首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurologic and neurocognitive complications after cardiac surgery with cardiopulmonary bypass (CPB) have been reported repeatedly. To better understand its etiology and design protective strategies, an appropriate animal model may prove useful. Although impaired short-term neurocognitive function has been recently demonstrated after CPB in rats, the demonstration of persistent long-term neurocognitive changes would be more relevant from a clinical perspective. We hypothesized that CPB results in long-term impairment of neurocognitive performance in rats. Male rats were exposed to either 60 min of normothermic non-pulsatile CPB, using a roller-pump and a neonatal membrane oxygenator, or to cannulation only (sham animals). Long-term neurocognitive function was assessed at 4 to 7 weeks after CPB (Can test), and again after 12 weeks (Morris water maze) in both operated groups and in a non-operated control group, followed by histologic evaluation of the hippocampus. In separate groups of CPB and sham animals, we also measured TNF-alpha and IL-6 in plasma. There were no significant differences in long-term neurocognitive performance or histological outcome between the three groups. Cytokine patterns were also similar in both operated groups. We conclude that CPB did not appear to cause long-term neurocognitive dysfunction in this model of CPB in young healthy rats. The lack of long-term deficits may be due to the absence of clinically important etiologic factors such as atheromatous and gaseous embolization in this model. Similar cytokine patterns in both operated groups suggest that surgical trauma rather than exposure of blood to extra-corporeal circuit was probably responsible for the inflammatory response.  相似文献   

2.
The aim of this study was to investigate effects of poly(ADP-ribose) polymerase (PARP) inhibition on mesenteric vascular function and metabolism in an experimental model of cardiopulmonary bypass (CPB) with cardiac arrest. Twelve anesthetized dogs underwent 90-min hypothermic CPB. After 60 min of cardiac arrest, reperfusion was started for 40 min following application of either saline vehicle (control, n = 6) or a potent PARP inhibitor, PJ-34 (10 mg/kg iv bolus and 0.5 mg.kg(-1).min(-1) infusion for 20 min, n = 6). PJ-34 led to better recovery of cardiac output (2.2 +/- 0.1 vs. 1.8 +/- 0.2 l/min in control) and mesenteric blood flow (175 +/- 38 vs. 83 +/- 4 ml/min, P < 0.05 vs. control) after reperfusion. The impaired vasodilator response of the superior mesenteric artery to acetylcholine, assessed in the control group after CPB (-32.8 +/- 3.3 vs. -57.6 +/- 6.6% at baseline, P < 0.05), was improved by PJ-34 (-50.3 +/- 3.6 vs. -54.3 +/- 4.1% at baseline, P < 0.05 vs. control). Although plasma nitrate/nitrite concentrations were not significantly different between groups, mesenteric nitric oxide synthase activity was increased in the PJ-34 group (P < 0.05). Moreover, the treated group showed a marked attenuation of mesenteric venous plasma myeloperoxidase levels after CPB compared with the control group (75 +/- 1 vs. 135 +/- 9 ng/ml, P < 0.05). Pharmacological PARP inhibition protects against development of post-CPB mesenteric vascular dysfunction by improving hemodynamics, restoring nitric oxide production, and reducing neutrophil adhesion.  相似文献   

3.

Background

Deficit schizophrenia (DS) has been proposed as a pathophysiologically distinct subgroup within schizophrenia. Earlier studies focusing on neurocognitive function of DS patients have yielded inconsistent findings ranging from substantial deficits to no significant difference relative to non-deficit schizophrenia patients (NDS). The present study investigated the severity and characteristic patterns of neurocognitive impairments in DS and NDS patients and their relationships with clinical variables.

Methods

Attention, ideation fluency, cognitive flexibility and visuospatial memory function were assessed in 40 DS patients, 57 NDS patients, and 52 healthy controls by a comprehensive neuropsychological battery.

Results

Both schizophrenia subgroups had overall more severe cognitive impairments than controls while DS performed worse on every neuropsychological measure except the Stroop interference than the NDS patients with age and education as the covariates. Profile analysis found significantly different patterns of cognitive profiles between two patients group mainly due to their differences in attention and cognitive flexibility functions. Age, education, illness duration and negative symptoms were found to have the correlations with cognitive impairments in the NDS group, while only age and the negative symptoms were correlated with the cognitive impairments in the DS group. Multiple regression analyses revealed that sustained attention and cognitive flexibility were the core impaired cognitive domains mediating other cognitive functions in DS and NDS patients respectively.

