首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Antibodies against the echinoderm-specific neuropeptide S1 and against 5HT were used to examine the fate of the larval nervous system during metamorphosis in the ophiuroid Ophiactis resiliens . In contrast to most echinoderms, the onset of peptidergic and serotonergic expression was delayed to the advanced ophiopluteus stage, in particular for 5HT. In advanced ophioplutei, peptidergic immunoreactivity was located in simple fibres associated with the ciliated bands, a stomach nerve ring, and cells along the antero-lateral arms. 5HT immunoreactivity was concentrated in 2 oral ganglia in the adoral projections, located at the posterior rim of the mouth. Clusters of 5HT-positive cells were also found along the antero-lateral arms. The ophiopluteus lacked a serotonergic (or peptidergic) anterior ganglion. In echinoids, holothuroids, and crinoids, anterior ganglia are thought to have a sensory role in settlement and metamorphosis. Given that ophioplutei metamorphose in the plankton and that larval structures degenerate before settlement, the absence of apical ganglia correlates with the lack of a functional role for larval structures in substrate selection and settlement. Although most of the larval nervous system degenerated during metamorphosis, the adoral projections and associated oral ganglia appeared to be incorporated into the juvenile mouth, suggesting a potential role for larval neurons in contributing to oral neuronal structures in the adult. S1-positive neurons and fibres in the rudiment developed de novo and in parallel with development of the epineural canal. This structure gives rise to the primordia of the adult circumoral nerve ring and radial nerves, indicating that differentiation of the adult nervous system begins in the early stages of metamorphosis.  相似文献   

2.
Larvae of the red abalone, Haliotis rufescens, rely on external chemical cues to trigger metamorphosis; thus, the timing of metamorphosis is dependent upon the larva's chance encounter with the appropriate substrate. We examined the effect of the timing of metamorphosis on the development of the central nervous system (CNS), concentrating on the pattern of serotonin and small cardioactive peptide- (SCP) immunopositive neurons in the cerebral ganglia. By 4 days postfertilization the cerebral ganglion has five pairs of serotonin-immunoreactive (IR) neurons, one pair of which (the V cells) innervate the velum. This complement of cells remains stable for as long as the larval stage persists but metamorphosis causes the rapid loss of the V cells. In the case of SCP-IR neurons, one pair is present prior to metamorphic competency, but as larvae continue to age in the absence of inducing cues, additional pairs are gradually added. Metamorphosis causes an acceleration in SCP-IR neuron addition. This separation of developmental patterns is well adapted for the inherent uncertainty of the timing of metamorphosis in abalone larvae.  相似文献   

3.
4.
Serotonin-like immunoreactive neurons were mapped in the larval, prepupal, pupal, and adult ventral nerve cord (VNC) of the beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae). The alterations of the shape of these neurons during metamorphosis were analysed. The stage-specific interindividual variability of the examined serotonin-like immunoreactive neurons is low. Serotonin-like immunoreactive neurons of the abdominal and thoracic ganglia behave differently during metamorphosis. Only in thoracic ganglia was an obvious change in the pattern of serotonin-like immunoreactive neurons observed. The shape of the dendritic trees of serotonin-like immunoreactive neurons varies in thoracic., but not in abdominal ganglia. During postlarval development, new emerging neurons that react with the anti-serotonin antibody are found only in the thoracic ganglia. Serotonin-like immunoreactive neurons are serially homologous in the larval ventral nerve cord. The basic organization of the serotonin-like immunoreactive neurons is maintained up to the adult stage. Some aspects of the metamorphosis of the nervous system are discussed with respect to the transformation of the set of immunoreactive neurons from larval to adult stage. The results are compared to those obtained in the study of serotonin-immunoreactive neurons in cockroaches, dipterans and locusts.  相似文献   

