首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the study was to verify the hypothesis if copper could influence the activity of sodium-transporting systems in erythrocyte membrane that could be related to essential hypertension. The examined group of patients consisted of 15 men with hypertension. The control group was 11 healthy male volunteers. The Na+/H+ exchanger (NHE) activity in erythrocytes was determined according to Orlov et al. The activity of transporting systems (ATP-Na+/K+; co-Na+/K+/Cl; ex-Na+/Li+; free Na+ and K+ outflow [Na+, K+-outflow]) was determined according to Garay's method. The concentration of copper in plasma was assessed using atomic absorption spectrometry. The activity of ATP-Na+/K+ (μmol/L red blood cells [RBCs]/h) in hypertensive patients was 2231.5±657.6 vs 1750.5±291 in the control (p<0.05), the activity of co-Na+/K+/Cl (μmol/L RBCs/h) in hypertensives was 171.3±77.9 vs 150.7±53.9 in the control (NS). Na+-outflow (μmol/L RBCs/h) in hypertensives was 118.3±51.6 vs 113.3±24.4 in the control (NS). The K+-outflow (μmol/L RBCs/h) in hypertensives was 1361.7±545.4 vs 1035.6±188.3 in the control (NS). The activity of ex-Na+/Li+ (μmol/L RBCs/h) in hypertensive patients was 266.1±76.1 vs 204.1±71.6 in the control (p<0.05). NHE activity (mmol/L RBCs/h) in hypertensives was 9.7±2.96 vs 7.7±1.33 in the control (p<0.05). In hypertensive patients, negative correlation was found between the activity of Na+/K+/Cl co-transport and plasma copper concentration (R s=−0.579, p <0.05) and between the activity of ex-Na+/Li+ and plasma copper concentration (R s=−0.508, p<0.05). Plasma copper concentration significantly influences the activity of sodium transporting systems in erythrocyte membrane. Copper supplementation could be expected to provide therapeutic benefits for hypertensive patients.  相似文献   

2.
The interaction effects between irradiance and temperature on growth rates ofNannochloropsis oceanicawere determined in both laboratory cultures and large-scale tubular photobioreactors. Growth responses were investigated in 48 batch cultures subjected to crossing light/temperature gradients ranging from 34–80μmol photons m−2s−1and 14.5–35.7C respectively. Comparisons were made to growth responses observed in production systems (200L biofences) operated in climate-regulated greenhouses with controlled temperature and artificial light gradients. Cellular responses showed increasing specific growth rates as a function of temperature, with a peak at 25–29C, after which the growth became increasingly unstable. The optimum temperature for growth increased with higher light intensities up to approximately 28C at 80μmol photons m−2s−1. At low light intensities the specific growth rate was less affected by temperature. The maximum daily production measured in the biofence systems increased proportionally with irradiation and reached approximately 0.7gL−1d−1at 1030μmol photons m−2s−1average daily radiation for a culture temperature of 24C. This corresponds to a daily yield of 140g per day in a 200L biofence system. When specific growth rates for the biofence cultures were measured at different densities and plotted against temperature, results showed a peak with the 24C temperature treatment. This peak became less pronounced as the density increased in the cultures. This is consistent with the laboratory results; increasing cell density in the biofence cultures resulted in less average light cell−1, which produced the same temperature dependent response as seen by reducing the external irradiance exposure for the dilute laboratory cultures.  相似文献   

3.
The present study was performed to determine the changes in inorganic element content in barley leaves of mammalian sex hormones (MSH). Barley leaves were sprayed with 10−4, 10−6, 10−9, 10−12, 10−15 M concentrations of progesterone, β-estradiol, and androsterone at 7th day after sowing. The plants were harvested at the end of 18 days after treatment with MSH solutions. The inorganic element concentrations were determined using wavelength dispersive X-ray fluorescence spectroscopy technique. Although the all MSH concentrations significantly (p < 0.05) increased the concentrations of calcium, magnesium, phosphorus, sulfur, copper, manganese, aluminum, zinc, iron, potassium, and chlorine, it decreased those of sodium concentration in barley leaves. The maximum changes in the element concentrations were obtained at 10−9 M for plant leaves treated with progesterone, 10−6 M for plant leaves treated with β-estradiol and androsterone. The present study elucidated that MSH significantly (p < 0.05) affected the inorganic element concentrations in barley leaves.  相似文献   

