首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic strategies that reduce or block pathogen transmission by mosquitoes are being investigated as a means to augment current control measures. Strategies of vector suppression and replacement are based upon intracellular Wolbachia bacteria, which occur naturally in many insect populations. Maternally inherited Wolbachia have evolved diverse mechanisms to manipulate host insect reproduction and promote infection invasion. One mechanism is cytoplasmic incompatibility (CI) through which Wolbachia promotes infection spread by effectively sterilizing uninfected females. In a prior field test, releases of Wolbachia-infected males were used to suppress a field population of Culex pipiens. An additional strategy would employ Wolbachia as a vehicle to drive desired transgenes into vector populations (population replacement). Wolbachia-based population suppression and population replacement strategies require an ability to generate artificial Wolbachia associations in mosquitoes. Here, we demonstrate a technique for transferring Wolbachia (transfection) in a medically important mosquito species: Aedes albopictus (Asian tiger mosquito). Microinjection was used to transfer embryo cytoplasm from a double-infected Ae. albopictus line into an aposymbiotic line. The resulting mosquito line is single-infected with the wAlbB Wolbachia type. The artificially generated infection type is not known to occur naturally and displays a new CI crossing type and the first known example of bidirectional CI in Aedes mosquitoes. We discuss the results in relation to applied mosquito control strategies and the evolution of Wolbachia infections in Ae. albopictus.  相似文献   

2.
Wolbachia is an inherited intracellular bacterium found in many insects of medical and economic importance. The ability of many strains to spread through populations using cytoplasmic incompatibility, involving sperm modification and rescue, provides a powerful mechanism for driving beneficial transgenes through insect populations, if such transgenes could be inserted into and expressed by Wolbachia. However, manipulating Wolbachia in this way has not yet been achieved. Here, we demonstrate theoretically an alternative mechanism whereby nuclear rather than cytoplasmic transgenes could be driven through populations, by linkage to a nuclear gene able to rescue modified sperm. The spread of a 'nuclear rescue construct' occurs as long as the Wolbachia show imperfect maternal transmission under natural conditions and/or imperfect rescue of modified sperm. The mechanism is most efficient when the target population is already infected with Wolbachia at high frequency, whether naturally or by the sequential release of Wolbachia-infected individuals and subsequently the nuclear rescue construct. The results provide a potentially powerful addition to the few insect transgene drive mechanisms that are available.  相似文献   

3.
Wolbachia are maternally inherited bacteria that commonly spread through host populations by causing cytoplasmic incompatibility, often expressed as reduced egg hatch when uninfected females mate with infected males. Infected females are frequently less fecund as a consequence of Wolbachia infection. However, theory predicts that because of maternal transmission, these "parasites" will tend to evolve towards a more mutualistic association with their hosts. Drosophila simulans in California provided the classic case of a Wolbachia infection spreading in nature. Cytoplasmic incompatibility allowed the infection to spread through individual populations within a few years and from southern to northern California (more than 700 km) within a decade, despite reducing the fecundity of infected females by 15%-20% under laboratory conditions. Here we show that the Wolbachia in California D. simulans have changed over the last 20 y so that infected females now exhibit an average 10% fecundity advantage over uninfected females in the laboratory. Our data suggest smaller but qualitatively similar changes in relative fecundity in nature and demonstrate that fecundity-increasing Wolbachia variants are currently polymorphic in natural populations.  相似文献   

4.
Maternally inherited rickettsial symbionts of the genus Wolbachia occur commonly in arthropods, often behaving as reproductive parasites by manipulating host reproduction to enhance the vertical transmission of infections. One manipulation is cytoplasmic incompatibility (CI), which causes a significant reduction in brood hatch and promotes the spread of the maternally inherited Wolbachia infection into the host population (i.e., cytoplasmic drive). Here, we have examined a Wolbachia superinfection in the mosquito Aedes albopictus and found the infection to be associated with both cytoplasmic incompatibility and increased host fecundity. Relative to uninfected females, infected females live longer, produce more eggs, and have higher hatching rates in compatible crosses. A model describing Wolbachia infection dynamics predicts that increased fecundity will accelerate cytoplasmic drive rates. To test this hypothesis, we used population cages to examine the rate at which Wolbachia invades an uninfected Ae. albopictus population. The observed cytoplasmic drive rates were consistent with model predictions for a CI-inducing Wolbachia infection that increases host fecundity. We discuss the relevance of these results to both the evolution of Wolbachia symbioses and proposed applied strategies for the use of Wolbachia infections to drive desired transgenes through natural populations (i.e., population replacement strategies).  相似文献   

