首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
北极太平洋扇区海洋沉积物细菌多样性的系统发育分析   总被引:10,自引:1,他引:9  
对北极太平洋扇区3个不同深度的海洋沉积物样品,采用PCR结合变性梯度凝胶电泳(DGGE)技术进行细菌16S rRNA基因V3区序列的系统发育分析。结果表明,同一个沉积物样品不同层次的DGGE电泳图谱不完全相同。从3个沉积物样品中共获得50条序列,大部分序列与从海洋环境尤其海洋沉积物获得的细菌16S rDNA序列相似性较高(88%~100%),归属于变形细菌(Proteobacteria)的gamma亚群、alpha亚群、beta亚群、epsilon亚群、delta亚群,Cytophaga_Flavobacterium_Bacteroides(CFB)群细菌和高G C含量的革兰氏阳性细菌等系统分类群,其中变形细菌(Proteobacteria)的gamma亚群为沉积物中的优势细菌类群。  相似文献   

2.
双台子河口沉积物中细菌多样性分析   总被引:5,自引:0,他引:5  
【目的】掌握双台子河口沉积物中细菌多样性及其群落结构的季节变化特征。【方法】于2009年4月、7月、10月和12月共4个航次在内陆河流入海口处进行四季样品的采集, 采用PCR-DGGE技术对沉积物中细菌多样性进行分析。【结果】通过序列比对发现, 该处沉积物中的细菌主要归属于5个细菌类群, 分别为变形菌门(52.6%)、放线菌门(15.8%)、拟杆菌门(10.5%)、酸杆菌门(5.3%)以及绿弯菌门(5.3%), 此外还有一部分分类地位尚不明确的细菌(10.5%)。在四季样品中变形菌门(52.6%)为优势菌群, 而在变形菌门中, δ亚群又占绝对优势地位。实验结果还显示四季沉积物中细菌Shannon-Wiener多样性指数范围为1.84?2.79, 且春夏两季沉积物中的Shannon-Wiener多样性指数比秋冬两季沉积物中Shannon-Wiener多样性指数大。【结论】双台子河口沉积物中的细菌多样性符合典型河口沉积物中细菌多样性的特征; 低温能导致沉积物中细菌多样性的减少。本研究为初步掌握双台子河口沉积物中细菌种类和组成状况提供了一定的参考, 同时也为该处海洋环境的监测及生物资源的保护提供了科学依据。  相似文献   

3.
深海热液口Epsilon-变形菌的物种多样性与环境适应机理   总被引:1,自引:0,他引:1  
臧扬  高贝乐 《微生物学报》2017,57(9):1392-1399
Epsilon-变形菌是近年来宏基因组调查发现的深海极端环境如热液喷口富集的重要微生物类群,在海洋碳、氮、氢、硫循环中发挥重要作用。目前对这个纲的研究较少,主要来自于16S rRNA的分类鉴定以及深度测序拼接的基因组序列分析。本文总结了目前对Epsilon-变形菌纲的生态分布及多样性调查研究结果,并对深海热液喷口的Epsilon-变形菌的多种能量代谢方式、强大的趋化运动系统以及与底栖生物的共生关系进行了阐述。这些结果初步揭示了Epsilon-变形菌对深海极端环境的适应机制,并推动对这个极端环境富集的细菌分支的生物学特征认知与资源利用。  相似文献   

4.
中国南海沉积环境可培养细菌多样性研究   总被引:3,自引:0,他引:3  
【目的】探索海洋沉积环境中可培养细菌的多样性。【方法】采用纯培养分离及16S rRNA基因序列鉴定的方法,对我国南海海域20个沉积物样品进行细菌多样性分析。【结果】共获得200株细菌,分属于47个属,99个种。经系统进化分析,可培养菌株主要分布于4个类群:厚壁菌门(Firmicutes)、变形菌门(Proteobacteria)、放线菌门(Actinobacteria)和拟杆菌门(Bacteroidetes),优势类群为Firmicutes,其中芽孢杆菌属(Bacillus)所占比例为55.6%;而Actinobacteria和Bacteroidetes两个类群获得菌株较少;在Firmicutes和Actinobacteria两个类群中发现8个潜在新种和3个潜在新属级类群。【结论】初步研究结果表明,南海海洋沉积环境可培养微生物资源丰富,新物种资源多样;其中,芽孢杆菌为海洋沉积环境中的优势类群,随着样品深度的增加,细菌多样性呈现递减的趋势,深度可能是影响细菌多样性的一个重要因素;其次,分离培养基和分离方法直接关系到样品中可培养微生物多样性的发现,有待深入研究。  相似文献   