Conclusions

DS patients exemplified worse in almost all cognitive domains than NDS patients. Sustained attention and cognitive flexibility might be the key impaired cognitive domains for DS and NDS patients respectively. The present study suggested the DS as a specific subgroup of schizophrenia.  相似文献   

4.
Deep hypothermic circulatory arrest (DHCA) can cause acute lung injury (ALI), and its pathogenesis mimics ischaemia/reperfusion (I/R) injury. Autophagy is also involved in lung I/R injury. The present study aimed to elucidate whether DHCA induces natural autophagy activation and its role in DHCA‐mediated lung injury. Here, rats were randomly assigned to the Sham or DHCA group. The sham group (n = 5) only received anaesthesia and air intubation. DHCA group rats underwent cardiopulmonary bypass (CPB) followed by the DHCA procedure. The rats were then sacrificed at 3, 6 and 24 h after the DHCA procedure (n = 5) to measure lung injury and autophagy activity. Chloroquine (CQ) was delivered to evaluate autophagic flux. DHCA caused lung injury, which was prominent 3–6 h after DHCA, as confirmed by histological examination and inflammatory cytokine quantification. Lung injury subsided at 24 h. Autophagy was suppressed 3 h but was exaggerated at 6 h. At both time points, autophagic flux appeared uninterrupted. To further assess the role of autophagy in DHCA‐mediated lung injury, the autophagy inducer rapamycin and its inhibitor 3‐methyladenine (3‐MA) were applied, and lung injury was reassessed. When rapamycin was administered at an early time point, lung injury worsened, whereas administration of 3‐MA at a late time point ameliorated lung injury, indicating that autophagy contributed to lung injury after DHCA. Our study presents a time course of lung injury following DHCA. Autophagy showed adaptive yet protective suppression 3 h after DHCA, as induction of autophagy caused worsening of lung tissue. In contrast, autophagy was exaggerated 6 h after DHCA, and autophagy inhibition attenuated DHCA‐mediated lung injury.  相似文献   

5.
Rats with dorsomedial hypothalamic lesions (DMN-L) or sham operations were injected IP with saline or the satiety peptide cholecystokinin (CCK) at 3.0 and 6.0 micrograms/kg at the onset of the dark phase. Food consumption was then measured 15, 30 and 60 min later. Compared to saline baseline intake, CCK suppressed feeding during the first 30 min following injection in the sham operated group but not in the DMN-L group. Bombesin (BBS), another satiety peptide was also injected (4.0 and 8.0 micrograms/kg) into the two groups. BBS produced significant and comparable suppression of feeding in both DMN-L and sham operated rats. In a third trial a large dose of CCK (12.0 micrograms/kg) was injected into the two groups as described above. The CCK suppressed feeding for 60 min in the control group. CCK also attenuated feeding in the DMN-L group, but for only 30 min. However, even this suppression was reduced compared to the control group. The data suggest that the DMN may play a role in CCK induced satiety.  相似文献   

6.
Periventricular leukomalacia (PVL) is a common ischemic brain injury in premature infants for which there is no effective treatment. The objective of this study was to determine whether transplanted mouse oligodendrocyte progenitor cells (OPCs) have neuroprotective effects in a rat model of PVL. Hypoxia-ischemia (HI) was induced in 3-day-old rat pups by left carotid artery ligation, followed by exposure to 6% oxygen for 2.5 h. Animals were assigned to OPC transplantation or sham control groups and injected with OPCs or PBS, respectively, and sacrificed up to 6 weeks later for immunohistochemical analysis to investigate the survival and differentiation of transplanted OPCs. Apoptosis was evaluated by double immunolabeling of brain sections for caspase-3 and neuronal nuclei (NeuN), while proliferation was assessed using a combination of anti-Nestin and -bromodeoxyuridine antibodies. The expression of brain-derived neurotrophic factor (BDNF) and Bcl-2 was examined 7 days after OPC transplantation. The Morris water maze was used to test spatial learning and memory. The results showed that transplanted OPCs survived and formed a myelin sheath, and stimulated BDNF and Bcl-2 expression and the proliferation of neural stem cells (NSC), while inhibiting HI-induced neuronal apoptosis relative to control animals. Moreover, deficits in spatial learning and memory resulting from HI were improved by OPC transplantation. These results demonstrate an important neuroprotective role for OPCs that can potentially be exploited in cell-based therapeutic approaches to minimize HI-induced brain injury.  相似文献   