5.
Certain strains of the endosymbiont Wolbachia have the potential to lower the vectorial capacity of mosquito populations and assist in controlling a number of mosquito-borne diseases. An important consideration when introducing Wolbachia-carrying mosquitoes into natural populations is the minimisation of any transient increase in disease risk or biting nuisance. This may be achieved by predominantly releasing male mosquitoes. To explore this, we use a sex-structured model of Wolbachia-mosquito interactions. We first show that Wolbachia spread can be initiated with very few infected females provided the infection frequency in males exceeds a threshold. We then consider realistic introduction scenarios involving the release of batches of infected mosquitoes, incorporating seasonal fluctuations in population size. For a range of assumptions about mosquito population dynamics we find that male-biased releases allow the infection to spread after the introduction of low numbers of females, many fewer than with equal sex-ratio releases. We extend the model to estimate the transmission rate of a mosquito-borne pathogen over the course of Wolbachia establishment. For a range of release strategies we demonstrate that male-biased release of Wolbachia-infected mosquitoes can cause substantial transmission reductions without transiently increasing disease risk. The results show the importance of including mosquito population dynamics in studying Wolbachia spread and that male-biased releases can be an effective and safe way of rapidly establishing the symbiont in mosquito populations.  相似文献   

6.
M. Turelli  A. A. Hoffmann 《Genetics》1995,140(4):1319-1338
In Drosophila simulans, cytoplasmically transmitted Wolbachia microbes cause reduced egg hatch when infected males mate with uninfected females. A Wolbachia infection and an associated mtDNA variant have spread northward through California since 1986. PCR assays show that Wolbachia infection is prevalent throughout the continental US and Central and South America, but some lines from Florida and Ecuador that are PCR-positive for Wolbachia do not cause incompatibility. We estimate from natural populations infection frequencies and the transmission and incompatibility parameter values that affect the spread of the infection. On average, infected females from nature produce 3-4% uninfected ova. Infected females with relatively low fidelity of maternal transmission show partial incompatibility with very young infected laboratory males. Nevertheless, crosses between infected flies in nature produce egg-hatch rates indistinguishable from those produced by crosses between uninfected individuals. Incompatible crosses in nature produce hatch rates 30-70% as high as those from compatible crosses. Wild-caught infected and uninfected females are equally fecund in the laboratory. Incompatibility decreases with male age, and age-specific incompatibility levels suggest that males mating in nature may often be 2 or 3 weeks old. Our parameter estimates accurately predict the frequency of Wolbachia infection in California populations.  相似文献   

7.
A virulent strain of Wolbachia has recently been identified in Drosophila that drastically reduces adult lifespan. It has been proposed that this phenotype might be introduced into insect disease vector populations to reduce pathogen transmission. Here we model the requirements for spread of such an agent and the associated reduction in disease transmission. First, a simulation of mosquito population age structure was used to describe the age distribution of mosquitoes transmitting dengue virus. Second, given varying levels of cytoplasmic incompatibility and fecundity effect, the maximum possible longevity reduction that would allow Wolbachia to invade was obtained. Finally, the two models were combined to estimate the reduction in disease transmission according to different introduction frequencies. With strong CI and limited effect of fecundity, an introduction of Wolbachia with an initial frequency of 0.4 could result in a 60-80% reduction of transmitting mosquitoes. Greater reductions are possible at higher initial release rates.  相似文献   

8.
Wolbachia are obligate, maternally inherited, intracellular bacteria that infect numerous insects and other invertebrates. Wolbachia infections have evolved multiple mechanisms to manipulate host reproduction and facilitate invasion of naive host populations. One such mechanism is cytoplasmic incompatibility (CI) that occurs in many insect species, including Aedes albopictus (Asian tiger mosquito). The multiple Wolbachia infections that occur naturally in A. albopictus make this mosquito a useful system in which to study CI. Here, experiments employ mosquito strains that have been introgressed to provide genetically similar strains that harbor differing Wolbachia infection types. Cytoplasmic incompatibility levels, host longevity, egg hatch rates, and fecundity are examined. Crossing results demonstrate a pattern of additive unidirectional cytoplasmic incompatibility. Furthermore, relative to uninfected females, infected females are at a reproductive advantage due to both cytoplasmic incompatibility and a fitness increase associated with Wolbachia infection. In contrast, no fitness difference was observed in comparisons of single- and superinfected females. We discuss the observed results in regard to the evolution of the Wolbachia/A. albopictus symbiosis and the observed pattern of Wolbachia infection in natural populations.  相似文献   