4.
In vivo experiments with Sprague-Dawley rats were conducted in order to explore the influence of Cu2+, Zn2+ as well as of the combinations of both on the activity of trypsin. The solutions of the trace elements were given per os, the animals were killed 30 min after the applications, and the activity of trypsin was determined in the juice of the small intestine by usingN α-benzoyl-L-arginine-p-nitroanilide (L-BAPA) as the substrate. The activity of trypsin depends on the concentration of the trace elements. When Cu2+ ions are applied, there is a minimum activity at 10−5 mol Cu2+/L and a maximum at 10−4 mol Cu2+/L. When giving Zn2+ ions, a minimum of trypsin activity is found at 10−5 mol Zn2+/L and a maximum at 5×10−6 mol Zn2+/L. On the whole, the trypsin activity is lower when the Cu2+/Zn2+ combinations are applied compared to the addition of the single trace elements. On principle, a good conformity of the in vivo results was found with in vitro results.  相似文献   

5.
Fish in the embryo-larval stage of development have been shown to be sensitive to boron (B) at both ends of the dose-response curve (1,2). The present study evaluated the health effects of low and high B concentrations on rainbow trout (Oncorhynchus mykiss), a cold water species, and zebrafish (Danio rerio), a warm water species. Rainbow trout embryos were incubated from day 1 until 2 wk posthatch in Type 1 ASTM ultrapure-grade water (12.5°C) supplemented with only B (0-500 μM) as boric acid, or together with CaCO3 (0–2 mM) to increase water hardness. Embryonic growth was stimulated by B in a dose-dependent manner at all Ca concentrations (p < 0.001). Chronic exposures below 9 μmol B/L impaired embryonic growth and above 10 mmol B/L caused death (p < 0.001). Thus, the safe range of exposure for the rainbow trout was between the adverse effect concentrations of 9 μmol B/L and 10 mmol B/L. Zebrafish were maintained for 6 mo in ultrapure water containing <0.2 μmol B/L to determine the effect of low-level exposure. High-level exposure was assessed by exposing zygotes, derived from parents maintained at 46 μmol B/L, to graded concentrations of boric acid up to a concentration of 75 mmol B/L from fertilization until they were free feeding (96 h). Fertilization occurred, but zygotes failed to survive when water contained <0.2 umol B/L (p < 0.001). Death occurred at and above 9.2 mmol B/L. Thus, the safe range of B exposure for zebrafish was between the adverse effect concentrations of 0.2 μmol B/L and 9.2 mmol B/L. The dose-response for both species was thus U-shaped. Part of this work was previously published in abstract form and presented at Experimental Biology 97, April 6–9, New Orleans, LA (Eckhert, C. [1997] Embryonic trout growth and boron exposure,FASEB J. 11, A406 [abstract]).  相似文献   

6.
Abstract The role of abscisic acid (ABA) in banana fruit ripening was examined with the ethylene binding inhibitor, 1-methylcyclopropene (1-MCP). ABA (0, 10−5, 10−4, or 10−3 mol/L) was applied by vacuum infiltration into fruit. 1-MCP (1 μL/L) was applied by injecting a measured volume of stock gas into sealed glass jars containing fruit. Fruit ripening, as judged by ethylene evolution and respiration associated with color change and softening, was accelerated by 10−4 or 10−3 mol/L ABA. ABA at 10−5 mol/L had no effect. The acceleration of ripening by ABA was greater at 10−3 mol/L than at 10−4 mol/L. ABA-induced acceleration of banana fruit ripening was not observed in 1-MCP treated fruit, especially when ABA was applied after exposure to 1-MCP. Thus, ABA's promotion of ripening in intact banana fruit is at least partially mediated by ethylene. Exposure of ABA-treated fruit to 0.1 μL/L ethylene for 24 h resulted in increased ethylene production and respiration, and associated skin color change and fruit softening. Control fruit (no ABA) was unresponsive to similar ethylene treatments. The data suggest that ABA facilitates initiation and progress in the sequence of ethylene-mediated ripening events, possibly by enhancing the sensitivity to ethylene. Received 29 January 1999; accepted 16 January 2000  相似文献   