7.
Carbon monoxide (CO) at low concentrations imparts protective effects in numerous preclinical small animal models of brain injury. Evidence of protection in large animal models of cerebral injury, however, has not been tested. Neurologic deficits following open heart surgery are likely related in part to ischemia reperfusion injury that occurs during cardiopulmonary bypass surgery. Using a model of deep hypothermic circulatory arrest (DHCA) in piglets, we evaluated the effects of CO to reduce cerebral injury. DHCA and cardiopulmonary bypass (CPB) induced significant alterations in metabolic demands, including a decrease in the oxygen/glucose index (OGI), an increase in lactate/glucose index (LGI) and a rise in cerebral blood pressure that ultimately resulted in increased cell death in the neocortex and hippocampus that was completely abrogated in piglets preconditioned with a low, safe dose of CO. Moreover CO-treated animals maintained normal, pre-CPB OGI and LGI and corresponding cerebral sinus pressures with no change in systemic hemodynamics or metabolic intermediates. Collectively, our data demonstrate that inhaled CO may be beneficial in preventing cerebral injury resulting from DHCA and offer important therapeutic options in newborns undergoing DHCA for open heart surgery.  相似文献   

8.
Cardiopulmonary bypass (CPB) activates a systemic inflammatory response characterized clinically by alterations in cardiovascular and pulmonary function. The aim of this study was to measure the cardiopulmonary consequences in sham-operated pigs, and in animals subjected to CPB in the presence or absence of lipopolysaccharide (LPS). We also investigated, if the perioperative administration of inhaled NO exerts significant cardiopulmonary effects in an anaesthetized and mechanically ventilated pig model of extracorporeal circulation. Thirty pigs were randomized into six equal groups (sham; sham+INO; CPB; CPB+INO; CPB+LPS; CPB+LPS+INO) and subjected to anaesthesia with mechanical ventilation for up to 24h. We found that CPB+LPS group has the highest degree of lung injury. We also demonstrated that there was a significant difference on the cardiovascular parameters (heart rate, central venous pressure, stroke volume index, and mean systemic arterial blood pressure) between the CPB groups and the sham groups. The deteriorated lung mechanics was associated with a decrease in active subfraction of surfactant (LA) with time during the procedure (P=0.0003), on which inhaled NO had only an initial beneficial effect. In our model, inhaled NO had no long-term beneficial effect on lung mechanics and surfactant homeostasis despite improving lung haemodynamics, inflammation, and oxygenation. We conclude from this study that the use of pre-emptive and continuous inhaled NO therapy has protective and safe effects against lung ischemia/reperfusion associated with CPB.  相似文献   

9.
Oxidative stress may affect many cellular and physiological processes including gene expression, cell growth, and cell death. In the recent study, we aimed to investigate whether 900 MHz pulse-modulated radiofrequency (RF) fields induce oxidative damage on lung, heart and liver tissues. We assessed oxidative damage by investigating lipid peroxidation (malondialdehyde, MDA), nitric oxide (NOx) and glutathione (GSH) levels which are the indicators of tissue toxicity. A total of 30 male Wistar albino rats were used in this study. Rats were divided randomly into three groups; control group (n = 10), sham group (device off, n = 10) and 900 MHz pulsed-modulated RF radiation group (n = 10). The RF rats were exposed to 900 MHz pulsed modulated RF radiation at a specific absorption rate (SAR) level of 1.20 W/kg 20 min/day for three weeks. MDA and NOx levels were increased significantly in liver, lung, testis and heart tissues of the exposed group compared to sham and control groups (p < 0.05). Conversely GSH levels were significantly lower in exposed rat tissues (p < 0.05). No significantly difference was observed between sham and control groups. Results of our study showed that pulse-modulated RF radiation causes oxidative injury in liver, lung, testis and heart tissues mediated by lipid peroxidation, increased level of NOx and suppression of antioxidant defense mechanism.  相似文献   