9.
John Jaenike 《Oikos》2009,118(3):353-362
Many insect species are infected with maternally transmitted endosymbionts, the most widely documented being Wolbachia . The rate of spread and equilibrium of prevalence of these infections depend on two parameters – maternal transmission fidelity and relative fitness of infected cytoplasmic lineages. Both transmission fidelity and the phenotypic effect of endosymbionts often increase with endosymbiont density within hosts. Thus, the dynamics of infection prevalence in host populations depends on processes affecting within-host density of endosymbionts. In theory, the equilibrium prevalence of infection by male-killing endosymbionts is much more sensitive to changes in transmission fidelity and relative fitness than is that of endosymbionts that cause cytoplasmic incompatibility. In natural populations, male-killers exhibit much greater temporal and spatial variation in the prevalence of infection than do endosymbionts that cause cytoplasmic incompatibility. Thus, the population dynamics of endosymbiont infections, especially those that cause male-killing, is likely to be governed by environmental and genetic variables that affect within-host density of these infections.  相似文献   

10.
The maternally inherited bacterium, Wolbachia pipientis, manipulates host reproduction by rendering uninfected females reproductively incompatible with infected males (cytoplasmic incompatibility, CI). Hosts may evolve mechanisms, such as mate preferences, to avoid fitness costs of Wolbachia infection. Despite the potential importance of mate choice for Wolbachia population dynamics, this possibility remains largely unexplored. Here we model the spread of an allele encoding female mate preference for uninfected males alongside the spread of CI inducing Wolbachia. Mate preferences can evolve but the spread of the preference allele depends on factors associated with both Wolbachia infection and the preference allele itself. Incomplete maternal transmission of Wolbachia, fitness costs and low CI, improve the spread of the preference allele and impact on the population dynamics of Wolbachia. In addition, mate preferences are found in infected individuals. These results have important consequences for the fate of Wolbachia and studies addressing mate preferences in infected populations.  相似文献   

11.
Female Aedes albopictus mosquitoes from natural populations of different geographical regions of Thailand were collected and allowed to oviposit to determine relative Wolbachia A and Wolbachia B densities of their offspring (F1) by using real-time quantitative PCR (RTQ-PCR). An important aspect of this work is that all Aedes albopictus mosquitoes were collected from the field. Twenty-seven offspring were from diverse areas of Thailand (Songkhla, Konkaen, Chantaburi, and Kanchanaburi). The range of relative Wolbachia A density in F, mosquitoes was from 0.007 to 1250.78 (bacteria-to-host ratio), whereas relative Wolbachia B densities ranged from 0 to 348.2 (bacteria-to-host ratio). These data are in contrast to those from a previous study that showed a very low amount (less than 0.10) of both relative Wolbachia density types for laboratory strains. The percent transmission of Wolbachia density from mother to each individual offspring cannot be predicted and was not related to the sex of the F1. Obtaining confirmation for variations and unpredictable Wolbachia transmission load raises some concerns about using Wolbachia as a gene-driving system in nature for population replacement if Wolbachia density is involved in cytoplasmic incompatibility in this mosquito.  相似文献   

12.
Wolbachia symbionts hold theoretical promise as a way to drive transgenes into insect vector populations for disease prevention. For simplicity, current models of Wolbachia dynamics and spread ignore ecologically complex factors such as the age structure of vector populations and overlapping vector generations. We developed a model including these factors to assess their impact on the process of Wolbachia spread into populations of three mosquito species (Anopheles gambiae, Aedes aegypti and Culex pipiens). Depending on the mosquito species, Wolbachia parameters, released mosquito life stage and initial age structure of the target population, the number of Wolbachia-infected mosquitoes that we predict would need to be released ranged from less than the threshold calculated by the simple model to a 10-30-fold increase. Transgenic releases into age-structured populations, which is an expectation for wild mosquitoes, will be difficult and depending on the circumstances may not be economically or logistically feasible due to the large number of infected mosquitoes that must be released. Our results support the perspective that understanding ecological factors is critical for designing transgenic vector-borne disease control strategies.  相似文献   

