production from [1-14C]lactate but not from [1-14C]pyruvate. Neither glucagon nor phenylephrine affected the activation state of the pyruvate dehydrogenase complex in perfused livers derived from 24-h-fasted rats. 3-Mercaptopicolinate, an inhibitor of the phosphoenolpyruvate carboxykinase reaction, inhibited the rates of 14CO2 production and glucose production from [1-14C]lactate by 50% and 100%, respectively. Furthermore, 3-mercaptopicolinate blocked the glucagon- and phenylephrine-stimulated 14CO2 production from [1-14C]lactate. Additionally, measurements of the specific radioactivity of glucose synthesized from [1-14C]lactate, [1-14C]pyruvate and [2-14C]pyruvate indicated that the 14C-labeled carboxyl groups of oxaloacetate synthesized from 1-14C-labeled precursors were completely randomized and pyruvate----oxaloacetate----pyruvate substrate cycle activity was minimal. The present study also demonstrates that glucagon and phenylephrine stimulation of the rate of 14CO2 production from [1-14C]lactate is a result of increased metabolic flux through the phosphoenolpyruvate carboxykinase reaction, and phenylephrine-stimulated gluconeogenesis from pyruvate is regulated at step(s) between phosphoenolpyruvate and glucose.  相似文献   

3.
It has long been known that the carbons of pyruvate are converted to CO2 at different points in the metabolic process. This report deals with the observation that insulin affects the oxidation of carbons 2 and 3 primarily and has little effect on the oxidation of the carboxyl carbon. Oxidation of different carbons of pyruvate and their incorporation into various metabolic components was studied in isolated rat hepatocytes. Insulin stimulated the 14CO2 production from [2-14C]- and [3-14C]pyruvate and from [U-14C]alanine. However, it had little or no effect on the activity of the pyruvate dehydrogenase complex as measured by the evolution of 14CO2 from [1-14C]pyruvate or [1-14C] alanine. Insulin also stimulated the incorporation of carbons 2 and 3 of pyruvate into protein but had no effect on the incorporation of carbon 1. Incorporation of [1-14C]- and [U-14C]alanine into protein was differentially enhanced by insulin in a manner similar to that of the pyruvate carbons. The fact that insulin stimulates the incorporation of [1-14C]alanine into protein but not [1-14C]pyruvate suggests the possibility of a compartmentation of pyruvate metabolism in the isolated hepatocytes. These studies show that the stimulation of [2-14C]- and [3-14C]pyruvate incorporation into protein involves the stimulatory effect of insulin on the activity of the Krebs cycle which is evident from the fact that insulin did not stimulate the pyruvate carbons to enter protein via alanine but the incorporation via glutamate was increased by about 40%.  相似文献   

4.
1. The identity of the organism previously known as Vibrio O1 (N.C.I.B. 8250) with a species of Moraxella is established. 2. The ability of cells to oxidize propionate is present only in cells with an endogenous respiration and this ability is increased 80-fold when the organism is grown with propionate. 3. Isocitrate lyase activity in extracts from propionate-grown cells is the same as that in extracts from lactate-grown cells, about tenfold greater than that in extracts from succinate-grown cells and slightly greater than half the activity in extracts from acetate-grown cells. 4. With arsenite as an inhibitor conditions were found in which the organism would catalyse the quantitative oxidation of propionate to pyruvate. When propionate was completely utilized pyruvate was metabolized further to 2-oxoglutarate. 5. The oxidation of propionate by cells was incomplete both in a ;closed system' with alkali to trap respiratory carbon dioxide and in an ;open system' with an atmosphere of oxygen+carbon dioxide (95:5). Acetate accumulated. Under these conditions [2-(14)C]- and [3-(14)C]-propionate gave rise to [(14)C]acetate. The rate of conversion of [2-(14)C]propionate into (14)CO(2), although much less than the rate of conversion of [1-(14)C]propionate into (14)CO(2), was slightly greater than the rate of conversion of [3-(14)C]propionate into (14)CO(2). 6. The oxidation of propionate by cells was complete in an ;open system' with an atmosphere of either oxygen or air. Under these conditions very little [1-(14)C]propionate was converted into (14)C-labelled cell material. The conversion of [2-(14)C]- and [3-(14)C]-propionate into (14)C-labelled cell material occurred at an appreciable rate, the rate for the incorporation of [3-(14)C]propionate being slightly more rapid. In the absence of a utilizable nitrogen source part of the [(14)C]propionate was incorporated into some reserve material, which was oxidized when added substrate had been completely utilized. 7. [(14)C]-Pyruvate produced from [(14)C]propionate was chemically degraded. The C((1)) of propionate was found only in C((1)) of pyruvate. At least 86% of C((2)) of pyruvate was derived from C((2)) of propionate and at least 92% of C((3)) of pyruvate from C((3)) of propionate. 8. These results are incompatible with the operation of any of the previously described pathways for propionate metabolism except the direct one, perhaps via an activated acrylate.  相似文献   