7.
The adaptation of littorinid molluscs to prolonged aerial exposure was investigated by the determination of heat production.Littorina saxatilis, inhabiting the upper eulittoral, reached a maximum metabolic activity during submersion (heat production: 3.26×10−3J s−1 (gadw)−1. On the first three days of desiccation, the heat production was continuously reduced to 40% of the submersed value. A prolonged aerial exposure was lethal for this species. In the supralittoralL. neritoides, three stages of energy metabolism could be observed: An intermediate heat production during submersion (1.97×10−3Js−1 (gadw)−1), an increased metabolism during the first hour of aerial exposure (heat production 204% of submersed value), and a minimal metabolism (39% of the submersed value and 19% of maximum value) during the following days and weeks of desiccation. Recovery depended on water salinity;L. saxatilis proved to be less euryhaline thanL. neritoides. Thus, the metabolic adaptations correlate with the level of littoral habitat; inactivity combined with a drastically reduced energy consumption is a metabolically economic way to survive in periodically dry environments.  相似文献   

8.
Two series of experiments were conducted to determine suitable growth factors for the mass propagation of the local algal isolate Amphora sp. A higher growth rate of 0.2 doubling (μ) day−1 was attained at a lower photosynthetic photon flux density (PPFD; 11.4 μmol photon m−2s−1) compared to cultures exposed to higher levels of PPFD (16.1 μmol photon m−2s−1, −0.1 μ day −1; 31.3 μmol photon m−2s−1, 0.0 μ day−1). Cultures located inside the laboratory had a significantly higher cell density (133 × 104 cells cm−2) and growth rate (0.3 μ day−1) compared to those located outdoors (100 × 104 cells cm−2, 0.2 μ day−1). A comparison of nutrient medium across two locations showed that lipid content was significantly higher in cultures enriched with F/2MTM (macronutrients + trace metals) and F/2MV (macronutrients + vitamins). Saturated fatty acids were also present in high concentrations in cultures enriched with F/2M (macronutrients only). Significantly higher amounts of saturated fatty acids were observed in cultures located outdoors (33.1%) compared to those located indoors (26.6%). The protein, carbohydrates and n-6 fatty acid content of Amphora sp. were influenced by the location and enrichment of the cultures. This study has identified growth conditions for mass culture of Amphora sp. and determined biochemical composition under those culture conditions. Presented at the 6th Meeting of the Asian Pacific Society of Applied Phycology, Manila, Philippines.  相似文献   