13.
Wolbachia are very common, maternally transmitted endosymbionts of insects. They often spread by a mechanism termed cytoplasmic incompatibility (CI) that involves reduced egg hatch when Wolbachia-free ova are fertilized by sperm from Wolbachia-infected males. Because the progeny of Wolbachia-infected females generally do not suffer CI-induced mortality, infected females are often at a reproductive advantage in polymorphic populations. Deterministic models show that Wolbachia that impose no costs on their hosts and have perfect maternal transmission will spread from arbitrarily low frequencies (though initially very slowly); otherwise, there will be a threshold frequency below which Wolbachia frequencies decline to extinction and above which they increase to fixation or a high stable equilibrium. Stochastic theory was used to calculate the probability of fixation in populations of different size for arbitrary current frequencies of Wolbachia, with special attention paid to the case of spread after the arrival of a single infected female. Exact results are given based on a Moran process that assumes a specific demographic model, and approximate results are obtained using the more general Wright-Fisher theory. A new analytical approximation for the probability of fixation is derived, which performs well for small population sizes. The significance of stochastic effects in the natural spread of Wolbachia and their relevance to the use of Wolbachia as a drive mechanism in vector and pest management are discussed.  相似文献   

14.
Malaria is a mosquito-borne infectious disease caused by Plasmodium parasites transmitted by the infectious bite of Anopheles mosquitoes. Vector control of malaria has predominantly focused on targeting the adult mosquito through insecticides and bed nets. However, current vector control methods are often not sustainable for long periods so alternative methods are needed. A novel biocontrol approach for mosquito-borne diseases has recently been proposed, it uses maternally inherited endosymbiotic Wolbachia bacteria transinfected into mosquitoes in order to interfere with pathogen transmission. Transinfected Wolbachia strains in Aedes aegypti mosquitoes, the primary vector of dengue fever, directly inhibit pathogen replication, including Plasmodium gallinaceum, and also affect mosquito reproduction to allow Wolbachia to spread through mosquito populations. In addition, transient Wolbachia infections in Anopheles gambiae significantly reduce Plasmodium levels. Here we review the prospects of using a Wolbachia-based approach to reduce human malaria transmission through transinfection of Anopheles mosquitoes.  相似文献   

15.
Wolbachia are maternally inherited endosymbionts that can invade arthropod populations through manipulation of their reproduction. In mosquitoes, Wolbachia induce embryonic death, known as cytoplasmic incompatibility (CI), whenever infected males mate with females either uninfected or infected with an incompatible strain. Although genetic determinants of CI are unknown, a functional model involving the so-called mod and resc factors has been proposed. Natural populations of Culex pipiens mosquito display a complex CI relationship pattern associated with the highest Wolbachia (wPip) genetic polymorphism reported so far. We show here that C. pipiens populations from La Réunion, a geographically isolated island in the southwest of the Indian Ocean, are infected with genetically closely related wPip strains. Crossing experiments reveal that these Wolbachia are all mutually compatible. However, crosses with genetically more distant wPip strains indicate that Wolbachia strains from La Réunion belong to at least five distinct incompatibility groups (or crossing types). These incompatibility properties which are strictly independent from the nuclear background, formally establish that in C. pipiens, CI is controlled by several Wolbachia mod/resc factors.  相似文献   

16.
Forty percent of the world's population is at risk of contracting dengue virus, which produces dengue fever with a potentially fatal hemorrhagic form. The wMelPop Wolbachia infection of Drosophila melanogaster reduces life span and interferes with viral transmission when introduced into the mosquito Aedes aegypti, the primary vector of dengue virus. Wolbachia has been proposed as an agent for preventing transmission of dengue virus. Population invasion by Wolbachia depends on levels of cytoplasmic incompatibility, fitness effects, and maternal transmission. Here we characterized these traits in an outbred genetic background of a potential target population of Ae. aegypti using two crossing schemes. Cytoplasmic incompatibility was strong in this background, and the maternal transmission rate of Wolbachia was high. The infection substantially reduced longevity of infected adult females, regardless of whether adults came from larvae cultured under high or low levels of nutrition or density. The infection reduced the viability of diapausing and nondiapausing eggs. Viability was particularly low when eggs were laid by older females and when diapausing eggs had been stored for a few weeks. The infection affected mosquito larval development time and adult body size under different larval nutrition levels and densities. The results were used to assess the potential for wMelPop-CLA to invade natural populations of Ae. aegypti and to develop recommendations for the maintenance of fitness in infected mosquitoes that need to compete against field insects.  相似文献   

