首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drug resistance in Trypanosoma brucei causes severe problems for people and domestic animals, but molecular mechanisms of the resistance are not well known. Programmed cell death (PCD) is a fundamental process in both multicellular and unicellular organisms, and it is speculated to be one of the important factors contributing to the emergence of drug resistance. We have previously reported that the expression of TAO appears to play a role in the inhibition of the PCD-like phenomenon development in T. brucei. In this study, to ascertain the correlation between the development of the PCD-like phenomenon and the expression of TAO in T. brucei, we genetically engineered T. brucei for conditional over-expression of the TAO gene. TAO over-expressing transgenic T. brucei was refractory to the development of the PCD-like phenomenon compared to the wild-type, indicating that expression of TAO might have a regulatory role on PCD development. Furthermore, the transgenic cells showed resistance to suramin and antrycide. We postulated that intracellular reactive oxygen species (ROS) may be involved in the mechanism of resistance to antrycide because augmentation of ROS in transgenic cells was lower than that in the wild-type cells following treatment with antrycide. These results suggest a possible correlation of PCD to drug resistance in T. brucei.  相似文献   

2.
Programmed cell death (PCD) represents a significant component of normal growth and development in multicellular organisms. Recently, PCD-like processes have been reported in single-celled eukaryotes, implying that some components of the PCD machinery existed early in eukaryotic evolution. This study provides a comparative analysis of PCD-related sequences across more than 50 unicellular genera from four eukaryotic supergroups: Unikonts, Excavata, Chromalveolata, and Plantae. A complex set of PCD-related sequences that correspond to domains or proteins associated with all main functional classes—from ligands and receptors to executors of PCD—was found in many unicellular lineages. Several PCD domains and proteins previously thought to be restricted to animals or land plants are also present in unicellular species. Noteworthy, the yeast, Saccharomyces cerevisiae—used as an experimental model system for PCD research, has a rather reduced set of PCD-related sequences relative to other unicellular species. The phylogenetic distribution of the PCD-related sequences identified in unicellular lineages suggests that the genetic basis for the evolution of the complex PCD machinery present in extant multicellular lineages has been established early in the evolution of eukaryotes. The shaping of the PCD machinery in multicellular lineages involved the duplication, co-option, recruitment, and shuffling of domains already present in their unicellular ancestors. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Programmed cell death in trypanosomatids and other unicellular organisms   总被引:9,自引:0,他引:9  
In multicellular organisms, cellular growth and development can be controlled by programmed cell death (PCD), which is defined by a sequence of regulated events. However, PCD is thought to have evolved not only to regulate growth and development in multicellular organisms but also to have a functional role in the biology of unicellular organisms. In protozoan parasites and in other unicellular organisms, features of PCD similar to those in multicellular organisms have been reported, suggesting some commonality in the PCD pathway between unicellular and multicellular organisms. However, more extensive studies are needed to fully characterise the PCD pathway and to define the factors that control PCD in the unicellular organisms. The understanding of the PCD pathway in unicellular organisms could delineate the evolutionary origin of this pathway. Further characterisation of the PCD pathway in the unicellular parasites could provide information regarding their pathogenesis, which could be exploited to target new drugs to limit their growth and treat the disease they cause.  相似文献   

4.
Apoptosis is a form of programmed cell death (PCD) characterized by morphological changes and stereotypical DNA degradation described as a nucleosomal ;ladder'. However, nucleosomal ladders have only been clearly demonstrated in vertebrate tissues when large numbers of cells die in synchrony. Their absence may be explained by asynchronous death under physiological conditions, or by distinct molecular mechanisms. In this study, nucleosomal ladders were revealed by a ligation-mediated polymerase chain reaction (LMPCR), that amplifies DNA fragments with blunt, 5' phosphorylated ends. Numerous tissues from different organisms were examined which demonstrated that nucleosomal ladders (a) accompany physiological cell death in mammalian tissues where previously DNA fragmentation has not been detected; (b) are produced during invertebrate cell death; (c) are invariably generated via the production of blunt, 5' phosphorylated double strand breaks. These results suggest that PCD in multicellular organisms consistently involves apoptotic mechanisms and that the endonuclease activity is evolutionarily conserved.  相似文献   