5.
Larvae of the red abalone, Haliotis rufescens, rely on external chemical cues to trigger metamorphosis; thus, the timing of metamorphosis is depedent upon the larva's chance encounter with the appropriate substrate. We examined the effect of the timing of metamorphosis on the development of the central nervous system (CNS), concentrating on the pattern of serotonin and small cardioactive peptide- (SCP) immunopositive neurons in the cerebral ganglia. By 4 days postfertilization the cerebral ganglion has five pairs of serotonin-immunoreactive (IR) neurons, one pair of which (the V cells) innervate the velum. This complement of cells remains stable for as long as the larval stage persists but metamorphosis causes the rapid loss of the V cells. In the case of SCP-IR neurons, one pair is present prior to metamorphic competency, but as larvae continue to age in the absence of inducing cues, additional pairs are gradually added. Metamorphosis causes an acceleration in SCP-IR neuron addition. This separation of developmental patterns is well adapted for the inherent uncertainty of the timing of metamorphosis in abalone larvae. © 1992 John Wiley & Sons, Inc.  相似文献   

6.
7.
The central nervous system (CNS) of a metamorphically competent larva of the caenogastropod Ilyanassa obsoleta contains a medial, unpaired apical ganglion (AG) of approximately 25 neurons that lies above the commissure connecting the paired cerebral ganglia. The AG, also known as the cephalic or apical sensory organ (ASO), contains numerous sensory neurons and innervates the ciliated velar lobes, the larval swimming and feeding structures. Before metamorphosis, the AG contains 5 serotonergic neurons and exogenous serotonin can induce metamorphosis in competent larvae. The AG appears to be a purely larval structure as it disappears within 3 days of metamorphic induction. In competent larvae, most neurons of the AG display nitric oxide synthase (NOS)-like immunoreactivity and inhibition of NOS activity can induce larval metamorphose. Because nitric oxide (NO) can prevent cells from undergoing apoptosis, a form of programmed cell death (PCD), we hypothesize that inhibition of NOS activity triggers the loss of the AG at the beginning of the metamorphic process. Within 24 hours of metamorphic induction, cellular changes that are typical of the early stages of PCD are visible in histological sections and results of a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay in metamorphosing larvae show AG nuclei containing fragmented DNA, supporting our hypothesis.  相似文献   

8.
Summary Serotonin-immunoreactivity is mapped in wholemounts and slices of the suboesophageal ganglion (SOG) of larval Manduca sexta by means of immunocytochemistry. An extensive meshwork of serotonin-immunoreactive nerve fibres on some peripheral nerves of the SOG has been demonstrated. This meshwork appears to belong to a serotonergic neurohemal system, probably supplied by two pairs of bilateral serotonin-immunoreactive neurons with big cell bodies on the dorsal side near the midline in the mandibular neuromere. Intracellular recording and staining revealed their physiology and morphology. These neurons produce long lasting (50 msec) action potentials, which suggest that they are neurosecretory cells. Two pairs of bilateral serotonin-immunoreactive interneurons similar to those of other insects are stained in the labial and maxillar neuromeres, but not in the mandibular neuromere. Their ventrolaterally located cell bodies project through a ventral commissure into the contralateral hemiganglion and then cross back again through a dorsal commissure. The axons project into the contralateral circumoesophageal connective.  相似文献   

9.
Summary A set of motor neurons and interneurons in the thoracic nervous system of the meal beetle Tenebrio molitor L. is described that persist during metamorphosis. The motor neurons under discussion innervate the thoracic ventral longitudinal muscles and were identified by retrograde transport of intramuscularly injected horseradish peroxidase. Persisting motor neurons exhibit a complex repetitive pattern that changes only slightly during development. Additionally, the characterization of serotonin-immunoreactive neurons defines a complex set of interneurons that also persist throughout development. The fate of these identified neurons is outlined in detail with special reference to variations in their dendritic arborizations. All motor and interneurons are affected by a similar change in their shape during development. The larval neurons lack the contralateral arborization that is found in the adult beetle and is already distinguishable in the prepupa. Essentially only quantitative changes of the neuronal shape were observed during the pupal instar. No pupa-specific degeneration of certain axo-dendritic structures of these neurons was found. Removal of descending interneurons by sectioning the promesothoracic connectives causes specific degeneration of the dendritic tree of an identified serotonin-immunoreactive interneuron.  相似文献   

