首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Levan or high molecular beta-2,6-linked fructose polymer is produced extracellularly from sucrose-based substrates by bacterial levansucrase. In the present study, to investigate the effect of levan feeding on serum leptin, hepatic lipogenic enzyme and peroxisome proliferation-activated receptor (PPAR) alpha expression in high-fat diet-induced obese rats, 4-week-old Sprague-Dawley male rats were fed high-fat diet (beef tallow, 40% of calories as fat), and, 6 weeks later, the rats were fed 0%, 1%, 5% or 10% levan-supplemented diets for 4 weeks. Serum leptin and insulin level were dose dependently reduced in levan-supplemented diet-fed rats. The mRNA expressions of hepatic fatty acid synthase and acetyl CoA carboxylase, which are the key enzymes in fatty acid synthesis, were down-regulated by dietary levan. However, dietary levan did not affect the gene expression of hepatic malic enzyme, phosphatidate phosphohydrolase and HMG CoA reductase. Also, the lipogenic enzyme gene expression in the white adipose tissue (WAT) was not affected by the diet treatments. However, hepatic PPARalpha mRNA expression was dose dependently up-regulated by dietary levan, whereas PPARgamma in the WAT was not changed. The results suggest that the in vivo hypolipidemic effect of dietary levan, including anti-obesity and lipid-lowering, may result from the inhibition of lipogenesis and stimulation of lipolysis, accompanied with regulation of hepatic lipogenic enzyme and PPARalpha gene expression.  相似文献   

2.
3.
A combination of in vivo and in vitro experiments were performed to determine the extent to which exogenous leptin regulates serum growth hormone (GH) and insulin-like growth factor I (IGF-1) concentrations, and the abundance of IGF-1 mRNA in major peripheral tissues. Initially (Experiment 1), a recombinant human leptin analog was administered i.m. to young growing pigs (approximately 27 kg body weight) for 15 days at 0 (control), 0.003, 0.01 and 0.03 mg. kg(-1). day(-1). Although there was no sustained effect of leptin on serum GH, there was a reduction (P < 0.02) in serum IGF-1 at the intermediate dose that paralleled a decrease (P < 0.09) in hepatic IGF-1 expression. Leptin, at these doses, did not reduce feed intake (P > 0.57), nor was there an effect of leptin on dietary nitrogen retention (P > 0.97). In a second experiment, pigs were injected with vehicle or a higher dose of leptin (0.05 mg. kg(-1). day(-1)) for 14 days. A third treatment group was injected with vehicle and pair-fed to the intake of the group treated with leptin. In this study, exogenous leptin resulted in a sustained increase in serum leptin (P < 0.0001) and reduction in feed intake of approximately 30% (P < 0.0001). Serum IGF-1 was depressed in both the leptin-treated and pair-fed groups, relative to the group allowed ad-libitum intake (P < 0.01). Furthermore, there was no difference among treatments in the relative abundance of IGF-1 mRNA in skeletal muscle (P > 0.42) or adipose tissue (P > 0.26), and liver mRNA abundance was actually increased (P < 0.01) by leptin, despite the lower feed intake. Finally, to determine whether leptin altered the secretion of IGF-1 by isolated pig hepatocytes, primary cultures were incubated with leptin for 24 to 48 hr (Experiment 3). Leptin (100 nM) caused a sharp reduction (P < 0.0001) in dexamethasone-induced IGF-1 secretion at 24 hr (47% reduction) and at 48 hr (40% reduction). Collectively, these data indicate that leptin may regulate hepatic IGF-1 production in the pig, independent of GH, but that hepatocyte sensitivity to leptin may be depend on dose and in vitro vs. in vivo conditions.  相似文献   