10.
A recently identified lectin-like oxidized low-density lipoprotein receptor (LOX-1) mediates endothelial cell injury and facilitates inflammatory cell adhesion. We studied the role of LOX-1 in myocardial ischemia-reperfusion (I/R) injury. Anesthetized Sprague-Dawley rats were subjected to 60 min of left coronary artery (LCA) ligation, followed by 60 min of reperfusion. Rats were treated with saline, LOX-1 blocking antibody JXT21 (10 mg/kg), or nonspecific anti-goat IgG (10 mg/kg) before I/R. Ten other rats underwent surgery without LCA ligation and served as a sham control group. LOX-1 expression was markedly increased during I/R (P < 0.01 vs. sham control group). Simultaneously, the expression of matrix metalloproteinase-1 (MMP-1) and adhesion molecules (P-selectin, VCAM-1, and ICAM-1) was also increased in the I/R area (P < 0.01 vs. sham control group). There was intense leukocyte accumulation in the I/R area in the saline-treated group. Treatment of rats with the LOX-1 antibody prevented I/R-induced upregulation of LOX-1 and reduced MMP-1 and adhesion molecule expression as well as leukocyte recruitment. LOX-1 antibody, but not nonspecific IgG, also reduced myocardial infarct size (P < 0.01 vs. saline-treated I/R group). To explore the link between LOX-1 and adhesion molecule expression, we measured expression of oxidative stress-sensitive p38 mitogen-activated protein kinase (p38 MAPK). The activity of p38 MAPK was increased during I/R (P < 0.01 vs. sham control), and use of LOX-1 antibody inhibited p38 MAPK activation (P < 0.01). These findings indicate that myocardial I/R upregulates LOX-1 expression, which through p38 MAPK activation increases the expression of MMP-1 and adhesion molecules. Inhibition of LOX-1 exerts an important protective effect against myocardial I/R injury.  相似文献   

11.
目的:探索乌司他丁(UTI)对心肺转流(CPB)下心脏手术患者炎症因子及认知功能的影响。方法:选择自2010年5月至2014年9月我院收治的CPB瓣膜置换手术患者60例,按照随机数表法将患者分成对照组和观察组,每组30例。观察组患者在麻醉诱导后静脉泵入1.2×10~4U/kg UTI,在CPB结束前5 min从体外管道内给予0.6×10~4U/kg UTI,对照组患者给予等量的生理盐水。对比两组CPB前(T0)、CPB开始后1 h(T1)、CPB结束后1 h(T2)、术后4 h(T3)及术后24 h(T4)的血浆肿瘤坏死因子-α(TNF-α)、白细胞介素-6/10(IL-6/10)、中性粒细胞弹性蛋白酶(NE)、星形胶质细胞S100蛋白的β亚型(S100β)、超氧化物歧化酶(SOD)和丙二醛(MDA),在术前1 d和术后7 d时,采用简易精神状态检查表(MMSE)对患者进行神经精神功能测试,并评价患者的术后认知功能障碍(POCD)的发生率。结果:与T0相比,两组患者T1-T4的TNF-α、IL-6、NE、S100β、MDA水平明显升高,且观察组显著低于对照组,而两组IL-10、SOD水平显著下降,观察组显著高于对照组(P0.05)。术后7d,两组患者MMSE评分均明显高于术前1 d,且观察组显著高于对照组(P0.05);观察组POCD的发生率明显低于对照组(P0.05)。结论:UTI可以有效降低CPB下行瓣膜置换术患者的炎症因子水平,并改善患者的POCD,对于临床用药具有指导意义。  相似文献   