5.
研究采用析因实验设计,探讨了光照和培养温度对深海热液喷口周围可培养微生物生长繁殖的影响。样品培养10天后,对培养液中细菌量进行显微计数,实验数据用SPSS11.0统计软件中的方差分析程序进行处理。统计结果显示:在标准大气压下,在33℃、50℃和65℃三个实验温度中,当温度为33℃时,光照培养液中细菌浓度约为暗培养液中的3.5倍;而在50℃和65℃的培养液中其细菌浓度均比暗培养液中的要低。研究结果为进一步获取、认识与开发利用深海喷口周围细菌资源打下了基础。  相似文献   

6.
正深海热液区(水深700~5 000m)常出现于地壳板块交界的洋中脊、俯冲带、弧后盆地和热点火山。目前世界范围内已发现600多个深海热液区。1977年,美国"阿尔文"号载人深潜器首次在东太平洋海隆深海海底发现了热液喷口(hydrothermal vent),意外地发现热液口周围栖息着管状蠕虫等独特物种,且生物密度极高~([1])。  相似文献   

7.
为了认识南海深海冷泉区沉积物中可培养微生物的多样性,本文以冷泉区与非冷泉区两个站点的深海沉积物为样品,通过两种培养基(R2A海水培养基和2216E培养基)直接涂布或富集后平板分离纯化,从9个样品中共得到395株菌株,并通过16SrRNA基因鉴定,分属10个属。发现产芽胞细菌分布最广、丰度最大,包括3个属、15个种。其中芽胞杆菌(Bacillus)无论是在数量还是在种类上都分布最多。并且,随着水深和沉积物深度的增加,分离到的可培养微生物丰富度降低。本研究表明,即使在冷泉区,南海深海沉积物中产芽胞细菌也比较丰富。  相似文献   

8.
海洋沉积环境蕴含丰富的微生物资源。对深海难培养微生物的分离培养,不仅有利于深海微生物资源的挖掘与利用,也有利于对深海微生物学的研究。本研究采用多种培养基分离获得细菌菌株纯培养,并通过16S r RNA基因序列鉴定,对我国南海海域1个4 000 m水深的深海表层沉积物样品的可培养细菌多样性进行初探。共设计23种分离培养基,经过选择性分离培养最终获得612株细菌菌株,分别隶属于厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)和拟杆菌门(Bacteroidetes)的9目10科27个属级类群,可培养优势类群为厚壁菌门,占所有分离物种数量的85.8%,包含13个16S rRNA基因序列相似性低于98%的潜在新物种。海洋琼脂类培养基适合培养不同种类的海洋细菌类群,放线菌选择性分离类合成培养基对放线菌类群的分离效果较好。最终获得一些与具有产抗生素、细胞毒素、高效酶活、耐受不良环境、降解污染物等特殊功能微生物相近的菌株。研究结果表明,该深海沉积物样品的可培养微生物资源、潜在新物种和微生物生理特性丰富多样,研究深海环境难培养微生物的分离策略及其微生物适应生理特性对研究极端环境微生物打下了基础。  相似文献   

9.
弗兰克氏菌(Frankia)因其独特高效的固氮效率而备受关注,然而目前的研究还局限于陆地生境。基于nifH基因采用高通量测序对高隆湾红树林及其近岸海域沉积物的Frankia多样性进行分析,共获得261条属于Frankia的nifH序列,共11个OTUs,序列主要分布在红树林区样品,其中以角果木和红海榄为优势树种的红树林样品中序列较多,在潮间带样品中也有少量分布,海草区样品未检测到,序列在不同生境中的分布存在较大差异。OTU818在10个站位都有分布,说明OTU818代表的Frankia类群分布比较广泛,且为红树林沉积物的优势类群。系统进化分析表明Frankia与NCBI数据库中的Frankia基因序列在系统发育树上形成不同分支。通过Network分析Frankia与其他细菌类群的共发生关系,发现Frankia与来自Verrucomicrobia、Proteobacteria、Firmicutes、Cyanobacteria的多种固氮细菌类群存在紧密联系,表明Frankia在稳定红树林固氮细菌群落结构中起着重要作用。利用典范对应分析(canonical correspondence an...  相似文献   

10.
研究采用析因实验设计,探讨了光照和培养温度对深海热液喷口周围可培养微生物生长繁殖的影响。样品培养10天后。对培养液中蛔菌量进行显微计数,实验数据用SFSS11.0统计软件中的方差分析程序进行处理。统计结果显示:在标准大气压下,在33℃、50℃和65℃三个实验温度中,当温度为33℃时,光照培养液中细茼浓度约为暗培养液中的3.5倍;而在50℃和65℃的培养液中其细菌浓度均比暗培养液中的要低。研究结果为进一步荻取、认识与开发利用深海喷口周围细菌贵源打下了基础。  相似文献   