4.
Fibrates and glitazones are two classes of drugs currently used in the treatment of dyslipidemia and insulin resistance (IR), respectively. Whereas glitazones are insulin sensitizers acting via activation of the peroxisome proliferator-activated receptor (PPAR) gamma subtype, fibrates exert their lipid-lowering activity via PPARalpha. To determine whether PPARalpha activators also improve insulin sensitivity, we measured the capacity of three PPARalpha-selective agonists, fenofibrate, ciprofibrate, and the new compound GW9578, in two rodent models of high fat diet-induced (C57BL/6 mice) or genetic (obese Zucker rats) IR. At doses yielding serum concentrations shown to activate selectively PPARalpha, these compounds markedly lowered hyperinsulinemia and, when present, hyperglycemia in both animal models. This effect relied on the improvement of insulin action on glucose utilization, as indicated by a lower insulin peak in response to intraperitoneal glucose in ciprofibrate-treated IR obese Zucker rats. In addition, fenofibrate treatment prevented high fat diet-induced increase of body weight and adipose tissue mass without influencing caloric intake. The specificity for PPARalpha activation in vivo was demonstrated by marked alterations in the expression of PPARalpha target genes, whereas PPARgamma target gene mRNA levels did not change in treated animals. These results indicate that compounds with a selective PPARalpha activation profile reduce insulin resistance without having adverse effects on body weight and adipose tissue mass in animal models of IR.  相似文献   

5.
Glucose concentration may be an important factor in breast cancer cell proliferation, and the prevalence of breast cancer is high in diabetic patients. Leptin may also be an important factor since plasma levels of leptin correlated with TNM staging for breast cancer patients. The effects of glucose and leptin on breast cancer cell proliferation were evaluated by examining cell doubling time, DNA synthesis, levels of cell cycle related proteins, protein kinase C (PKC) isozyme expression, and peroxisome proliferator-activated receptor (PPAR) subtypes were determined following glucose exposure at normal (5.5 mM) and high (25 mM) concentrations with/without leptin in MCF-7 human breast cancer cells. In MCF-7 cells, leptin and high glucose stimulated cell proliferation as demonstrated by the increases in DNA synthesis and expression of cdk2 and cyclin D1. PKC-alpha, PPARgamma, and PPARalpha protein levels were up-regulated following leptin and high glucose treatment in drug-sensitive MCF-7 cells. However, there was no significant effect of leptin and high glucose on cell proliferation, DNA synthesis, levels of cell cycle proteins, PKC isozymes, or PPAR subtypes in multidrug-resistant human breast cancer NCI/ADR-RES cells. These results suggested that hyperglycemia and hyperleptinemia increase breast cancer cell proliferation through accelerated cell cycle progression with up-regulation of cdk2 and cyclin D1 levels. This suggests the involvement of PKC-alpha, PPARalpha, and PPARgamma.  相似文献   

6.
7.
8.
Leptin and peroxisome proliferator-activated receptors are two important adipose tissue factors involved in energy metabolism regulation. It has been shown that PPARgamma agonists decrease leptin levels. However, the effects of PPARalpha agonists on leptin have not been investigated much. The aim of this study was to compare the effects of a PPARgamma agonist rosiglitazone (RSG) and PPARalpha agonist gemfibrozil (G) on body weight and serum insulin and leptin levels in diet-induced obese rats. Male Wistar rats were divided into six groups according to diet and drug therapy. After four weeks, serum glucose, triglyceride, insulin and leptin levels were significantly decreased in the high-fat-fed and RSG-treated groups compared to the group fed a high-fat diet only (162 +/- 19 vs. 207 +/- 34 mg/dl, 58 +/- 20 vs. 112 +/- 23 mg/dl, 3.1 +/- 1.0 vs. 15.2 +/- 4.0 ng/ml, 1.6 +/- 0.5 vs. 3.6 +/- 1.6 ng/ml, respectively). However, these parameters were not statistically different in RSG animals treated with a standard diet compared to the standard diet group. The high fat+RSG group gained much more weight compared to high-fat and high-fat+G groups (p > 0.05). Additionally, serum glucose, insulin and leptin levels were significantly decreased in the high-fat-fed and G-treated group compared to high-fat group (149 +/- 19 vs. 207 +/- 34 mg/dl, 57 +/- 16 vs. 112 +/- 23 mg/dl, 4.3 +/- 2.1 vs. 15.2 +/- 4.0 ng/ml, 1.6 +/- 0.4 vs. 3.6 +/- 1.6 ng/ml, respectively). These results suggest that PPARalpha agonists may decrease serum glucose, insulin and leptin levels as PPARgamma agonists do in diet-induced obese rats.  相似文献   