12.
Ischemic brain injury continues to be of major concern in patients undergoing cardiopulmonary bypass (CPB) surgery for congenital heart disease. Striatum and hippocampus are particularly vulnerable to injury during these processes. Our hypothesis is that the neuronal injury resulting from CPB and the associated circulatory arrest can be at least partly ameliorated by pre-treatment with granulocyte colony stimulating factor (G-CSF). Fourteen male newborn piglets were assigned to three groups: deep hypothermic circulatory arrest (DHCA), DHCA with G-CSF, and sham-operated. The first two groups were placed on CPB, cooled to 18 °C, subjected to 60 min of DHCA, re-warmed and recovered for 8–9 h. At the end of experiment, the brains were perfused, fixed and cut into 10 µm transverse sections. Apoptotic cells were visualized by in situ DNA fragmentation assay (TUNEL), with the density of injured cells expressed as a mean number ± SD per mm2. The number of injured cells in the striatum and CA1 and CA3 regions of the hippocampus increased significantly following DHCA. In the striatum, the increase was from 0.46 ± 0.37 to 3.67 ± 1.57 (p = 0.002); in the CA1, from 0.11 ± 0.19 to 5.16 ± 1.57 (p = 0.001), and in the CA3, from 0.28 ± 0.25 to 2.98 ± 1.82 (p = 0.040). Injection of G-CSF prior to bypass significantly reduced the number of injured cells in the striatum and CA1 region, by 51 and 37 %, respectively. In the CA3 region, injured cell density did not differ between the G-CSF and control group. In a model of hypoxic brain insult associated with CPB, G-CSF significantly reduces neuronal injury in brain regions important for cognitive functions, suggesting it can significantly improve neurological outcomes from procedures requiring DHCA.  相似文献   

13.

Objective

Infants are more vulnerable to kidney injuries induced by inflammatory response syndrome and ischemia-reperfusion injury following cardiopulmonary bypass especially with prolonged hypothermic low-flow (HLF). This study aims to evaluate the protective role of ulinastatin, an anti-inflammatory agent, against acute kidney injuries in infant piglets model undergoing surgery on HLF cardiopulmonary bypass.

Methods

Eighteen general-type infant piglets were randomly separated into the ulinastatin group (Group U, n = 6), the control group (Group C, n = 6), and the sham operation group (Group S, n = 6), and anaesthetized. The groups U and C received following experimental procedure: median thoracotomy, routine CPB and HLF, and finally weaned from CPB. The group S only underwent sham median thoracotomy. Ulinastatin at a dose of 5,000 units/kg body weight and a certain volume of saline were administrated to animals of the groups U and C at the beginning of CPB and at aortic declamping, respectively. Venous blood samples were collected at 3 different time points: after anesthesia induction in all experimental groups, 5 minutes, and 120 minutes after CPB in the Groups U and C. Markers for inflammation and acute kidney injury were tested in the collected plasma. N-acetyl-β-D-glucosaminidase (NAG) from urine, markers of oxidative stress injury and TUNEL-positive cells in kidney tissues were also detected.

Results

The expressions of plasma inflammatory markers and acute kidney injury markers increased both in Group U and Group C at 5 min and 120 min after CPB. Also, numbers of TUNEL-positive cells and oxidative stress markers in kidney rose in both groups. At the time point of 120-min after CPB, compared with the Group C, some plasma inflammatory and acute kidney injury markers as well as TUNEL-positive cells and oxidative stress markers in kidney were significantly reduced in the Group U. Histologic analyses showed that HLF promoted acute tubular necrosis and dilatation.

Conclusions

HLF cardiopulmonary bypass surgery could intensify systemic inflammatory responses and oxidative stress on infant piglets, thus causing acute kidney injury. Ulinastatin might reduce such inflammatory response and oxidative stress and the extent of kidney injury.  相似文献   

14.

Background

Osteomyelitis is an acute or chronic inflammatory process of the bone following infection with pyogenic organisms like Staphylococcus aureus. Tobramycin (TOB) is a promising aminoglycoside antibiotic used to treat various bacterial infections, including S. aureus. The aim of this study was to investigate the efficacy of tobramycin-loaded calcium phosphate beads (CPB) in a rabbit osteomyelitis model.