11.
The composition of a metabolically active prokaryotic community thriving in hydrothermal mud fluids of the deep-sea hypersaline anoxic Western Urania Basin was characterized using rRNA-based phylogenetic analysis of a clone library. The physiologically active prokaryotic assemblage in this extreme environment showed a great genetic diversity. Most members of the microbial community appeared to be affiliated to yet uncultured organisms from similar ecosystems, i.e., deep-sea hypersaline basins and hydrothermal vents. The bacterial clone library was dominated by phylotypes affiliated with the epsilon-Proteobacteria subdivision recognized as an ecologically significant group of bacteria inhabiting deep-sea hydrothermal environments. Almost 18% of all bacterial clones were related to delta-Proteobacteria, suggesting that sulfate reduction is one of the dominant metabolic processes occurring in warm mud fluids. The remaining bacterial phylotypes were related to alpha- and beta-Proteobacteria, Actinobacteria, Bacteroides, Deinococcus-Thermus, KB1 and OP-11 candidate divisions. Moreover, a novel monophyletic clade, deeply branched with unaffiliated 16S rDNA clones was also retrieved from deep-sea sediments and halocline of Urania Basin. Archaeal diversity was much lower and detected phylotypes included organisms affiliated exclusively with the Euryarchaeota. More than 96% of the archaeal clones belonged to the MSBL-1 candidate order recently found in hypersaline anoxic environments, such as endoevaporitic microbial mats, Mediterranean deep-sea mud volcanoes and anoxic basins. Two phylotypes, represented by single clones were related to uncultured groups DHVE-1 and ANME-1. Thus, the hydrothermal mud of hypersaline Urania Basin seems to contain new microbial diversity. The prokaryotic community was significantly different from that occurring in the upper layers of the Urania Basin since 60% of all bacterial and 40% of all archaeal phylotypes were obtained only from mud fluids. The uniqueness of the composition of the active prokaryotic community could be explained by the complex environmental conditions at the site. The interaction of oxygenated warm mud fluids with the cold hypersaline brine of the Urania Basin seems to simultaneously select for various metabolic processes, such as aerobic and anaerobic heterotrophy, sulfide- and methane-dependent chemotrophy along with anaerobic oxidation of methane, sulfate- and metal-reduction.  相似文献   

12.
Abstract: A numerical taxonomic study has been carried out with 80 strains, newly isolated, from three geographically separated deep-sea hydrothermal vents (Mid-Atlantic Ridge, Guaymas Basin and Lau Basin) and eleven thermophilic reference strains representing 11 Bacillus species. The deep-sea isolates were all halotolerant spore-forming rods and grew aerobically above 65°C. Results from unweighted average linkage cluster analysis of a similarity matrix derived from the simple matching coefficient, showed formation of nine major phena, which were defined at the 83% similarity level or above. Seven phena were composed exclusively of strains isolated from the same site (4 from Mid-Atlantic Ridge, 1 from Guaymas Basin and 2 from Lau Basin). The majority of the Lau Basin isolates clustered with 6 of the reference strains in one phenon, while isolates from Mid-Atlantic Ridge and Guaymas Basin were found separated from this phenon at the 69% similarity level. The other reference strains showed less than 69% similarity with the deep-sea isolates.  相似文献   

13.
Studies of genetic connectivity and population structure in deep-sea chemosynthetic ecosystems often focus on endosymbiont-hosting species that are directly dependent on chemical energy extracted from vent effluent for survival. Relatively little attention has been paid to vent-associated species that are not exclusively dependent on chemosynthetic ecosystems. Here we assess connectivity and population structure of two vent-associated invertebrates—the shrimp Chorocaris sp. 2 and the squat lobster Munidopsis lauensis—that are common at deep-sea hydrothermal vents in the western Pacific. While Chorocaris sp. 2 has only been observed at hydrothermal vent sites, M. lauensis can be found throughout the deep sea but occurs in higher abundance around the periphery of active vents We sequenced mitochondrial COI genes and deployed nuclear microsatellite markers for both species at three sites in Manus Basin and either North Fiji Basin (Chorocaris sp. 2) or Lau Basin (Munidopsis lauensis). We assessed genetic differentiation across a range of spatial scales, from approximately 2.5 km to more than 3000 km. Population structure for Chorocaris sp. 2 was comparable to that of the vent-associated snail Ifremeria nautilei, with a single seemingly well-mixed population within Manus Basin that is genetically differentiated from conspecifics in North Fiji Basin. Population structure for Munidopsis lauensis was more complex, with two genetically differentiated populations in Manus Basin and a third well-differentiated population in Lau Basin. The unexpectedly high level of genetic differentiation between M. lauensis populations in Manus Basin deserves further study since it has implications for conservation and management of diversity in deep-sea hydrothermal vent ecosystems.  相似文献   