9.
Summary The present study was undertaken to assess and compare the toxic effects of papaverine hydrochloride and its metabolites. Primary cell cultures of rat hepatocytes were treated with papavarine (papaver), 3′-O-desmethyl (3′-OH), 4′-O-desmethyl (4′-OH), and 6-O-desmethyl (6-OH) papaverine at 1×10−5, 1×10−4, and 1×10−3 M for 4,8, 12, and 24-h periods. Cell injury was determined by: a) cell viability using the trypan blue exclusion test; b) cytosolic enzyme leakage of lactate dehydrogenase and aspartate aminotransferase; c) morphologic alterations; and d) lactate: pyruvate (L:P) ratios. Cell cultures showed concentration-and time-dependent responses. For example, a decrease in cell viability and an increase in enzyme leakage were observed after cell treatment with 1×10−4 and 1×10−3 M papaver for 8 h; 1×10−3 M 6-OH papaverine for 8 h and 1×10−4 M for 24 h; and 1×10−3 M 4′-OH papaverine for 24 h (P<0.05). Furthermore, changes in morphology correlated to cell viability and enzyme release in those cultures treated with papaver, 4′-OH and 6-OH papaverine. Some of these changes included size deformation, cell detachment from the dishes, and cell necrosis. On the other hand, an increase in L:P ratios (P<0.05) was detected with papaver as early as 8 h with 1×10−4 and 1×10−3 M and 12 h with 1×10−5 M; 6-OH showed an increase, in L:P ratios at 8 h with 1×10−3 M and 12 h with 1×10−4 M; these changes were evident with 4′-OH at 12 h with 1×10−3 M. In contrast, cells treated with 3′-OH papaverine did not show significant damage with any time period and concentration used in this study. The results of this study indicate that papaverine-derived metabolites are less cytotoxic than its parent compound, papaver. The toxicity was ranked as follows: papaver>6-OH>4′-OH>−3′-OH. This work was supported in part by grant ES04200-02 from the National Institute of Environmental Health Sciences, Bethesda, MD. Presented in part at the fall ASPET meeting in Salt Lake City, August, 1989. Daniel Acosta is a Burroughs Wellcome Scholar in Toxicology.  相似文献   

10.
In this study, (S)-3-hydroxy-3-phenylpropionate was prepared continuously by coupling microbial transformation and membrane separation. The effect of several factors on membrane flux, reactor capacity, and reaction conversion were investigated. A kinetic model of the continuous reduction process was also developed. The appropriate molecular weight cut-off of the ultrafiltration membrane was 30 kDa. The reactor capacity reached a maximum of 0.136/h at a biomass concentration and membrane flux of 86 g/L (dry weight/reaction volume) and 20 mL/h, respectively. The (S)-3-hydroxy-3-phenylpropionate yield was 3.68 mmol/L/day after continuous reduction over seven days. The enantiometric excess of (S)-3-hydroxy-3-phenylpropionate reached above 99.5%. The kinetic constants of continuous reduction were as follows: r m = 3.00 × 10−3 mol/L/h, k cat = 3.49 × 10−4 mol/L/h, k 1 = 3.09 × 10−2 mol/L, and k 2 = 5.00 × 10−7 mol/L. The kinetic model was in good agreement with the experimental data obtained during continuous reduction. Compared with batch reduction, continuous reduction can significantly improve the catalytic efficiency of microbial cells and increase the reactor capacity.  相似文献   

11.
Summary Our aim was to examine whether lipopolysaccharide of Escherichia coli, polyamines of dietetic and/or bacterial origin, and products of the bacterial metabolism influence cell proliferation in epithelial cells from the colon and small intestine. Lipopolysaccharide of Escherichia coli 0111:B4 was incubated with cultures from human colonic mucosa. The mitoses were arrested with Vincristine and the total number of metaphases per crypt was counted. In addition, lipopolysaccharide was incubated with a human colonic epithelial cell line from adenocarcinoma (LS-123 cells) and with a nontransformed small intestinal cell line from germ-free rats (IEC-6 cells) for 24 h. In the last 4 h, the cells were labeled with tritiated thymidine. The cells were incubated with putrescine, cadaverine, and spermidine at 10−11–10−3 M and with acetic acid (10−5–10−1 M), acetaldehyde (10−10–10−4 M) and ammonium chloride (1–20 mM). Lipopolysaccharide of Escherichia coli increased the number of arrested metaphases in human colonic crypts and DNA synthesis in L-123 and IEC-6 cells (P<0.001). All polyamines increased DNA synthesis in the colonic and small intestinal cell lines, the effects being more marked for putrescine (P<0.001). The higher concentrations of acetic acid increased DNA synthesis in both epithelial cell lines (P<0.001). Acetaldehyde slightly decreased DNA synthesis in LS-123 cells at cytotoxic concentrations. Ammonium chloride did not significantly affect DNA synthesis. The final concentration of nonionized ammonia was less than 3%. It is concluded that lipopolysaccharides of Escherichia coli and intraluminal factors derived from microorganisms increase cell proliferation in human colonic crypts and intestinal epithelial cell lines.  相似文献   

