首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conventional kinesin, a dimeric molecular motor, uses ATP-dependent conformational changes to move unidirectionally along a row of tubulin subunits on a microtubule. Two models have been advanced for the major structural change underlying kinesin motility: the first involves an unzippering/zippering of a small peptide (neck linker) from the motor catalytic core and the second proposes an unwinding/rewinding of the adjacent coiled-coil (neck coiled-coil). Here, we have tested these models using disulfide cross-linking of cysteines engineered into recombinant kinesin motors. When the neck linker motion was prevented by cross-linking, kinesin ceased unidirectional movement and only showed brief one-dimensional diffusion along microtubules. Motility fully recovered upon adding reducing agents to reverse the cross-link. When the neck linker motion was partially restrained, single kinesin motors showed biased diffusion towards the microtubule plus end but could not move effectively against a load imposed by an optical trap. Thus, partial movement of the neck linker suffices for directionality but not for normal processivity or force generation. In contrast, preventing neck coiled-coil unwinding by disulfide cross-linking had relatively little effect on motor activity, although the average run length of single kinesin molecules decreased by 30-50%. These studies indicate that conformational changes in the neck linker, not in the neck coiled-coil, drive processive movement by the kinesin motor.  相似文献   

2.
In an effort to understand how specific structural features within the kinesin neck, a region of the heavy chain located between the catalytic core and stalk domains, may contribute to motor processivity (an ability to remain attached to the microtubule filament), we have prepared several synthetic peptides corresponding to the neck region of human conventional kinesin and determined their secondary structure content and stability by CD spectroscopy. Our results show that the coiled-coil dimerization domain within the human kinesin neck region corresponds to residues 337 to 369 in solution, and thus is in excellent agreement with the recent X-ray crystallographic structures of rat brain kinesin. Further, we show that the first and last heptads of this region are absolutely critical for creating the high stability and association of the dimeric structure. Interestingly, addition of the 7 N-terminal neck-linker residues (330-336) to the coiled-coil domain significantly increased its stability (Delta GdnHCl midpoint of 1 M or an increase of approximately 1.5 kcal/mol), indicating that a strong structural link exists between the neck-linker and coiled-coil region. Subsequent high-resolution structural analysis of the residues located at the junction of the neck-linker and coiled-coil revealed the presence of the two helix capping motifs, the capping box (a reciprocal interaction of Thr 336 with Gln 339) and the hydrophobic staple (a hydrophobic packing interaction of Leu 335 with Trp 340). Substitution of Leu 335 and Thr 336 (the capping residues) with Gly completely eliminated the increased stability of the coiled-coil region observed in the presence of the neck-linker residues. Correspondingly, substitution of Trp 340, the first hydrophobic core d position residue of the coiled-coil, with an Ala residue resulted in a greater than expected decrease in stability and helicity of the coiled-coil structure. Subsequent analysis of the X-ray structure and substitution analysis of Lys 341 revealed that Trp 340 makes an important interchain hydrophobic interaction with Lys 341 of the opposite chain. Taken together these results reveal that a set of strong intra- and inter-chain interactions made up of the helix "capping box," "hydrophobic staple," and the newly identified "Leu-Trp-Lys sandwich" motifs stabilize the kinesin neck coiled-coil structure, thus preventing it from fraying and unfolding.  相似文献   

3.
Conventional kinesin is a molecular motor consisting of an N-terminal catalytic motor domain, an extended stalk and a small globular C-terminus. Whereas the structure and function of the catalytic motor domain has been investigated, little is known about the function of domains outside the globular head. A short coiled-coil region adjacent to the motor domain, termed the neck, is known to be important for dimerization and may be required for kinesin processivity. We now provide evidence that a helix-disrupting hinge region (hinge 1) that separates the neck from the first extended coiled-coil of the stalk plays an essential role in basic motor activity. A fast fungal kinesin from Syncephalastrum racemosum was used for these studies. Deletion, substitution by a coiled-coil and truncation of the hinge 1 region all reduce motor speed and uncouple ATP turnover from gliding velocity. Insertion of hinge 1 regions from two conventional kinesins, Nkin and DmKHC, fully restores motor activity, whereas insertion of putative flexible linkers of other proteins does not, suggesting that hinge 1 regions of conventional kinesins can functionally replace each other. We suggest that this region is essential for kinesin movement in its promotion of chemo-mechanical coupling of the two heads and therefore the functional motor domain should be redefined to include not only the catalytic head but also the adjacent neck and hinge 1 domains.  相似文献   