14.
Although the deep-sea sediments harbor diverse and novel bacteria with important ecological and environmental functions, a comprehensive view of their community characteristics is still lacking, considering the vast area and volume of the deep-sea sedimentary environments. Sediment bacteria vertical distribution and community structure were studied of the E272 site in the East Pacific Ocean with the molecular methods of 16S rRNA gene T-RFLP (terminal restriction fragment length polymorphism) and clone library analyses. Layered distribution of the bacterial assemblages was detected by both methods, indicating that the shallow sediments (40 cm in depth) harbored a diverse and distinct bacterial composition with fine-scale spatial heterogeneity. Substantial bacterial diversity was detected and nine major bacterial lineages were obtained, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Nitrospirae, Planctomycetes, Proteobacteria, and the candidate divisions OP8 and TM6. Three subdivisions of the Proteobacteria presented in our libraries, including the α-, γ- and δ-Proteobacteria. Most of our sequences have low similarity with known bacterial 16S rRNA genes, indicating that these sequences may represent as-yet-uncultivated novel bacteria. Most of our sequences were related to the GenBank nearest neighboring sequences retrieved from marine sediments, especially from deep-sea methane seep, gas hydrate or mud volcano environments. Several sequences were related to the sequences recovered from the deep-sea hydrothermal vent or basalt glasses-bearing sediments, indicating that our deep-sea sampling site might be influenced to certain degree by the nearby hydrothermal field of the East Pacific Rise at 13°N. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Deep-sea hydrothermal vents are considered to be one of the most spectacular ecosystems on Earth. Microorganisms form the basis of the food chain in vents controlling the vent communities. However, the diversity of bacterial communities in deep-sea hydrothermal vents from different oceans remains largely unknown. In this study, the pyrosequencing of 16S rRNA gene was used to characterize the bacterial communities of the venting sulfide, seawater, and tubeworm trophosome from East Pacific Rise, South Atlantic Ridge, and Southwest Indian Ridge, respectively. A total of 23,767 operational taxonomic units (OTUs) were assigned into 42 different phyla. Although Proteobacteria, Actinobacteria, and Bacteroidetes were the predominant phyla in all vents, differences of bacterial diversity were observed among different vents from three oceanic regions. The sulfides of East Pacific Rise possessed the most diverse bacterial communities. The bacterial diversities of venting seawater were much lower than those of vent sulfides. The symbiotic bacteria of tubeworm Ridgeia piscesae were included in the bacterial community of vent sulfides, suggesting their significant ecological functions as the primary producers in the deep-sea hydrothermal vent ecosystems. Therefore, our study presented a comprehensive view of bacterial communities in deep-sea hydrothermal vents from different oceans.  相似文献   

16.
Little is known about protists at deep‐sea hydrothermal vents. The vent sites at Guaymas Basin in the Gulf of California are characterized by dense mats of filamentous pigmented or nonpigmented Beggiatoa that serve as markers of subsurface thermochemical gradients. We constructed 18S rRNA libraries to investigate ciliate assemblages in Beggiatoa mats and from bare sediments at the Guaymas vent site. Results indicated a high diversity of ciliates, with 156 operational taxonomic units identified in 548 sequences. Comparison between mat environments demonstrated that ciliate and bacterial assemblages from pigmented mats, nonpigmented mats, and bare sediments were significantly different and highly correlated with bacterial assemblages. Neither bacterial nor ciliate assemblages were correlated with environmental factors. The most abundant ciliates at Guaymas were more likely to be represented in clone libraries from other hydrothermal, deep‐sea, and/or anoxic or microaerophilic environments, supporting the hypothesis that these ciliate species are broadly distributed. The orange mat environment included a higher proportion of ciliate sequences that were more similar to those from other environmental studies than to cultured ciliate species, whereas clone libraries from bare sediments included sequences that were the most highly divergent from all other sequences and may represent species that are endemic to Guaymas.  相似文献   