9.
The role of PPARs in the regulation of human adipose tissue secretome has received little attention despite its potential importance in the therapeutic actions of PPAR agonists. Here, we have investigated the effect of selective PPARgamma, PPARalpha, and PPARbeta/delta agonists on the production of adipokines by human subcutaneous adipose tissue. Antibody arrays were used to measure secreted factors in media from cultured adipose tissue explants. Sixteen proteins were produced in significant amounts. Activation of PPARs regulated the production of five proteins. Treatments with the three PPAR agonists decreased the secretion of leptin and interleukin-6. PPARalpha and beta/delta agonists markedly enhanced hepatocyte growth factor secretion whereas PPARbeta/delta down-regulated angiogenin and up-regulated TIMP-1 release. Hepatocyte growth factor, interleukin-6, and TIMP-1 are chiefly expressed in cells from the stromal vascular fraction whereas angiogenin is expressed in both adipocytes and cells from the stromal vascular fraction. Our data show that PPAR agonists modulate secretion of bioactive molecules from the different cell types composing human adipose tissue.  相似文献   

10.
Peroxisome proliferator activated-receptor (PPAR) isoforms, alpha and gamma, function as important coregulators of energy (lipid) homeostasis. PPARalpha regulates fatty acid oxidation primarily in liver and to a lesser extent in adipose tissue, whereas PPARgamma serves as a key regulator of adipocyte differentiation and lipid storage. Of the two PPARgamma isoforms, PPARgamma1 and PPARgamma2 generated by alternative splicing, PPARgamma1 isoform is expressed in liver and other tissues, whereas PPARgamma2 isoform is expressed exclusively in adipose tissue where it regulates adipogenesis and lipogenesis. Since the function of PPARgamma1 in liver is not clear, we have, in this study, investigated the biological impact of overexpression of PPARgamma1 in mouse liver. Adenovirus-PPARgamma1 injected into the tail vein induced hepatic steatosis in PPARalpha(-/-) mice. Northern blotting and gene expression profiling results showed that adipocyte-specific genes and lipogenesis-related genes are highly induced in PPARalpha(-/-) livers with PPARgamma1 overexpression. These include adipsin, adiponectin, aP2, caveolin-1, fasting-induced adipose factor, fat-specific gene 27 (FSP27), CD36, Delta(9) desaturase, and malic enzyme among others, implying adipogenic transformation of hepatocytes. Of interest is that hepatic steatosis per se, induced either by feeding a diet deficient in choline or developing in fasted PPARalpha(-/-) mice, failed to induce the expression of these PPARgamma-regulated adipogenesis-related genes in steatotic liver. These results suggest that a high level of PPARgamma in mouse liver is sufficient for the induction of adipogenic transformation of hepatocytes with adipose tissue-specific gene expression and lipid accumulation. We conclude that excess PPARgamma activity can lead to the development of a novel type of adipogenic hepatic steatosis.  相似文献   

11.
Rat brown adipocytes express mRNAs for Uncoupling Proteins (UCP) 1, 2 and 3 and the Peroxisome Proliferator Activated Receptors (PPAR) alpha and gamma. We have examined the effects of selective PPARalpha or -gamma activation on changes in UCP-1 and UCP-3 mRNA levels in cultured fetal rat brown adipocytes (FBA). Rosiglitazone (1.0 microM), a selective PPARgamma agonist, elicited 5- and 3-fold increases in UCP-1 and UCP-3, respectively. The PPARalpha ligand, Wy14643 (10.0 microM) increased UCP-3 tenfold, but decreased UCP-1. A synergistic effect on UCP-3 expression (30-fold increase; P < 0. 05) was observed when FBA were exposed to a combination of Wy14643 (10.0 microM) and rosiglitazone (10.0 microM). Thus, activation of PPARgamma increases UCP-1 and UCP-3 levels which are differentially regulated by PPARalpha. A synergistic interaction occurs between PPARalpha and PPARgamma in the regulation of UCP-3 in FBA, probably via co-activator recruitment, suppression of co-repressor proteins or through a direct interaction at the level of the PPRE.  相似文献   