5.
In rat hindlimbs perfused with [1-14C]pyruvate and 5 mM-dichloroacetate, the calculated apparent rate of pyruvate decarboxylation was decreased with increasing perfusate pyruvate concentrations. However, in the absence of dichloroacetate the apparent rate of decarboxylation increased under these conditions. Dichloroacetate enhanced [1-14C]pyruvate uptake, but decreased the specific radioactivity of effluent lactate. Glycogen metabolism remained unaffected. The results were not consistent with a common pyruvate pool, but provide evidence for the compartmentation of pyruvate metabolism.  相似文献   

6.
P Favarger  S Rous  S Bas 《Biochimie》1979,61(1):101-107
Mice received intravenously [1- or 2-14C]acetate, [1-, 2- or 3-14C] or [2-14C]pyruvate and were killed 1, 3, 5 or 15 min later. The radioactivity of CO2 or HCO3- of liver or carcass as well as the radioactivity of blood glucose were measured. The ratio of the radioactivity found in these compounds after [3-14C] or [2-14C-A1pyruvate injection suggests that in the fed aminals: 1. the decarboxylation of the pyruvate was more rapid than its carboxylation, 2. most of the neosynthesized glucose was derived from pyruvate molecules which had undergone a decarboxylation followed by a condensation to citrate, 3. 1/4 to 1/3 of the pyruvate was carboxylated and 2/3 to 3/4 was decarboxylated in animals receiving a diet poor in fats.  相似文献   

7.
The effect of Ca2+-mobilizing hormones, vasopressin, angiotensin II and the alpha-adrenergic agonist phenylephrine, on the metabolic flux through the tricarboxylic acid cycle was investigated in isolated perfused rat livers. All three Ca2+-mobilizing agonists stimulated 14CO2 production and gluconeogenesis in livers of 24-h-fasted rats perfused with [2-14C]pyruvate. Prazosin blocked the phenylephrine-elicited stimulation of 14CO2 and glucose production from [2-14C]pyruvate whereas the alpha 2-adrenergic agonist, BHT-933, did not affect the rates of 14CO2 and glucose production from [2-14C]pyruvate indicating that the phenylephrine-mediated response involved alpha 1-adrenergic receptors. Phenylephrine, vasopressin and angiotensin II stimulated 14CO2 production from [2-14C]acetate in livers derived from fed rats but not in livers of 24-h-fasted rats. In livers of 24-h-fasted rats, perfused with [2-14C]acetate, exogenously added pyruvate was required for an increase in the rate of 14CO2 production during phenylephrine infusion. This last observation suggests increased pyruvate carboxylation as one of the mechanisms involved in stimulation of tricarboxylic acid cycle activity by the Ca2+-mobilizing agonists, vasopressin, angiotensin II and phenylephrine.  相似文献   

8.
Previous estimates of flux through the pyruvate-dehydrogenase complex were made by measuring 14CO2 generated from oxidation of [1-14C]pyruvate, assuming a 1:1 stoichiometry. However, this method fails to discriminate between 14CO2 produced from pyruvate dehydrogenase and 14CO2 generated from phospho-enolpyruvate carboxykinase and citric-acid-cycle dehydrogenases. While some previous reports have attempted to correct for the additional 14CO2 production by comparing 14CO2 generated by [1-14C]pyruvate with [2-14C]pyruvate or [3-14C]pyruvate, the estimates are flawed by failure to determine the radioactivity and distribution of the 14C label in the oxalacetate pool. The present method circumvents these problems by utilizing [1,4-14C]succinate to radiolabel the oxalacetate pool and by directly measuring the specific radioactivity of malate. The results demonstrate that flux through the pyruvate-dehydrogenase complex is negligible compared to the other reactions which generate 14CO2 from [1-14C]lactate in the fasted state. Phenylephrine did not significantly alter this result in the fasted state. However, 14CO2 production via the pyruvate-dehydrogenase complex is large (approximately 11.5 nmol.min-1.mg mitochondrial protein-1) compared to 14CO2 production via phosphoenolpyruvate carboxykinase and citric-acid-cycle dehydrogenases (approximately 6.4 nmol.min-1.mg-1) when the pyruvate-dehydrogenase complex is activated, in the fed state with 1 mM dichloroacetate.  相似文献   