17.
Genetic diversity of archaea in deep-sea hydrothermal vent environments.   总被引:33,自引:0,他引:33  
K Takai  K Horikoshi 《Genetics》1999,152(4):1285-1297
Molecular phylogenetic analysis of naturally occurring archaeal communities in deep-sea hydrothermal vent environments was carried out by PCR-mediated small subunit rRNA gene (SSU rDNA) sequencing. As determined through partial sequencing of rDNA clones amplified with archaea-specific primers, the archaeal populations in deep-sea hydrothermal vent environments showed a great genetic diversity, and most members of these populations appeared to be uncultivated and unidentified organisms. In the phylogenetic analysis, a number of rDNA sequences obtained from deep-sea hydrothermal vents were placed in deep lineages of the crenarchaeotic phylum prior to the divergence of cultivated thermophilic members of the crenarchaeota or between thermophilic members of the euryarchaeota and members of the methanogen-halophile clade. Whole cell in situ hybridization analysis suggested that some microorganisms of novel phylotypes predicted by molecular phylogenetic analysis were likely present in deep-sea hydrothermal vent environments. These findings expand our view of the genetic diversity of archaea in deep-sea hydrothermal vent environments and of the phylogenetic organization of archaea.  相似文献   

18.
Despite their ubiquitous distribution in tectonically active coastal zones, shallow water hydrothermal vents have been less investigated than deep-sea vents. In the present study, we investigated the role of viral control and fluid emissions on prokaryote abundance, diversity, and community structure (total Archaea, total Bacteria, and sulphate-reducing bacteria) in waters and sediments surrounding the caldera of four different shallow-water hydrothermal vents (three located in the Mediterranean Sea and one in the Pacific Ocean). All vents, independent of their location, generally displayed a significant decrease of benthic prokaryote abundance, as well as its viable fraction, with increasing distance from the vent. Prokaryote assemblages were always dominated by Bacteria. Benthic Archaea accounted for 23–33% of total prokaryote abundance in the Mediterranean Sea and from 13 to 29% in the Pacific Ocean, whereas in the water column they accounted for 25–38%. The highest benthic bacterial ribotype richness was observed in close proximity of the vents (i.e., at 10-cm distance from the emissions), indicating that vent fluids might influence bacterial diversity in surrounding sediments. Virioplankton and viriobenthos abundances were low compared to other marine systems, suggesting that temperature and physical-chemical conditions might influence viral survival in these vent systems. We thus hypothesize that the high bacterial diversity observed in close proximity of the vents is related with the highly variable vent emissions, which could favor the coexistence of several prokaryotic species.  相似文献   

19.
Microbial oxidation and precipitation of manganese at deep-sea hydrothermal vents are important oceanic biogeochemical processes, yet nothing is known about the types of microorganisms or mechanisms involved. Here we report isolation of a number of diverse spore-forming Mn(II)-oxidizing Bacillus species from Guaymas Basin, a deep-sea hydrothermal vent environment in the Gulf of California, where rapid microbially mediated Mn(II) oxidation was previously observed. mnxG multicopper oxidase genes involved in Mn(II) oxidation were amplified from all Mn(II)-oxidizing Bacillus spores isolated, suggesting that a copper-mediated mechanism of Mn(II) oxidation could be important at deep-sea hydrothermal vents. Phylogenetic analysis of 16S rRNA and mnxG genes revealed that while many of the deep-sea Mn(II)-oxidizing Bacillus species are very closely related to previously recognized isolates from coastal sediments, other organisms represent novel strains and clusters. The growth and Mn(II) oxidation properties of these Bacillus species suggest that in hydrothermal sediments they are likely present as spores that are active in oxidizing Mn(II) as it emerges from the seafloor.  相似文献   

20.
The diversity associated with a microbial mat sample collected from a deep-sea hydrothermal vent on the Southern East Pacific Rise was determined using a molecular phylogenetic approach based on the comparison of sequences from the small subunit ribosomal RNA gene (16S rDNA). The DNA was extracted from the sample and the 16S rDNA was amplified by PCR. Sixteen different phylotypes were identified by restriction fragment length polymorphism analysis; four phylotypes were later identified as putative chimeras. Analysis of the 16S rDNA sequences placed all the phylotypes within the Proteobacteria. The majority of the sequences (98%) were most closely related to a new clade of epsilon-Proteobacteria that were initially identified from an in situ growth chamber deployed on a deep-sea hydrothermal vent on the Mid-Atlantic Ridge in 1995. The similarity between phylotypes identified from Atlantic and Pacific deep-sea hydrothermal vent sites indicates that this new clade of Proteobacteria may be endemic to and widely distributed among deep-sea hydrothermal vents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号