12.
The expression of peroxisome proliferator-activated receptors alpha (PPARalpha) and gamma (PPARgamma) was studied in the human adenocarcinoma Caco-2 cells induced to differentiate by long term culture (15 days). The differentiation of Caco-2 cells was attested by increases in the activities of sucrase-isomaltase and alkaline phosphatase (two brush border enzymes), fatty acyl-CoA oxidase (AOX) and catalase (two peroxisomal enzymes), by an elevation in the protein levels of villin (a brush border molecular marker), AOX, peroxisomal bifunctional enzyme (PBE), catalase and peroxisomal membrane protein of 70 kDa (PMP70). and by the appearance of peroxisomes. The expression of PPARalpha and PPARgamma was investigated by Western blotting, immunocytochemistry, Northern blotting and S1 nuclease protection assay during the differentiation of Caco-2 cells. The protein levels of PPARalpha, PPARgamma, and PPARgamma2 increased gradually during the time-course of Caco-2 cell differentiation. Immunocytochemistry revealed that PPARalpha and gamma were localized in cell nuclei. The PPARgamma1 protein was encoded by PPARgamma3 mRNA because no signal was obtained for PPARgamma1 mRNA using a specific probe in S1 nuclease protection assay. The amount of PPARgamma3 mRNA increased concomitantly to the resulting PPARgamma1 protein. On the other hand, the mRNA of PPARalpha and PPARgamma2 were not significantly changed, suggesting that the increase in their respective protein was due to an elevation of the translational rate. The role played by the PPAR subtypes in Caco-2 cell differentiation is discussed.  相似文献   

13.
14.
PPAR expression and function during vertebrate development   总被引:11,自引:0,他引:11  
The peroxisome proliferator activated receptors (PPARs) are ligand activated receptors which belong to the nuclear hormone receptor family. As with other members of this superfamily, it is thought that the ability of PPAR to bind to a ligand was acquired during metazoan evolution. Three different PPAR isotypes (PPARalpha, PPARbeta, also called 6, and PPARgamma) have been identified in various species. Upon binding to an activator, these receptors stimulate the expression of target genes implicated in important metabolic pathways. The present article is a review of PPAR expression and involvement in some aspects of Xenopus laevis and rodent embryonic development. PPARalpha and beta are ubiquitously expressed in Xenopus early embryos but become more tissue restricted later in development. In rodents, PPARalpha, PPARbeta and PPARgamma show specific time- and tissue-dependent patterns of expression during fetal development and in the adult animals. PPARs are implicated in several aspects of tissue differentiation and rodent development, such as differentiation of the adipose tissue, brain, placenta and skin. Particular attention is given to studies undertaken by us and others on the implication of PPARalpha and beta in rodent epidermal differentiation.  相似文献   

15.
16.
17.
Recent in vitro and in vivo studies emphasize the impact of leptin, peroxisome proliferator-activated receptors (PPAR) and PPAR coactivators (retinoic X receptor a (RXR), amplified in breast cancer-3 gene (AIB3)) on placental and fetal development. Therefore, the frequency and distribution pattern of PPAR, RXR, AIB3 and leptin expression in normal human first trimester pregnancy, miscarriage and hydatidiform mole was investigated by immunohistochemistry and double immunofluorescence staining. Enhanced expression of PPAbeta/delta, RXR and AIB3 was identified in miscarried placentas. With regard to hydatidiform mole, increased expression of PPARgamma and PPARbeta/delta was observed, whereas RXR was significantly down-regulated. Leptin expression was lowest in miscarriage and highest in mole pregnancies. In contrast to trophoblast tissue, expression of leptin in glandular epithelial cells of the decidua was increased in miscarriage. PPAR and leptin expressing cells at the feto-maternal interface were identified as extravillous trophoblast (EVT) by double immunofluorescence and CK7 staining. In summary, significantly reduced leptin expression was accompanied by enhanced PPARbeta/delta, RXR and AIB3 expression in miscarried placentas. However, in mole pregnancy, up-regulation of leptin and increased expression of PPAR was detected. RXR, on the other hand, was down-regulated in mole decidua. So far, the study results implicate strong regulatory interaction of PPARs, their coactivators and leptin in human placentas. PPAR and leptin are potential targets for new treatment strategies concerning pregnancy disorders, such as miscarriage. The increasing knowledge about the role of PPARs and leptin in normal and disturbed pregnancy may help to improve pregnancy outcome.  相似文献   