Methods

Tobramycin (30 mg/mL) was incorporated into CPB by dipping method and the efficacy of TOB-loaded CPB was studied in a rabbit osteomyelitis model. For juxtaposition, CPB with and without TOB were prepared. Twenty-five New Zealand white rabbits were grouped (n?=?5) as sham (group 1), TOB-loaded CPB without S. aureus (group 2), S. aureus only (group 3), S. aureus?+?CPB (group 4), and S. aureus?+?TOB-loaded CPB (group 5). Groups infected with S. aureus followed by CPB implantation were immediately subjected to surgery at the mid-shaft of the tibia. After 28 days post-surgery, all rabbits were euthanized and the presence or absence of chronic osteomyelitis and the extent of architectural destruction of the bone were assessed by radiology, bacteriology and histological studies.

Results

Tobramycin-loaded CPB group potentially inhibited the growth of S. aureus causing 3.2 to 3.4 log10 reductions in CFU/g of bone tissue compared to the controls. Untreated groups infected with S. aureus showed signs of chronic osteomyelitis with abundant bacterial growth and alterations in bone architecture. The sham group and TOB-loaded CPB group showed no evidence of bacterial growth.

Conclusions

TOB-incorporated into CPB for local bone administration was proven to be more successful in increasing the efficacy of TOB in this rabbit osteomyelitis model and hence could represent a good alternative to other formulations used in the treatment of osteomyelitis.
  相似文献   

15.
Leptin is a hormone that regulates food intake. During inflammatory status, leptin may contribute to the anorexia and cachexia of infection. Pulmonary endarterectomy was used as a model of non-infectious cytokine network hyperstimulation. Leptin and soluble leptin receptor (SLR) were compared with evolution of cortisol and inflammatory cytokines in twenty-two patients with chronic thromboembolic pulmonary hypertension treated with pulmonary endarterectomy using cardiopulmonary bypass (CBP) and deep hypothermic circulatory arrest (DHCA). Leptin, SLR, cortisol, IL-beta, IL-6, IL-8, and TNFalpha concentrations in arterial blood were measured before/after sternotomy, last DHCA, separation from bypass, 12, 18, 24, 36, and 48 h after sternotomy. Mean duration of CPB was 338.2 min.; mean circulatory arrest time 39.9 min. The initial decline of leptin, SLR, TNFalpha, IL-6, and IL-8 was followed by an increase culminating 6-24 h after sternotomy. Leptin peak levels were detected 24 h after sternotomy (28.0 ng/ml, 21.9-37.6). IL-6 culminated after separation from CPB, IL-8 was highest 12 h after sternotomy. Leptin concentrations correlated with IL-6 (r=0.82), and TNFalpha (r=0.73). Large cardiovascular surgery caused a significant increase in serum leptin, indicating its acute regulation by stress factors. This effect may be secondary to the inflammatory response mediated via cytokine stimulation. Correlation between leptin and IL-6 indicates the role of IL-6 in leptin induction.  相似文献   

16.
Damage to orbitofrontal cortex (OFC) has long been associated with deficits in reversal learning. OFC damage also causes inflexible associative encoding in basolateral amygdala (ABL) during reversal learning. Here we provide a critical test of the hypothesis that the reversal deficit in OFC-lesioned rats is caused by this inflexible encoding in ABL. Rats with bilateral neurotoxic lesions of OFC, ABL, or both areas were tested on a series of two-odor go/no-go discrimination problems, followed by two serial reversals of the final problem. As expected, all groups acquired the initial problems at the same rate, and rats with OFC lesions were slower to acquire the reversals than sham controls. This impairment was abolished by accompanying ABL lesions, while ABL lesions alone had no effect on reversal learning. These results are consistent with the hypothesis that OFC facilitates cognitive flexibility by promoting updating of associative encoding in downstream brain areas.  相似文献   

17.

Background

The impact of cardiac surgery using cardiopulmonary bypass (CPB) on the respiratory mucociliary function is unknown. This study evaluated the effects of CPB and interruption of mechanical ventilation on the respiratory mucociliary system.