4.
The neck domain of fungal conventional kinesins displays characteristic properties which are reflected in a specific sequence pattern. The exchange of the strictly conserved Tyr 362, not present in animals, into Lys, Cys or Phe leads to a failure to dimerize. The destabilizing effect is confirmed by a lower coiled-coil propensity of mutant peptides. Whereas the Phe substitution has only a structural effect, the Lys and Cys replacements lead to dramatic kinetic changes. The steady state ATPase is 4- to 7-fold accelerated, which may be due to a faster microtubule-stimulated ADP release rate. These data suggest that an inhibitory effect of the fungal neck domain on the motor core is mediated by direct interaction of the aromatic ring of Tyr 362 with the head, whereas the OH group is essential for dimerization. This is the first demonstration of a direct influence of the kinesin neck region in regulation of the catalytic activity.  相似文献   

5.
KIF1A, a kinesin-related motor protein that transports pre-synaptic vesicles in neurons, was originally presumed to translocate along microtubules (MT) as a monomer. Protein structure predictions from its amino acid sequence failed to identify the long coiled-coil domains typical of kinesins, which led researchers to believe it does not oligomerize into the canonical kinesin dimer. However, mounting evidence using recombinant chimeric protein indicates that KIF1A, like conventional kinesin, requires dimerization for fast, unidirectional processive movement along MTs. Because these studies are somewhat indirect, we wished to test the oligomerization state of native KIF1A, and to compare that to full-length recombinant protein. We have performed hydrodynamic analyses to determine the molecular weights of the respective complexes. Our results indicate that most native KIF1A is soluble and indeed monomeric, but recombinant KIF1A is a dimer. MT-binding studies also showed that native KIF1A did not bind to MTs in either the presence of AMP-PNP, apyrase, or adenosine triphosphate (ATP), but recombinant KIF1A bound to MTs most stably in the presence of ATP, indicating very different motor functional states. To further characterize KIF1A's dimerization potential, we prepared peptides corresponding to the neck domains of MmKIF1A and CeUnc104, and by circular dichroism spectroscopy compared these peptides for their ability to form coiled-coils. Interestingly, both MmKIF1A and CeUnc104 neck peptides formed homodimeric coiled-coils, with the MmKIF1A neck coiled-coil exhibiting the greater stability. Collectively, from our data and from previous studies, we predict that native KIF1A can exist as both an inactive monomer and an active homodimer formed in part through its neck coiled-coil domain.  相似文献   

6.
Conventional kinesin is a highly processive molecular motor that takes several hundred steps per encounter with a microtubule. Processive motility is believed to result from the coordinated, hand-over-hand motion of the two heads of the kinesin dimer, but the specific factors that determine kinesin's run length (distance traveled per microtubule encounter) are not known. Here, we show that the neck coiled-coil, a structure adjacent to the motor domain, plays an important role in governing the run length. By adding positive charge to the neck coiled-coil, we have created ultra-processive kinesin mutants that have fourfold longer run lengths than the wild-type motor, but that have normal ATPase activity and motor velocity. Conversely, adding negative charge on the neck coiled-coil decreases the run length. The gain in processivity can be suppressed by either proteolytic cleavage of tubulin's negatively charged COOH terminus or by high salt concentrations. Therefore, modulation of processivity by the neck coiled-coil appears to involve an electrostatic tethering interaction with the COOH terminus of tubulin. The ability to readily increase kinesin processivity by mutation, taken together with the strong sequence conservation of the neck coiled-coil, suggests that evolutionary pressures may limit kinesin's run length to optimize its in vivo function.  相似文献   

7.
Ito M  Morii H  Shimizu T  Tanokura M 《Biochemistry》2006,45(10):3315-3324
The dimeric structure of kinesin superfamily proteins plays an important role in their motile functions and characteristics. In this study, the coiled-coil-forming property of the stalk region (192-346) of Drosophila ncd, a C-terminal kinesin motor protein, was investigated by synthesizing various peptide fragments. The alpha helicity of a set of 46-residue peptides spanning the stalk region appeared too low to form a coiled-coil dimer, probably because of insufficient continuity of the hydrophobic residues at (a and d) core positions in amphipathic heptad repeats. On the other hand, several peptides with leucine residues introduced at core positions or with extensional sequences with high alpha helicity had an advantage in coiled-coil formation. When we analyzed the thermal and urea-induced unfolding of these dimeric peptides, we identified four domains having a relatively high potential to form coiled coils. Among them, three domains on the C-terminal side of the stalk region, i.e., (252-272), (276-330), and (336-346), were in the same heptad frame, although these potential coiled-coil domains were not self-sustaining individually. This is in sharp contrast to the fragment of human kinesin, (332-369), which has an extremely high tendency toward coiled-coil formation. One of the possible triggers for coiled-coil formation of the ncd stalk region may be the interaction between the motor domain and the C-terminal part of the stalk as previously revealed by X-ray crystallography. The residues, S331 and R335, seem to act as a breaking point for alpha-helix continuity. This would make the region (336-346), as the head-stalk joint, more flexible such as seen with a plus-end-directed kinesin, if this region had no interaction with the motor domain. These characteristic differences between ncd and kinesin suggest that the nonlocally sustained coiled coil of ncd is one of the factors important for minus-end-directed motility.  相似文献   