12.
The efficiency of different FinnishFrankia strains as symbionts onAlnus incana (L.) Moench was evaluated in inoculation experiments by measuring nitrogen fixation and biomass production. Since all available pure cultures ofFrankia are of the Sp type (sporangia not formed in nodules), but the dominant nodule endophyte ofA. incana in Finland is of the Sp+ type (sporangia formed in nodules), crushed nodules of thisFrankia type were included. The Sp pure cultures, whether originating fromA. incana orA. glutinosa, produced with one exception, similar biomass withA. incana. The highest biomass was produced with an American reference strain fromA. viridis crispa. Using Sp+ nodule homogenates fromA. incana as inoculum, the biomass production was only one third of that produced by Sp pure cultures from the same host. Hence, through selection of the endophyte it is possible to exert a considerable influence on the productivity ofAlnus incana.  相似文献   

13.
Chlorophyll-a (chl-a) and carotenoid pigments of the zooxanthellate octocoral Sinularia flexibilis were analyzed using high performance liquid chromatography following exposure to three light intensities for over 30 days. From the coral fragments located at different light intensities, a total carotenoid of >41 μg g−1 dry weight, including peridinin, xanthophylls (likely diadinoxanthin + diatoxanthin), and chl-a as the most abundant pigments, with minor contents of astaxantin and β-carotene were detected. The whole content of chl-a weighed 5 μg g−1 dry weight in all coral colonies. Chl-a and carotenoids contributed 11.2% and 88.2%, respectively, to all pigments detected, and together accounted for 99.4% of the total pigments present. The highest contents of carotenoids and chl-a was observed in the coral grafts placed in an irradiance of 100 μmol quanta m−2 s−1; they showed lower ratios of total carotenoids: chl-a compared to those exposed to 400 μmol quanta m−2 s−1 after >30 days of incubation. The ratios of peridinin and xanthophylls with respect to chl-a from the colonies at 400 μmol quanta m−2 s−1 were approximately double those observed at irradiances of 100 and 200 μmol quanta m−2 s−1. Partial quantification of pigments in this study showed that the carotenoids of S. flexibilis showed a decrease at irradiances above 100 μmol quanta m−2 s−1, with the exception of an increase in β-carotene at 200 μmol quanta m−2 s−1.  相似文献   

14.
The efficiency of sheep is dependent on their health and well-being. The blood markers can be critical for improving of the physiological, nutritional and pathological status of sheep organism. The aim of this study was to test the hypotheses that the red and white blood cells and copper (Cu) and zinc (Zn) plasma contents are impacted by altitude and season. The ewes were kept at three farms. Blood samples were divided according to factors of altitude (550 m, 800 m, 950 m above sea level), season (spring, fall) and year. The lowest haemoglobin concentration and value of haematocrit were detected at the altitude of 550 m (66.95 g L−1, 0.36 L L−1) and the highest at the altitude of 950 m (117.96 g L−1, 0.39 L L−1) (P < 0.001). Spring values of haemoglobin and haematocrit were lower than fall values. The highest count of leucocytes was recorded at the altitude 950 m (9.57 G L−1), higher counts were contained in spring (P < 0.001). The lowest percentage of eosinophiles was found at the altitude of 800 m (5.81%) and the highest at the altitude of 550 m (9.26%) (P < 0.01). Phagocytose activities were the highest at the altitude of 950 m (95.07%) and the lowest at the altitude of 550 m (85.04%) (P < 0.001). Phagocytose activities were higher in fall than in spring. The highest Cu concentration was found at the altitude of 550 m and the lowest at the altitude of 800 m (17.04 μmol L−1 vs. 14.37 μmol L−1). Zn levels were higher at altitudes of 950 m and 800 m than at the altitude of 550 m (17.81 μmol L−1, 17.00 μmol L−1 vs. 14.77 μmol L−1). We concluded that hematological markers and trace mineral content in grazed sheep may be impacted by altitude and season.  相似文献   