10.
Summary Development of the nervous system of the pluteus larva of Strongylocentrotus droebachiensis was investigated using indirect immunofluorescence with antibodies against dopamine, GABA, and serotonin, and glyoxylic acid-induced fluorescence of catecholamines. Serotonergic cells first appear in full gastrulae; dopaminergic and GABAergic cells are present in early four-arm plutei. The number of neurons and the complexity of the nervous system increases through development of the pluteus. In the pluteus the dopaminergic component of the nervous system includes a ganglion in the lower lip of the mouth and a pair of ganglia at the base of the post-oral arms which extend axons along the base of the circumoral ciliary band. The distribution of cells visualized by glyoxylic acid-induced fluorescence is similar to that of dopaminergic cells. GABAergic neurons occur in the upper lip and in the wall of the esophagus. Serotonergic neurons are present in the lower lip; the pre-oral hood contains an apical ganglion which extends axons along the base of the epidermis overlying the blastocoel. The dopaminergic and GABAergic components of the nervous system are associated with effectors involved in feeding and swimming. The serotonergic component is not associated with any apparent effectors but may have a role in metamorphosis.  相似文献   

11.
The steroid hormone 20-hydroxyecdysone regulates many aspects of nervous system development in the moth Manduca sexta, including stage-specific neuronal morphology and stage-specific neuronal death. We have used steroid hormone autoradiography to study the distribution of cells that concentrate ecdysteroids in the ventral nervous system of this insect. The ligand was [3H]-ponasterone A, a bioactive phytoecdysone. Tissue was examined from three stages of development: the end of larval life (first day of wandering), the end of metamorphosis (pharate adult), and 4-day-old adults. In the abdominal ganglia of wandering larvae and pharate adults, a subset of neurons including both motoneurons and interneurons exhibited a nuclear concentration of radiolabeled hormone. The pattern of binding was reproducible but stage-specific, with a greater proportion of neurons showing binding in the larvae than in pharate adults. No labeled neurons were found in abdominal ganglia from mature (4-day-old) adults. In the case of the pharate adult ganglia, the ecdysteroid receptor content of specific, identified motoneurons was determined. These results are discussed in light of the responses of these neurons to physiological changes in levels of circulating ecdysteroids.  相似文献   

12.
The nervous system development of the sea cucumber Stichopus japonicus was investigated to explore the development of the bilateral larval nervous system into the pentaradial adult form typical of echinoderms. The first nerve cells were detected in the apical region of epidermis in the late gastrula. In the auricularia larvae, nerve tracts were seen along the ciliary band. There was a pair of bilateral apical ganglia consisted of serotonergic nerve cells lined along the ciliary bands. During the transition to the doliolaria larvae, the nerve tracts rearranged together with the ciliary bands, but they were not segmented and remained continuous. The doliolaria larvae possessed nerves along the ciliary rings but strongly retained the features of auricularia larvae nerve pattern. The adult nervous system began to develop inside the doliolaria larvae before the larval nervous system disappears. None of the larval nervous system was observed to be incorporated into the adult nervous system with immunohistochemistry. Since S. japonicus are known to possess an ancestral mode of development for echinoderms, these results suggest that the larval nervous system and the adult nervous system were probably formed independently in the last common ancestor of echinoderms.  相似文献   

13.
In a case study on development of larvae of Trochozoa species of different systematic positions, it was shown that peripheral neurons differentiated firstly. According to the characters of early peripheral neurons, in particular their localization in parts that differed from known zones of appearance of central ganglia, the difficult periphery of processes used as a "frame" by differentiated neurons of definitive nervous system, and transient expression of specific markers, it is reputed that these cells are pioneer. On the one hand, pioneer neurons are the bottleneck of morphogenesis diversity in late stages of development which prepare, in early larvae, the framework of the further central nervous system. On the other hand, navigation and marking using pioneer neurons can be a mechanism of evolutionary lability of definitive neural structures. Functional adaptive significance of pioneer neurons of larvae of Trochozoa animals, probably, is in the maintenance of a fast change from larvae life-form to adult life-form in metamorphosis that decreases the time of animals at intermediate stages of morphogenesis, which are associated with a dramatic fall in adaptation.  相似文献   