8.
Kinesin-1 dimerizes via the coiled-coil neck domain. In contrast to animal kinesins, neck dimerization of the fungal kinesin-1 NcKin requires additional residues from the hinge. Using chimeric constructs containing or lacking fungal-specific elements, the proximal part of the hinge was shown to stabilize the neck coiled-coil conformation in a complex manner. The conserved fungal kinesin hinge residue W384 caused neck coiled-coil formation in a chimeric NcKin construct, including parts of the human kinesin-1 stalk. The stabilizing effect was retained in a NcKinW384F mutant, suggesting important pi-stacking interactions. Without the stalk, W384 was not sufficient to induce coiled-coil formation, indicating that W384 is part of a cluster of several residues required for neck coiled-coil folding. A W384-less chimera of NcKin and human kinesin possessed a non-coiled-coil neck conformation and showed inhibited activity that could be reactivated when artificial interstrand disulfide bonds were used to stabilize the neck coiled-coil conformation. On the basis of yeast two-hybrid data, we propose that the proximal hinge can bind kinesin's cargo-free tail domain and causes inactivation of kinesin by disrupting the neck coiled-coil conformation.  相似文献   

9.
Caenhorhabditis elegans Unc104 kinesin transports synaptic vesicles at rapid velocities. Unc104 is primarily monomeric in solution, but recent motility studies suggest that it may dimerize when concentrated on membranes. Using cryo-electron microscopy, we observe two conformations of microtubule-bound Unc104: a monomeric state in which the two neck helices form an intramolecular, parallel coiled coil; and a dimeric state in which the neck helices form an intermolecular coiled coil. The intramolecular folded conformation is abolished by deletion of a flexible hinge separating the neck helices, indicating that it acts as a spacer to accommodate the parallel coiled-coil configuration. The neck hinge deletion mutation does not alter motor velocity in vitro but produces a severe uncoordinated phenotype in transgenic C. elegans, suggesting that the folded conformation plays an important role in motor regulation. We suggest that the Unc104 neck regulates motility by switching from a self-folded, repressed state to a dimerized conformation that can support fast processive movement.  相似文献   

10.
The neck region of kinesin constitutes a key component in the enzyme's walking mechanism. Here we applied cryoelectron microscopy and image reconstruction to investigate the location of the kinesin neck in dimeric and monomeric constructs complexed to microtubules. To this end we enhanced the visibility of this region by engineering an SH3 domain into the transition between neck linker and neck coiled coil. The resulting chimeric kinesin constructs remained functional as verified by physiology assays. In the presence of AMP-PNP the SH3 domains allowed us to identify the position of the neck in a well defined conformation and revealed its high flexibility in the absence of nucleotide. We show here the double-headed binding of dimeric kinesin along the same protofilament, which is characterized by the opposite directionality of neck linkers. In this configuration the neck coiled coil appears fully zipped. The position of the neck region in dimeric constructs is not affected by the presence of the tubulin C-termini as confirmed by subtilisin treatment of microtubules prior to motor decoration.  相似文献   

11.
Microtubule based motors like conventional kinesin (Kinesin-1) and Unc104 (Kinesin-3), and classical microtubule associated proteins (MAPs), including MAP2, are intimately involved in neurite formation and organelle transport. The processive motility of both these kinesins involves weak microtubule interactions in the ADP-bound states. Using cosedimentation assays, we have investigated these weak interactions and characterized their inhibition by MAP2c. We show that Unc104 binds microtubules with five-fold weaker affinity and two-fold higher stoichiometry compared with conventional kinesin. Unc104 and conventional kinesin binding affinities are primarily dependent on positively charged residues in the Unc104 K-loop and conventional kinesin neck coiled-coil and removal of these residues affects Unc104 and conventional kinesin differently. We observed that MAP2c acts primarily as a competitive inhibitor of Unc104 but a mixed inhibitor of conventional kinesin. Our data suggest a specific model in which MAP2c differentially interferes with each kinesin motor by inhibiting its weak attachment to the tubulin C-termini. This is reminiscent of the defects we have observed in Unc104 and kinesin mutants in which the positively charged residues in K-loop and neck coiled-coil domains were removed.  相似文献   