9.
The acute immobilized stress was studied for its effect on oxidation rate of [1-14C]palmitoyl-CoA, [1-14C]acetyl-CoA and [2-14C]pyruvate in mitochondria of the adrenals, liver and heart of rabbits. The stress effect on the energy metabolism of adrenals is associated with an increase of the rate of CO2 formation from pyruvate and with a decrease of the rate of CO2 formation from palmitoyl-CoA. Intensified oxidation of all substrates is observed in the heart mitochondria. The processes of beta-oxidation are more active in the liver. The data obtained evidence for differences in the mechanisms of energy metabolism reconstruction under acute stress in tissues with different functional specialization.  相似文献   

10.
1. A method was devised for preparing pig heart pyruvate dehydrogenase free of thiamin pyrophosphate (TPP), permitting studies of the binding of [35S]TPP to pyruvate dehydrogenase and pyruvate dehydrogenase phosphate. The Kd of TPP for pyruvate dehydrogenase was in the range 6.2-8.2 muM, whereas that for pyruvate dehydrogenase phosphate was approximately 15 muM; both forms of the complex contained about the same total number of binding sites (500 pmol/unit of enzyme). EDTA completely inhibited binding of TPP; sodium pyrophosphate, adenylyl imidodiphosphate and GTP, which are inhibitors (competitive with TPP) of the overall pyruvate dehydrogenase reaction, did not appreciably affect TPP binding. 2. Initial-velocity patterns of the overall pyruvate dehydrogenase reaction obtained with varying TPP, CoA and NAD+ concentrations at a fixed pyruvate concentration were consistent with a sequential three-site Ping Pong mechanism; in the presence of oxaloacetate and citrate synthase to remove acetyl-CoA (an inhibitor of the overall reaction) the values of Km for NAD+ and CoA were 53+/- 5 muM and 1.9+/-0.2 muM respectively. Initial-velocity patterns observed with varying TPP concentrations at various fixed concentrations of pyruvate were indicative of either a compulsory order of addition of substrates to form a ternary complex (pyruvate-Enz-TPP) or a random-sequence mechanism in which interconversion of ternary intermediates is rate-limiting; values of Km for pyruvate and TPP were 25+/-4 muM and 50+/-10 nM respectively. The Kia-TPP (the dissociation constant for Enz-TPP complex calculated from kinetic plots) was close to the value of Kd-TPP (determined by direct binding studies). 3. Inhibition of the overall pyruvate dehydrogenase reaction by pyrophosphate was mixed non-competitive versus pyruvate and competitive versus TPP; however, pyrophosphate did not alter the calculated value for Kia-TPP, consistent with the lack of effect of pyrophosphate on the Kd for TPP. 4. Pyruvate dehydrogenase catalysed a TPP-dependent production of 14CO2 from [1-14C]pyruvate in the absence of NAD+ and CoA at approximately 0.35% of the overall reaction rate; this was substantially inhibited by phosphorylation of the enzyme both in the presence and absence of acetaldehyde (which stimulates the rate of 14CO2 production two- or three-fold). 5. Pyruvate dehydrogenase catalysed a partial back-reaction in the presence of TPP, acetyl-CoA and NADH. The Km for TPP was 4.1+/-0.5 muM. The partial back-reaction was stimulated by acetaldehyde, inhibited by pyrophosphate and abolished by phosphorylation. 6. Formation of enzyme-bound [14C]acetylhydrolipoate from [3-14C]pyruvate but not from [1-14C]acetyl-CoA was inhibited by phosphorylation. Phosphorylation also substantially inhibited the transfer of [14C]acetyl groups from enzyme-bound [14C]acetylhydrolipoate to TPP in the presence of NADH. 7...  相似文献   