15.
We assessed the effect of salinity on plant growth and leaf expansion rates, as well as the leaf life span and the dynamics of leaf production and mortality in seedlings of Avicennia germinans L. grown at 0, 170, 430, 680, and 940 mol m−3 NaCl. The relative growth rates (RGR) after 27 weeks reached a maximum (10.4 mg g−1 d−1) in 170 mol m−3 NaCl and decreased by 47 and 44% in plants grown at 680 and 940 mol m−3 NaCl. The relative leaf expansion rate (RLER) was maximal at 170 mol m−3 NaCl (120 cm m−2 d−1) and decreased by 57 and 52% in plants grown at 680 and 940 mol m−3 NaCl, respectively. In the same manner as RGR and RLER, the leaf production (P) and leaf death (D) decreased in 81 and 67% when salinity increased from 170 to 940 mol m−3 NaCl, respectively. Since the decrease in P with salinity was more pronounced than the decrease in D, the net accumulation of leaves per plant decreased with salinity. Additionally, an evident increase in annual mortality rates (λ) and death probability was observed with salinity. Leaf half-life (t 0.5) was 425 days in plants grown at 0 mol m−3 NaCl, and decreased to 75 days at 940 mol m−3 NaCl. Thus, increasing salinity caused an increase in mortality rate whereas production of new leaves and leaf longevity decreased and, finally, the leaf area was reduced.  相似文献   

16.
The bacteriostatic potency of the cerium-humic acid complex was evaluated by experimental measurement of this complex interaction with E. coli, Bacillus pyocyaneus, Staphylococcus aureus, Leuconostoc and Streptococcus faecalis, and by comparison bacteriostatic effects with the cerium-citrate complex. The experimental results indicated that the cerium-humic acid complex strongly inhibited growth of all five bacterial strains, and its diameter of bacteriostatic circles were more than 30 mm. The minimal bacteria-inhibiting concentration were 1×10−3, 2×10−3 and 1×10−2 mol/L for E. coli and Bacillus pyocyaneus, Staphylococcus aureus, and Leuconostoc and Streptococcus faecalis individually, and the measured minimal bactericidal concentrations were 2×10−3 and 1×10−2 mol/L for Bacillus pyocyaneus, E. coli, and Leuconostoc. To kill Staphylococcus aureus and Streptococcus faecalis, the concentration had to be more than 1×10−2 mol/L. On the contrary, we found that cerium-citrate complex did not inhibit the growth of the above five bacteria, but stimulated bacterial growth. The completely different bacteriostatic results of two cerium complexes may hint that the association and chemical properties of the two complexes were different.  相似文献   

17.
The plants of mung bean (Vigna radiata L. Wilczek) were raised from the seeds soaked in water (control), IAA or 4-C-IAA (10−6, 10−8 or 10−10 M) for 8 or 12 h. The plants were allowed to grow in a net house and were sampled at 30 and 45 days after sowing (DAS). Both IAA and 4-Cl-IAA significantly affected the growth (length, fresh and dry mass of roots and shoots), the number of nodules, their fresh and dry mass and the activity of nitrogenase. However, the contents of nitrogen and carbohydrate exhibited a decrease in response to both the auxins. 4-Cl-IAA, at a concentration of 10−8 M, generated the best response. Moreover, 4-Cl-IAA at other two concentrations (10−6 and 10−10 M) was much more active than any of the IAA concentration used.  相似文献   