12.
Processive kinesin motors often contain a coiled-coil neck that controls the directionality and processivity. However, the neck coil (NC) of kinesin-3 is too short to form a stable coiled-coil dimer. Here, we found that the coiled-coil (CC1)-forkhead-associated (FHA) tandem (that is connected to NC by Pro-390) of kinesin-3 KIF13A assembles as an extended dimer. With the removal of Pro-390, the NC-CC1 tandem of KIF13A unexpectedly forms a continuous coiled-coil dimer that can be well aligned into the CC1-FHA dimer. The reverse introduction of Pro-390 breaks the NC-CC1 coiled-coil dimer but provides the intrinsic flexibility to couple NC with the CC1-FHA tandem. Mutations of either NC, CC1, or the FHA domain all significantly impaired the motor activity. Thus, the three elements within the NC-CC1-FHA tandem of KIF13A are structurally interrelated to form a stable dimer for activating the motor. This work also provides the first direct structural evidence to support the formation of a coiled-coil neck by the short characteristic neck domain of kinesin-3.  相似文献   

13.
Unc104/KIF1A, a kinesin family member, is reported to be monomeric in solution, though its polypeptide has regions that potentially form coiled coils. For a better understanding of the mechanism underlying Unc104/KIF1A's motility, it is important to evaluate the dimerization ability of this protein. The CD measurement of relevant segments of Caenorhabditis elegans Unc104 indicated that peptides having a common region (N358-K379) showed spectra characteristic to an alpha-helix. Dimerization by coiled-coil formation was confirmed by analytical ultracentrifugation. By analyzing the concentration dependence of the CD spectra, the monomer-dimer dissociation constant, Kd, of (N354-E388) was estimated to be about 5 microM, which is considerably larger than that of the corresponding segment of human kinesin (62 nM). Though its dimerization ability is rather moderate, Unc104/KIF1A could nonetheless dimerize and therefore could move by the same mechanism as human kinesin when the concentration of Unc104 is high due to, e.g., local crowding. This suggests that the motility could be controlled by the concentration of the motor protein.  相似文献   

14.
Kinesin-1 is a dimeric motor protein that moves stepwise along microtubules. A two-stranded alpha-helical coiled-coil formed by the neck domain links the two heads of the molecule, and forces the motor heads to alternate. By exchanging the particularly soft neck region of the conventional kinesin from the fungus Neurospora crassa with an artificial, highly stable coiled-coil we investigated how this domain affects motor kinetics and motility. Under unloaded standard conditions, both motor constructs developed the same gliding velocity. However, in a force-feedback laser trap the mutant showed increasing motility defects with increasing loads, and did not reach wild-type velocities and run lengths. The stall force dropped significantly from 4.1 to 3.0 pN. These results indicate the compliance of kinesin's neck is important to sustain motility under load, and reveal a so far unknown constrain on the imperfect coiled-coil heptad pattern of Kinesin-1. We conclude that coiled-coil structures, a motif encountered in various types of molecular motors, are not merely a clamp for linking two heavy chains to a functional unit but may have specifically evolved to allow motor progression in a viscous, inhomogeneous environment or when several motors attached to a transported vesicle are required to cooperate efficiently.  相似文献   

15.
Crystal structures of the molecular motor kinesin show conformational variability in a structural element called the neck linker. Conformational change in the neck linker, initiated by ATP exchange, is thought to drive the movement of kinesin along the microtubule track. We use site-specific EPR measurements to show that when microtubules are absent, the neck linker exists in equilibrium between two structural states (disordered and 'docked'). The active site nucleotide does not control the position taken by the neck linker. However, we find that sulfate can specifically bind near the nucleotide site and stabilize the docked neck linker conformation, which we confirmed by solving a new crystal structure. Comparing the crystal structures of our construct with the docked or undocked neck linker reveals how microtubule binding may activate the nucleotide-sensing mechanism of kinesin, allowing neck linker transitions to power motility.  相似文献   

16.
Conventional kinesin transports membranes along microtubules in vivo, but the majority of cellular kinesin is unattached to cargo. The motility of non-cargo-bound, soluble kinesin may be repressed by an interaction between the amino-terminal motor and carboxy-terminal cargo-binding tail domains, but neither bead nor microtubule-gliding assays have shown such inhibition. Here we use a single-molecule assay that measures the motility of kinesin unattached to a surface. We show that full-length kinesin binds microtubules and moves about ten times less frequently and exhibits discontinuous motion compared with a truncated kinesin lacking a tail. Mutation of either the stalk hinge or neck coiled-coil domain activates motility of full-length kinesin, indicating that these regions are important for tail-mediated repression. Our results suggest that the motility of soluble kinesin in the cell is inhibited and that the motor becomes activated by cargo binding.  相似文献   