Methods

Twenty-two pigs were randomly assigned to the control (n = 10) or CPB group (n = 12). After the induction of anesthesia, a tracheostomy was performed, and tracheal tissue samples were excised (T0) from both groups. All animals underwent thoracotomy. In the CPB group, an aorto-bicaval CPB was installed and maintained for 90 minutes. During the CPB, mechanical ventilation was interrupted, and the tracheal tube was disconnected. A second tracheal tissue sample was obtained 180 minutes after the tracheostomy (T180). Mucus samples were collected from the trachea using a bronchoscope at T0, T90 and T180. Ciliary beat frequency (CBF) and in situ mucociliary transport (MCT) were studied in ex vivo tracheal epithelium. Mucus viscosity (MV) was assessed using a cone-plate viscometer. Qualitative tracheal histological analysis was performed at T180 tissue samples.

Results

CBF decreased in the CPB group (13.1 ± 1.9 Hz vs. 11.1 ± 2.1 Hz, p < 0.05) but not in the control group (13.1 ± 1 Hz vs. 13 ± 2.9 Hz). At T90, viscosity was increased in the CPB group compared to the control (p < 0.05). No significant differences were observed in in situ MCT. Tracheal histology in the CPB group showed areas of ciliated epithelium loss, submucosal edema and infiltration of inflammatory cells.

Conclusion

CPB acutely contributed to alterations in tracheal mucocilliary function.  相似文献   

18.

Aims

To investigate the role of dopamine in cognitive and motor learning skill deficits after a traumatic brain injury (TBI), we investigated dopamine release and behavioral changes at a series of time points after fluid percussion injury, and explored the potential of amantadine hydrochloride as a chronic treatment to provide behavioral recovery.

Materials and Methods

In this study, we sequentially investigated dopamine release at the striatum and behavioral changes at 1, 2, 4, 6, and 8 weeks after fluid percussion injury. Rats subjected to 6-Pa cerebral cortical fluid percussion injury were treated by using subcutaneous infusion pumps filled with either saline (sham group) or amantadine hydrochloride, with a releasing rate of 3.6mg/kg/hour for 8 weeks. The dopamine-releasing conditions and metabolism were analyzed sequentially by fast scan cyclic voltammetry (FSCV) and high-pressure liquid chromatography (HPLC). Novel object recognition (NOR) and fixed-speed rotarod (FSRR) behavioral tests were used to determine treatment effects on cognitive and motor deficits after injury.

Results

Sequential dopamine-release deficits were revealed in 6-Pa-fluid-percussion cerebral cortical injured animals. The reuptake rate (tau value) of dopamine in injured animals was prolonged, but the tau value became close to the value for the control group after amantadine therapy. Cognitive and motor learning impairments were shown evidenced by the NOR and FSRR behavioral tests after injury. Chronic amantadine therapy reversed dopamine-release deficits, and behavioral impairment after fluid percussion injuries were ameliorated in the rats treated by using amantadine-pumping infusion.

Conclusion

Chronic treatment with amantadine hydrochloride can ameliorate dopamine-release deficits as well as cognitive and motor deficits caused by cerebral fluid-percussion injury.  相似文献   

19.
20.
The goal of the present study is to investigate the role of tetrahydrobiopterin (BH4) in the vascular response in ovariectomized rats. Rats were randomly assigned to two groups: (1) sham group: sham-operated female rats, and (2) Ovx group: rats were ovariectomized. Our results have shown that the plasma 17 beta-estradiol levels in the Ovx group at the end of the experiment were significantly lower than in the sham group. Vasoreactivity assessed with intact aortic rings indicated that the phenylephrine-induced vasocontractile response to aortic rings from the Ovx group was greater than that of the sham group. In contrast, the vasodilator responses to acetylcholine and L-arginine (L-Arg) in the sham group were significantly greater than in the Ovx group. Differences in vasoreactivity in denuded aorta between the two groups were not noted. Moreover, exogenous BH4 significantly restored L-Arg-induced vasodilator responses in the Ovx group. However, this improvement effect was not found in the sham group. In addition, there were significant increases in superoxide anion production in aortic tissue and significant decreases in plasma nitric oxide levels in the Ovx group. Furthermore, BH4 contents in the aorta in the Ovx group were significantly decreased compared with the sham group. In conclusion, the present study demonstrates that the impairment of vascular reactivity was found in the ovariectomized rats. The possible mechanism of this defect may have resulted from the deficiency of available BH4. Thus, this study may provide a novel therapeutic strategy for the treatment of postmenopausal cardiovascular disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号