18.
Conflicting results have been reported regarding the effect of triiodothyronine (T(3)) on serum leptin and adipose tissue leptin gene expression in human and animals. The aim of the present study was to evaluate the effect of administration of increasing doses of T(3) on serum leptin concentration and on leptin mRNA abundance in white adipose tissue of rats. The results presented in this paper indicate that administration of single different doses of T(3) to euthyroid rats resulted dose dependent increases of serum total T(3) concentrations which are associated with a decrease in white adipose tissue leptin mRNA level. The leptin mRNA level in white adipose tissue was negatively correlated with serum total T(3) concentration (r=-0.8, p<0.001). Like white adipose tissue leptin mRNA level, serum leptin concentration decreased after T(3) administration, and was also negatively correlated with the serum T(3) concentration (r=-0.8, p<0.001). In contrast, administration of T(3) to the same rats led to a significant increase in white adipose tissue expression of the malic enzyme gene (malic enzyme activity and malic enzyme mRNA level), a known target gene for T(3). The results indicate that T(3) exerts a selective inhibitory effect on white adipose tissue leptin gene expression in vivo. A conclusion is that T(3) decreases rat serum leptin concentration by down-regulation of leptin gene expression in white adipose tissue.  相似文献   

19.
Recent evidence indicates that both leptin and eicosapentaenoic acids (EPA) improve insulin sensitivity. In the present study, we examined the effect of EPA on endogenous leptin expression in 3T3-L1 adipocytes to clarify whether the EPA's effect is exerted through leptin expression. EPA caused a time- and dose-dependent increase of leptin mRNA levels in 3T3-L1 adipocytes. Leptin mRNA expression was significantly increased up to 309.4 +/- 17.0% of the control by 24 h (P < 0.01; n = 6). Leptin secretion was also significantly increased up to 193.3 +/- 12.1% of the control by 24 h (P < 0.01; n = 6). EPA is a ligand for peroxisome proliferator-activated receptors (PPARs) with the highest affinity to PPARalpha. We examined the effect on leptin expression of clofibrate, a ligand for PPARalpha, bezafibrate, for PPARbeta, or troglitazone, for PPARgamma, to clarify whether these ligands for PPARs could mimic EPA-induced stimulation of leptin expression. Neither clofibrate nor bezafibrate affected leptin mRNA expression, whereas troglitazone significantly suppressed leptin mRNA expression. On the other hand, inhibition by 6-diazo-5-oxo-l-norleucine of the rate-limiting enzyme in hexosamine biosynthesis blunted EPA-induced stimulation of leptin mRNA expression and its secretion. These data suggest that EPA up-regulates leptin gene expression and its secretion probably through a hexosamine biosynthetic pathway.  相似文献   

20.
Peroxisomes increase in size and number in responsive animals ranging from mammals to marine mussels and fish species when treated with certain compounds named peroxisome proliferators. This phenomenon, known as peroxisome proliferation, is mediated by nuclear receptors termed peroxisome proliferator-activated receptors (PPARs). Three PPAR subtypes have been described (alpha, beta, and gamma) and in mammals PPARalpha is mainly expressed in tissues that catabolize fatty acids, PPARbeta is ubiquitously distributed, and PPARgamma is mainly expressed in the adipose tissue and immune system. The aim of this study was to analyze the tissue distribution of different PPAR subtypes in zebrafish Danio rerio using commercially available antibodies against PPARalpha, PPARbeta, and PPARgamma. In western blots, specific bands were detected at about 58 kDa for PPARalpha and PPARbeta. For PPARgamma the band was detected at 56 kDa. Similar results were obtained in mouse liver homogenates used as positive control, indicating the specificity of the antibodies. Immunohistochemistry was performed in paraformaldehyde-fixed tissue using either microwave or microwave plus trypsin pretreatment for antigen retrieval. In zebrafish, PPARalpha was expressed mainly in liver parenchymal cells, proximal tubules of kidney, enterocytes, and pancreas. PPARbeta showed a widespread distribution and was expressed in the liver, proximal and distal tubules and glomeruli of the kidney, pancreas, enterocytes and smooth muscle of the intestine, skin epithelium, lymphocytes, and male and female gonads. PPARgamma expression was weak in pancreatic cells, intestine, and gonads for both pretreatments. Most of the signal detected was cytoplasmic; only in the cases of PPARalpha and PPARbeta was some nuclear labeling detected in the liver. In mouse tissues, the distribution of PPAR subtypes was similar to that described previously for rats. Our results demonstrate that all three distinct PPAR subtypes are present in zebrafish. The tissue and cellular distribution of PPAR subtypes in zebrafish resembled partly that described before in mammals. Further studies are needed to decipher the functions of PPAR subtypes in zebrafish and other aquatic organisms and particularly their role in regulation of metabolic responses to xenobiotic exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号