17.
The motor protein kinesin has two heads and walks along microtubules processively using energy derived from ATP. However, how kinesin heads are coordinated to generate processive movement remains elusive. Here we created a hybrid nanomachine (DNA‐kinesin) using DNA as the skeletal structure and kinesin as the functional module. Single molecule imaging of DNA‐kinesin hybrid allowed us to evaluate the effects of both connect position of the heads (N, C‐terminal or Mid position) and sub‐nanometer changes in the distance between the two heads on motility. Our results show that although the native structure of kinesin is not essential for processive movement, it is the most efficient. Furthermore, forward bias by the power stroke of the neck linker, a 13‐amino‐acid chain positioned at the C‐terminus of the head, and internal strain applied to the rear of the head through the neck linker are crucial for the processive movement. Results also show that the internal strain coordinates both heads to prevent simultaneous detachment from the microtubules. Thus, the inter‐head coordination through the neck linker facilitates long‐distance walking.  相似文献   

18.
Conventional kinesin, a homodimeric motor protein that transports cargo in various cells, walks limpingly along microtubule. Here, based on our previously proposed partially coordinated hand-over-hand model, we present a new mechanism for the limping behaviors of both wild-type and mutant kinesin homodimers. The limping is caused by different vertical forces acting on the heads in two successive steps during the processive movement of the dimer. From the model, various theoretical results, such as the dependences of the mean dwell time and dwell time ratio on the coiled-coil length and on the external load as well as the effect of vertical force on velocity, are in good agreement with previous experimental results. We predict that a high degree of limping will correlate strongly with a high sensitivity of ATP turnover rate to upwards force.  相似文献   

19.
A key step in the processive motion of two-headed kinesin along a microtubule is the 'docking' of the neck linker that joins each kinesin head to the motor's dimerized coiled-coil neck. This process is similar to the folding of a protein beta-hairpin, which starts in a highly mobile unfolded state that has significant entropic elasticity and finishes in a more rigid folded state. We therefore suggest that neck-linker docking is mechanically equivalent to the thermally activated shortening of a spring that has been stretched by an applied load. This critical tension-dependent step utilizes Brownian motion and it immediately follows the binding of ATP, the hydrolysis of which provides the free energy that drives the kinesin cycle. A simple three-state model incorporating neck-linker docking can account quantitatively for both the kinesin force-velocity relation and the unusual tension-dependence of its Michaelis constant. However, we find that the observed randomness of the kinesin motor requires a more detailed four-state model. Monte Carlo simulations of single-molecule stepping with this model illustrate the possibility of sub-8 nm steps, the size of which is predicted to vary linearly with the applied load.  相似文献   

20.
In the budding yeast Saccharomyces cerevisiae, movement of the mitotic spindle to a predetermined cleavage plane at the bud neck is essential for partitioning chromosomes into the mother and daughter cells. Astral microtubule dynamics are critical to the mechanism that ensures nuclear migration to the bud neck. The nucleus moves in the opposite direction of astral microtubule growth in the mother cell, apparently being "pushed" by microtubule contacts at the cortex. In contrast, microtubules growing toward the neck and within the bud promote nuclear movement in the same direction of microtubule growth, thus "pulling" the nucleus toward the bud neck. Failure of "pulling" is evident in cells lacking Bud6p, Bni1p, Kar9p, or the kinesin homolog, Kip3p. As a consequence, there is a loss of asymmetry in spindle pole body segregation into the bud. The cytoplasmic motor protein, dynein, is not required for nuclear movement to the neck; rather, it has been postulated to contribute to spindle elongation through the neck. In the absence of KAR9, dynein-dependent spindle oscillations are evident before anaphase onset, as are postanaphase dynein-dependent pulling forces that exceed the velocity of wild-type spindle elongation threefold. In addition, dynein-mediated forces on astral microtubules are sufficient to segregate a 2N chromosome set through the neck in the absence of spindle elongation, but cytoplasmic kinesins are not. These observations support a model in which spindle polarity determinants (BUD6, BNI1, KAR9) and cytoplasmic kinesin (KIP3) provide directional cues for spindle orientation to the bud while restraining the spindle to the neck. Cytoplasmic dynein is attenuated by these spindle polarity determinants and kinesin until anaphase onset, when dynein directs spindle elongation to distal points in the mother and bud.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号