11.
Rat lung mitochondrial preparations were incubated in the presence of pyruvate and malate. The principal metabolic products measured were citrate and CO2. Citrate formation from pyruvate was found to be dependent on the presence of malate. Significant citrate was formed in the presence of isocitrate and the rate of citrate formation was increased by the addition of pyruvate. Small amounts of citrate were formed by lung mitochondrial preparations in the presence of 2-oxoglutarate and succinate only after the addition of pyruvate. The level of acetyl-CoA was significantly greater in the presence of pyruvate than in the presence of pyruvate plus malate. The addition of malate to lung mitochondrial preparations increased 14CO2 production from [U-14C]- and [1-14C] pyruvate but decreased its production from [2-14C]- and [3-14C]-pyruvate. However, malate increased the incorporation of [2-14C] pyruvate into malate and citrate. A low level of pyruvate-dependent H14CO8-incorporation into acid-stable products was observed, principally citrate and malate, but this rate did not exceed 5% of the rate of net citrate formation in the presence of malate and pyruvate. The capacity of rat lung mitochondria to form oxaloacetate from pyruvate alone in vitro is very limited, and would appear to cast doubt on a major role of pyruvate carboxylase in citrate formation. It is concluded that the rate of citrate formation from pyruvate is limited by the availability of intramitochondrial oxaloacetate and the rate of citrate efflux across the mitochondrial membrane.  相似文献   

12.
The relation between pyruvate utilization and acetylcholine synthesis was investigated in minces of adult rat brain. The flux of pyruvate to acetylcholine was less than 1% of that to CO2; nevertheless, a number of agents which inhibited conversion of [1-14C]-pyruvate or [2-14C]pyruvate into 14CO2 were associated with corresponding decreases in the conversion of [2-14C]pyruvate into acetylcholine. The amount of acetylcholine produced by minces of whole rat brain, measured by g.l.c.-mass spectrometry, decreased similarly. Among the inhibitory compounds tested were 3-bromopyruvate, an irreversible inhibitor of pyruvate dehydrogenase; 2-oxobutyrate, a competitive inhibitor of pyruvate dehydrogenase; other 2-oxo acids; and amobarbital and pentobarbital. Linear-regression equations relating CO2 production to acetylcholine synthesis gave correlation coefficients of 0.89-0.93 for the combined observations. The inhibition of acetylcholine synthesis could not be attributed to inhibition of choline acetyltransferase. Incorporation of [2-14C]pyruvate into lipids, proteins and nucleic acids was effected less than that into acetylcholine. Under these experimental conditions, it was shown that pyruvate utilization can limit acetylcholine synthesis.  相似文献   

13.
1. The role of pyruvate carboxylation in the net synthesis of tricarboxylic acid-cycle intermediates during acetate metabolism was studied in isolated rat hearts perfused with [1-14C]pyruvate. 2. The incorporation of the 14C label from [1-14C]pyruvate into the tricarboxylic acid-cycle intermediates points to a carbon input from pyruvate via enzymes in addition to pyruvate dehydrogenase and citrate synthase. 3. On addition of acetate, the specific radioactivity of citrate showed an initial maximum at 2 min, with a subsequent decline in labelling. The C-6 of citrate (which is removed in the isocitrate dehydrogenase reaction) and the remainder of the molecule showed differential labelling kinetics, the specific radioactivity of C-6 declining more rapidly. Since this carbon is lost in the isocitrate dehydrogenase reaction, the results are consistent with a rapid inactivation of pyruvate dehydrogenase after the addition of acetate, which was confirmed by measuring the 14CO2 production from [1-14C]pyruvate. 4. The results can be interpreted to show that carboxylation of pyruvate to the C4 compounds of the tricarboxylic acid cycle occurs under conditions necessitating anaplerosis in rat myocardium, although the results do not identify the enzyme involved. 5. The specific radioactivity of tissue lactate was too low to allow it to be used as an indicator of the specific radioactivity of the intracellular pyruvate pool. The specific radioactivity of alanine was three times that of lactate. When the hearts were perfused with [1-14C]lactate, the specific radioactivity of alanine was 70% of that of pyruvate. The results suggest that a subcompartmentation of lactate and pyruvate occurs in the cytosol.  相似文献   

14.
1. Commercially available [2-14C]pyruvate and [2-14C]malonate were found to contain 3-6% (w/w) of [14C]acetate. 2. The contaminating [14C]acetate was efficiently utilized for fatty acid synthesis by isolated chloroplasts, whereas the parent materials were poorer substrates. 3. Maximum incorporation rates of the different substrates examined were (ng-atoms of C/h per mg of chlorophyll): [1-14C]acetate, 2676; [2-14C]pyruvate, 810; H14CO3-, 355; [2-14C]malonate, 19. 4. Products of CO2 fixation were probably not a significant carbon source for fatty acid synthesis in the presence of exogenous acetate.  相似文献   