14.
The segmental ganglia of adults of the moth, Manduca sexta, are constructed both from remodeled larval neurons and from adult-specific cells. The latter are produced by identified stem cells (neuroblasts) during larval life and then differentiate to form functional neurons during metamorphosis. The mitotic activity of the larval neuroblasts could be irreversibly blocked by the DNA-synthesis inhibitor hydroxyurea (HU). Treatment on day 1 of the third larval stage resulted in 80-90% of the neuroblasts being blocked before they produced any progeny while leaving the functional larval neurons unaffected. Treated larvae finished growth, underwent metamorphosis, and produced an adult CNS that contained the normal set of remodeled larval neurons but lacked most of the new adult-specific cells. When HU treatment was delayed until the start of the fourth or fifth larval stage, the neuroblasts produced the early portions of their respective lineages before they were blocked. The immature neurons that were generated prior to treatment survived to contribute adult-specific neurons to the moth CNS, but the remainder of each lineage was missing. This technique therefore enables one to produce adult nervous systems containing the basic set of remodeled larval cells plus defined sets of adult-specific neurons.  相似文献   

15.
SUMMARY To examine the evolutionary origin of the chordate nervous system, an outgroup comparison with hemichordates is needed. When the nervous systems of chordates and hemichordates are compared, two possibilities have been proposed, one of which is that the chordate nervous system has evolved from the nervous system of hemichordate‐like larva and the other that it is comparable to the adult nervous system of hemichordates. To address this issue, we investigated the entire developmental process of the nervous system in the acorn worm Balanoglossus simodensis. In tornaria larvae, the nervous system developed along the longitudinal ciliary band and the telotroch, but no neurons were observed in the ventral band or the perianal ciliary ring throughout the developmental stages. The adult nervous system began to develop at the dorsal midline at the Krohn stage, considerably earlier than metamorphosis. During metamorphosis, the larval nervous system was not incorporated into the adult nervous system. These observations strongly suggest that the hemichordate larval nervous system contributes little to the newly formed adult nervous system.  相似文献   

16.
Summary Serotonin-immunoreactive (5-HTi) neurons were mapped in the larval central nervous system (CNS) of the dipterous flies Calliphora erythrocephala and Sarcophaga bullata. Immunocytochemistry was performed on cryostat sections, paraffin sections, and on the entire CNS (whole mounts).The CNS of larvae displays 96–98 5-HTi cell bodies. The location of the cell bodies within the segmental cerebral and ventral ganglia is consistent among individuals. The pattern of immunoreactive fibers in tracts and within neuropil regions of the CNS was resolved in detail. Some 5-HTi neurons in the CNS possess axons that run through peripheral nerves (antenno-labro-frontal nerves).The suboesophagealand thoracico-abdominal ganglia of the adult blowflies were studied for a comparison with the larval ventral ganglia. In the thoracico-abdominal ganglia of adults the same number of 5-HTi cell bodies was found as in the larvae except in the metathoracic ganglion, which in the adult contains two cell bodies less than in the larva. The immunoreactive processes within the neuropil of the adult thoracico-abdominal ganglia form more elaborate patterns than those of the larvae, but the basic organization of major fiber tracts was similar in larval and adult ganglia. Some aspects of postembryonic development are discussed in relation to the transformation of the distribution of 5-HTi neurons and their processes into the adult pattern.  相似文献   

17.
The morphogenesis of serotonin- and FMRF-amide-bearing neuronal elements in the scaphopod Antalis entalis was investigated by means of antibody staining and confocal laser scanning microscopy. Nervous system development starts with the establishment of two initial, flask-like, serotonergic central cells of the larval apical organ. Slightly later, the apical organ contains four serotonergic central cells which are interconnected with two lateral serotonergic cells via lateral nerve projections. At the same time the anlage of the adult FMRF-amide-positive cerebral nervous system starts at the base of the apical organ. Subsequently, the entire neuronal complex migrates behind the prototroch and the six larval serotonergic cells lose transmitter expression prior to metamorphic competence. There are no strictly larval FMRF-amide-positive neuronal structures. The development of major adult FMRF-amide-containing components such as the cerebral system, the visceral loop, and the buccal nerve cords, however, starts before the onset of metamorphosis. The anlage of the putative cerebral system is the only site of adult serotonin expression in Antalis larvae. Establishment of the adult FMRF-amidergic and serotonergic neuronal bauplan proceeds rapidly after metamorphosis. Neurogenesis reflects the general observation that the larval phase and the expression of distinct larval morphological features are less pronounced in Scaphopoda than in Gastropoda or Bivalvia. The degeneration of the entire larval apical organ before metamorphic competence argues against an involvement of this sensory system in scaphopod metamorphosis. The lack of data on the neurogenesis in the aplacophoran taxa prevent a final conclusion regarding the plesiomorphic condition in the Mollusca. Nevertheless, the results presented herein shed doubts on general theories regarding possible functions of larval "apical organs" of Lophotrochozoa or even Metazoa.  相似文献   