18.
Liquid cultures were successfully generated from cotyledons of two Sonneratia species, S. alba and S. caseolaris in Murashige and Skoog (MS) medium containing 0.1 μmol L−1 2,4-dichlorophenoxyacetic acid (2,4-D). Adventitious roots differentiated from cotyledons of S. alba. Proliferated cells were subcultured and a large volume of suspension cells was subsequently established in 100-mL flasks. All the cytokinins tested inhibited cell proliferation. After three years of culture, the potential to differentiate was tested as indicated by greening of the cells. Greening occurred when suspension cells were transferred to solid MS medium with and without 0.1 μmol L−1 2,4-D. Greening was stimulated by low concentrations of the weak auxins indolebutyric acid (IBA) and naphthaleneacetic acid (NAA) while 2,4-D stimulated late-stage greening. Abscisic acid (ABA) inhibited greening. Gibberellic acid (GA3) at 1.0 μmol L−1 stimulated callus greening and was not inhibitory even when tested at high concentrations. Cytokinins were inhibitory in combination with 0.1 μmol L−1 of either IBA or NAA. The cause of different effects of plant hormones on growth and differentiation was discussed. Small-scale liquid media and 24-well culture plates of solid media methods developed in this paper are suitable for the optimization of hormonal conditions for cell proliferation and differentiation.  相似文献   

19.
Metabolic hotspots at land–water interfaces are important in supporting biogeochemical processes. Here we confirm the generality of land–aquatic interfaces as biogeochemical hot spots by extending this concept to marine beach cast materials. In situ atmospheric pCO2, from a respiration chamber (10 cm in diameter and 20 cm high) inserted into wrack deposits, was determined using a high-precision (±1 ppm) non-dispersive infrared gas analyzer (EGM-4, PP-systems) at 1 minute recording intervals. The wrack deposits supported high metabolic activities, with CO2 fluxes averaging (±SE) 6.62 ± 0.88 μmol C m−2 s−1, compared to median value of 0.98 μmol C m−2 s−1 (mean 2.21 ± 1.25 μmol C m−2 s−1) for bare sand adjacent to deposits. Wrack metabolic rates ranged 40-fold across beaches, from a minimum of 0.57 ± 0.22 μmol C m−2 s−1 to a maximum of 20.8 ± 5.04 μmol C m−2 s−1, both derived from beaches with deposits dominated by Sargassum. Rates tended to increase significantly (F test, P < 0.05) from the shoreline to reach maximum rates at about 10 m from the shoreline, declining sharply further from the shoreline, and increased with increasing thickness of the deposits (maximum about 10 cm deep), declining for thicker deposits. Wrack differing in composition had similar metabolic rates, although deposits consisting of a mixture of seagrass and algae tended to show somewhat higher rates. Our results show a meter square of wrack deposit supports a metabolic rate equivalent to that supported by 3 m2 of living seagrass or macroalgal habitat. In wrack, the marine environment provides organic material and moisture and the land environment provides oxygen to render wrack ecosystems an efficient metabolic reactor. Intense wrack metabolism should also be conducive to organismal growth by supporting the development of a cryptic, but diverse wrack-based food web.  相似文献   

20.
The chronic effect (duration of exposure 218 days) of polychlorinated biphenyls (PCBs) and the prolonged effect of the short-term action of chlorophos or of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) during embryogenesis upon the sensitivity of intestinal glycosidases to Cu and Zn was studied in roach (Rutilus rutilus (L.) underyearlings. The Cu+2 and Zn+2 ions at concentrations ranging from 0.1 to 25 mg/L in vitro cause a 10–77% decrease in amylolytic activity in the intestinal mucosa of control roach. An elevated level of PCBs (50.8 ng/g wet weight of food and 426 ng/g dry weight of ground) increased the sensitivity of glycosidases to Cu and Zn. The embryotoxic action of chlorophos at concentrations of 1 × 10−6−1 × 10−2 mg/L in most cases increased the inhibitory effect of Cu but decreased that of Zn. As a rule, MNNG (3 × 10−7−3 × 10−1 mg/L) reduced the glycosidase sensitivity to the effect of metal ions. The magnitude and direction of the effect depend on the nature and concentration of toxicants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号