15.
1. The rate of appearance of (14)CO(2) from [6-(14)C]glucose and [3-(14)C]pyruvate was measured. Pyruvate is oxidized to carbon dioxide twice as fast as glucose, although the oxygen uptake is almost the same with each substrate. 2. The presence of 30mum-2,4-dinitrophenol increases the output of (14)CO(2) from [6-(14)C]glucose sixfold whereas the oxygen uptake is not quite doubled. Similar results are obtained with 0.1m-potassium chloride. The stimulating action of these two agents on the output of (14)CO(2) from [3-(14)C]pyruvate is much less than on that from [6-(14)C]glucose. 3. The effects of oligomycin, ouabain and triethyltin on the respiration of control and stimulated brain-cortex slices were studied. Triethyltin (1.3mum) inhibited the oxidation of [6-(14)C]glucose more than 70%, but did not inhibit the oxidation of[3-(14)C]pyruvate. [3-(14)C]pyruvate. 4. The production of lactic acid by brain-cortex slices incubated with glucose is twice as great as that with pyruvate. Lactic acid increases two and a half times in the presence of either triethyltin or oligomycin when the substrate is glucose, but is no different from the control when the substrate is pyruvate. 5. With kidney slices the production of lactic acid from glucose is very low. It is increased by oligomycin but not by triethyltin. 6. The results are discussed in terms of the oxidation of the extramitochondrial NADH(2) produced during glycolysis.  相似文献   

16.
1. The effects of fasting and fasting followed by refeeding on the relative activities of the pyruvate dehydrogenase (PDH) complex and the tricarboxylic acid (TCA) cycle in isolated rat colonocytes were estimated by the rate of production of 14CO2 from [1-14C]pyruvate and [3-14C]pyruvate, respectively. 2. Decarboxylation of pyruvate by the PDH complex exceeded that by the TCA cycle in both fasted and fasted/refed colonocytes, was higher in distal than in proximal colon, and was stimulated by refeeding following a fast. 3. Oxidation of pyruvate by both the PDH complex and the TCA cycle was inhibited by butyrate. 4. Propionate alone had no effect, but synergized with butyrate to further reduce pyruvate decarboxylation by the TCA cycle. 5. Preferential utilization of butyrate by proliferating colonic epithelial cells is postulated to maximize the energy yield and spare pyruvate and its precursors for alternative synthetic roles necessary for active cell division.  相似文献   

17.
1. The overall metabolic changes in lactating mammary gland in alloxan-diabetic and anti-insulin-serum-treated rats were assessed by measurement of the incorporation of (14)C from specifically labelled glucose, pyruvate and acetate into carbon dioxide and lipid, together with measurements of enzymes concerned with the pentose phosphate pathway and with citrate metabolism. 2. Alloxan-diabetes depressed the rate of formation of (14)CO(2) from [1-(14)C]glucose and [2-(14)C]glucose to approx. 10% of the control rate; this was partially reversed by addition of insulin in vitro. The quotient Oxidation of [1-(14)C]glucose/Oxidation of [6-(14)C]glucose fell from a value of 17.6 in the control group to 3.9 in the diabetic group and was restored to 14.3 in the presence of insulin in vitro. In keeping with these results it was shown that glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities were significantly decreased in alloxan-diabetic rats. 3. Alloxan-diabetes depressed the decarboxylation and the oxidation of labelled pyruvate, but not the oxidation of labelled acetate. 4. The synthesis of lipid from specifically labelled glucose was greatly decreased, that from [2-(14)C]pyruvate was almost unchanged and that from [1-(14)C]acetate alone was increased in alloxandiabetic rats. However, the stimulation of lipid synthesis from acetate by glucose was small in the alloxan-diabetic rats compared with the controls. Insulin in vitro partially reversed all these effects. Both citrate-cleavage enzyme and acetate thiokinase activities were decreased in alloxan-diabetic rats. 5. Treatment of rats with anti-insulin serum depressed the formation of (14)CO(2) from [1-(14)C]glucose and [2-(14)C]glucose, but increased that from [6-(14)C]glucose. This was completely restored by the presence of insulin in vitro. The quotient Oxidation of [1-(14)C]glucose/Oxidation of [6-(14)C]glucose fell from a value of 17.6 in the control group to 3.8 in the anti-insulin-serum-treated group. There were no changes in the activity of glucose 6-phosphate dehydrogenase or 6-phosphogluconate dehydrogenase, but the hexokinase distribution changed and the content of the soluble fraction increased significantly. 6. The synthesis of lipid from specifically labelled glucose was depressed in anti-insulin-serum-treated rats; this effect was completely reversed by addition of insulin in vitro to the tissue slices.  相似文献   