18.
We investigated the morphology of the central nervous system throughout the larval development ofCarcinus maenas. For that purpose single larvae were reared in the laboratory from hatching through metamorphosis. Complete series of whole mout semithin sections were obtained from individuals of all successive larval stages and analysed with a light microscope. Morphological feature and spatial arrangement of discernable neural cell clusters, fibre tracts and neuropile are described and compared with the adult pattern. We found that most of the morphological features characterizing the adult nervous system are already present in the zoea-1. Nevertheless, there are marked differences with respect to the arrangement of nerve cell bodies, organization of cerebral neuropile, and disposition of ganglia in the ventral nerve cord. It appears that complexity of the central nervous neuropile is selectively altered during postmetamorphotic development, probably reflecting adaptive changes of sensory-motor integration in response to behavioural maturation. In contrast, during larval development there was little change in the overall structural organization of the central nervous system despite some considerable growth. However, the transition from zoea-4 to megalopa brings about multiple fundamental changes in larval morphology and behavioural pattern. Since central nervous integration should properly adapt to the altered behavioural repertoire of the megalopa, it seems necessary to ask in which respect synaptic rearrangement might characterize development of the central nervous system.  相似文献   

19.
The swimming larvae of the chordate ascidians possess a dorsal hollowed central nervous system (CNS), which is homologous to that of vertebrates. Despite the homology, the ascidian CNS consists of a countable number of cells. The simple nervous system of ascidians provides an excellent experimental system to study the developmental mechanisms of the chordate nervous system. The neural fate of the cells consisting of the ascidian CNS is determined in both autonomous and non-autonomous fashion during the cleavage stage. The ascidian neural plate performs the morphogenetic movement of neural tube closure that resembles that in vertebrate neural tube formation. Following neurulation, the CNS is separated into five distinct regions, whose homology with the regions of vertebrate CNS has been discussed. Following their larval stage, ascidians undergo a metamorphosis and become sessile adults. The metamorphosis is completed quickly, and therefore the metamorphosis of ascidians is a good experimental system to observe the reorganization of the CNS during metamorphosis. A recent study has shown that the major parts of the larval CNS remain after the metamorphosis to form the adult CNS. In contrast to such a conserved manner of CNS reorganization, most larval neurons disappear during metamorphosis. The larval glial cells in the CNS are the major source for the formation of the adult CNS, and some of the glial cells produce adult neurons.  相似文献   

20.
The evolution of the serotonergic nervous system   总被引:12,自引:0,他引:12  
The pattern of development of the serotonergic nervous system is described from the larvae of ctenophores, platyhelminths, nemerteans, entoprocts, ectoprocts (bryozoans), molluscs, polychaetes, brachiopods, phoronids, echinoderms, enteropneusts and lampreys. The larval brain (apical ganglion) of spiralian protostomes (except nermerteans) generally has three serotonergic neurons and the lateral pair always innervates the ciliary band of the prototroch. In contrast, brachiopods, phoronids, echinoderms and enteropneusts have numerous serotonergic neurons in the apical ganglion from which the ciliary band is innervated. This pattern of development is much like the pattern seen in lamprey embryos and larvae, which leads the author to conclude that the serotonergic raphe system found in vertebrates originated in the larval brain of deuterostome invertebrates. Further, the neural tube of chordates appears to be derived, at least in part, from the ciliary band of deuterostome invertebrate larvae. The evidence shows no sign of a shift in the dorsal ventral orientation within the line leading to the chordates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号