17.
Obligate, intracellular bacteria of the genus Wolbachia often behave as reproductive parasites by manipulating host reproduction to enhance their vertical transmission. One of these reproductive manipulations, cytoplasmic incompatibility, causes a reduction in egg-hatch rate in crosses between individuals with differing infections. Applied strategies based upon cytoplasmic incompatibility have been proposed for both the suppression and replacement of host populations. As Wolbachia infections occur within a broad range of invertebrates, these strategies are potentially applicable to a variety of medically and economically important insects. Here, we examine the interaction between Wolbachia infection frequency and host population size. We use a model to describe natural invasions of Wolbachia infections, artificial releases of infected hosts and releases of sterile males, as part of a traditional sterile insect technique programme. Model simulations demonstrate the importance of understanding the reproductive rate and intraspecific competition type of the targeted population, showing that releases of sterile or incompatible individuals may cause an undesired increase in the adult number. In addition, the model suggests a novel applied strategy that employs Wolbachia infections to suppress host populations. Releases of Wolbachia-infected hosts can be used to sustain artificially an unstable coexistence of multiple incompatible infections within a host population, allowing the host population size to be reduced, maintained at low levels, or eliminated.  相似文献   

18.
Wolbachia are obligatory intracellular and maternally inherited bacteria that infect and spread through natural arthropod populations by inducing male-killing, feminization, parthenogenesis, and, most commonly, unidirectional and bidirectional cytoplasmic incompatibility (CI). Cytoplasmic incompatibility can be used to control natural populations of insect pests, in a way analogous to the Sterile Insect Technique (SIT), namely through the Incompatible Insect Technique (IIT). For the successful application of the IIT (based on a unidirectional CI approach) against a target species, it is essential that only males are released, as the release of females would lead to fertile matings between the released males and the released females and the establishment of a Wolbachia -carrying field population. In the present study, we describe a Wolbachia -infected line of the VIENNA 8 genetic sexing strain of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), that carries the selectable marker temperature sensitive lethal ( tsl ). We show that (1) transferred Wolbachia induce high levels of CI even after the temperature treatment required for the male-only production, and (2) the Wolbachia -infected genetic sexing C. capitata line can be used in cage population suppression experiments analogous to the SIT. We also discuss our results in a comparison between IIT and SIT, investigating whether irradiation and cytoplasmic factors can be combined toward the development of novel strategies for insect pest control.  相似文献   

19.
Due to cytoplasmic inheritance, spread of maternally inherited Wolbachia symbionts can result in reduction of mitochondrial variation in populations. We examined sequence diversity of the mitochondrial NADH dehydrogenase subunit 4 (ND4) gene in Wolbachia-infected (South Africa (SA), California and Thailand) and uninfected (SA) Culex pipiens complex populations. In total, we identified 12 haplotypes (A-L). In infected populations, 99% of individuals had haplotype K. In the uninfected SA population, 11 haplotypes were present, including K. Nuclear allozyme diversity was similar between infected and uninfected SA populations. Analysis of nuclear DNA sequences suggested that haplotype K presence in uninfected SA Cx. pipiens was probably due to a shared ancestral polymorphism rather than hybrid introgression. These data indicate that Wolbachia spread has resulted in drastic reduction of mitochondrial variability in widely separated Cx. pipiens complex populations. In contrast, the uninfected SA population is probably a cryptic species where Wolbachia introgression has been prevented by reproductive isolation, maintaining ancestral levels of mitochondrial diversity. Molecular clock analyses suggest that the Wolbachia sweep occurred within the last 47000 years. The effect of Wolbachia on mitochondrial dynamics can provide insight on the potential for Wolbachia to spread transgenes into mosquito populations to control vector-borne diseases.  相似文献   

20.
Duron O  Raymond M  Weill M 《Heredity》2011,106(6):986-993
Maternally inherited Wolbachia often manipulate the reproduction of arthropods to promote their transmission. In most species, Wolbachia exert a form of conditional sterility termed cytoplasmic incompatibility (CI), characterized by the death of embryos produced by the mating between individuals with incompatible Wolbachia infections. From a theoretical perspective, no stable coexistence of incompatible Wolbachia infections is expected within host populations and CI should induce the invasion of one strain or of a set of compatible strains. In this study, we investigated this prediction on CI dynamics in natural populations of the common house mosquito Culex pipiens. We surveyed the Wolbachia diversity and the expression of CI in breeding sites of the south of France between 1990 and 2005. We found that geographically close C. pipiens populations harbor considerable Wolbachia diversity, which is stably maintained over 15 years. We also observed a very low frequency of infertile clutches within each sampled site. Meanwhile, mating choice experiments conducted in laboratory conditions showed that assortative mating does not occur. Overall, this suggests that a large set of compatible Wolbachia strains are always locally dominant within mosquito populations thus, fitting with the theoretical expectations on CI dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号