18.
1. A method was devised for the determination of the specific radioactivity of the acetyl moiety of acetylcholine synthesized from various (14)C-labelled substrates. 2. The precursor for the acetyl moiety of acetylcholine was studied in slices of striatum and cerebral cortex from rat and guinea-pig brain. Incorporation of radioactivity into acetylcholine was determined after incubating the slices in the presence of [2-(14)C]acetate, [(14)C]bicarbonate, [1,5-(14)C]citrate, dl-[1- or 5-(14)C]glutamate or [1- or 2-(14)C]pyruvate. 3. After incubation for 1h, acetylcholine was accumulated significantly in both striatum slices (4.1nmol/mg of protein) and cerebral-cortex slices (0.57nmol/mg of protein) from the rat. Final concentrations were about 11 and 5 times respectively the initial values. 4. With slices from rat striatum, rat cerebral cortex and guinea-pig cerebral cortex, the specific radioactivity of acetylcholine derived from [2-(14)C]pyruvate was very high, reaching approx. 30, 20 and 6% respectively of the initial specific radioactivity of added pyruvate in the medium. With the striatum slices this high value was reached after incubation for 15min. Incorporation of radioactivity from [2-(14)C]acetate was only 1.25, 5.3 and 19.7% of that from [2-(14)C]pyruvate in rat striatum, rat cerebral-cortex and guinea-pig cerebral-cortex slices respectively. A small but definite incorporation was found from [5-(14)C]glutamate. No incorporation was found from the other substrates. The findings suggest that pyruvate is the most important precursor for the synthesis of the acetyl moiety of acetylcholine in brain slices. 5. The specific radioactivity of acetylcholine relative to that of citrate when [2-(14)C]pyruvate was used compared with that obtained when [2-(14)C]acetate was used. A marked difference was found in all slices, suggesting metabolic compartmentation of the acetyl-CoA pool.  相似文献   

19.
We set out to study the pentose phosphate pathway (PPP) in isolated rat hearts perfused with [5-3H]glucose and [1-14C]glucose or [6-14C]glucose (crossover study with 1- then 6- or 6- then 1-14C-labeled glucose). To model a physiological state, hearts were perfused under working conditions with Krebs-Henseleit buffer containing 5 mM glucose, 40 microU/ml insulin, 0.5 mM lactate, 0.05 mM pyruvate, and 0.4 mM oleate/3% albumin. The steady-state C1/C6 ratio (i.e., the ratio from [1-14C]glucose to [6-14C]glucose) of metabolites released by the heart, an index of oxidative PPP, was not different from 1 (1.06 +/- 0.19 for 14CO2, and 1.00 +/- 0.01 for [14C]lactate + [14C]pyruvate, mean +/- SE, n = 8). Hearts exhibited contractile, metabolic, and 14C-isotopic steady state for glucose oxidation (14CO2 production). Net glycolytic flux (net release of lactate + pyruvate) and efflux of [14C]lactate + [14C]pyruvate were the same and also exhibited steady state. In contrast, flux based on 3H2O production from [5-3H]glucose increased progressively, reaching 260% of the other measures of glycolysis after 30 min. The 3H/14C ratio of glycogen (relative to extracellular glucose) and sugar phosphates (representing the glycogen precursor pool of hexose phosphates) was not different from each other and was <1 (0.36 +/- 0.01 and 0.43 +/- 0.05 respectively, n = 8, P < 0.05 vs. 1). We conclude that both transaldolase and the L-type PPP permit hexose detritiation in the absence of net glycolytic flux by allowing interconversion of glycolytic hexose and triose phosphates. Thus apparent glycolytic flux obtained by 3H2O production from [5-3H]glucose overestimates the true glycolytic flux in rat heart.  相似文献   

20.
Dichloroacetate (an activator of pyruvate dehydrogenase) stimulates 14CO2 production from [U-14C]glucose, but not from [U-14C]glutamate, [U-14C]aspartate, [U-14C]- and [1-14C]-valine and [U-14C]- and [1-14C]-leucine. It is concluded (1) that pyruvate dehydrogenase is not rate-limiting in the oxidation to CO2 of amino acids that are metabolized to tricarboxylic acid-cycle intermediates, and (2) that carbohydrate (and not amino acids) is the main carbon precursor in alanine formation in muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号