5.
I. Orhan  M. Aslan  B. Sener  M. Kaiser  D. Tasdemir   《Phytomedicine》2006,13(9-10):735-739
Thirteen lipophilic extracts prepared with n-hexane from various parts of Pistacia vera L. tree (Anacardiaceae) growing in Turkey were screened for their in vitro activity against four parasitic protozoa, Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani and Plasmodium falciparum. Melarsoprol, benznidazole, miltefosine, artemisinin and chloroquine were used as reference drugs. The cytotoxic potentials of the extracts on rat skeletal myoblast (L6) cells were also assessed and compared to that of podophyllotoxin. The screening method employed was medium-throughput, where the extracts were tested at two concentrations, at 0.8 and 4.8 μg/ml (T. brucei rhodesiense, L. donovani and Plasmodium falciparum), or at 1.6 and 9.7 μg/ml (T. cruzi and L6 cells). At 4.8 μg/ml concentration, the branch extract of Pistacia vera (PV-BR) significantly inhibited (77.3%) the growth of L. donovani, whereas the dry leaf extract (PV-DL) was active against Plasmodium falciparum (60.6% inhibition). The IC50 values of these extracts were determined as 2.3 μg/ml (PV-BR, L. donovani) and 3.65 μg/ml (PV-DL, Plasmodium falciparum). None of the extracts possessed cytotoxicity on mammalian cells.  相似文献   

6.
, and 1988. Experimental American leishmaniasis and Chagas' disease in the Brazilian squirrel monkey: cross immunity and electrocardiographic studies of monkeys infected with Leishmania braziliensis and Trypanosoma cruzi. International Journal for Parasitology 18: 1053–1059. Adult, laboratory-bred squirrel monkeys (Saimiri sciureus) previously infected with either Leishmania braziliensis braziliensis or L. b. panamensis were challenge infected with blood-form trypomastigotes of Trypanosoma cruzi (Brazil strain). Monkeys previously infected with T. cruzi were challenged with stationary phase promastigote forms of L. b. braziliensis. Monkeys were examined during the course of challenge for evidence of infection, electrocardiographic alterations and parasite-specific antibody responses. T. cruzi epimastigotes were cultured from the blood of monkeys up to 3 months after challenge with this parasite. Unulcerated cutaneous lesions appeared and persisted in monkeys challenged with L. b. braziliensis. The formation of satellite lesions was observed in one monkey. Increased QRS intervals were not observed in T. cruzi challenged monkeys without prior cardiac irregularities and QRS left axis shifts were observed in only two of these monkeys. Elevated titers of parasite binding IgM and IgG specific for both T. cruzi and L. braziliensis were observed in all monkeys following challenge. These results indicate that prior infection with T. cruzi or L. braziliensis does not protect against heterologous challenge infection with these organisms. However, prior infection with Leishmania parasites may provide some protection against chagasic cardiopathies.  相似文献   

7.
Carboxysomes are proteinaceous bacterial microcompartments that increase the efficiency of the rate-limiting step in carbon fixation by sequestering reaction substrates. Typically, α-carboxysomes are genetically encoded as a single operon expressing the structural proteins and the encapsulated enzymes of the microcompartment. In addition, depending on phylogeny, as many as 13 other genes are found to co-occur near or within α-carboxysome operons. One of these genes codes for a protein with distant homology to pterin-4α-carbinolamine dehydratase (PCD) enzymes. It is present in all α-carboxysome containing bacteria and has homologs in algae and higher plants. Canonical PCDs play an important role in amino acid hydroxylation, a reaction not associated with carbon fixation. We determined the crystal structure of an α-carboxysome PCD-like protein from the chemoautotrophic bacterium Thiomonas intermedia K12, at 1.3-Å resolution. The protein retains a three-dimensional fold similar to canonical PCDs, although the prominent active site cleft present in PCD enzymes is disrupted in the α-carboxysome PCD-like protein. Using a cell-based complementation assay, we tested the PCD-like proteins from T. intermedia and two additional bacteria, and found no evidence for PCD enzymatic activity. However, we discovered that heterologous co-expression of the PCD-like protein from Halothiobacillus neapolitanus with RuBisCO and GroELS in Escherichia coli increased the amount of soluble, assembled RuBisCO recovered from cell lysates compared with co-expression of RuBisCO with GroELS alone. We conclude that this conserved PCD-like protein, renamed here α-carboxysome RuBisCO assembly factor (or acRAF), is a novel RuBisCO chaperone integral to α-carboxysome function.  相似文献   

8.
Altruistic suicide is best known in the context of programmed cell death (PCD) in multicellular individuals, which is understood as an adaptive process that contributes to the development and functionality of the organism. After the realization that PCD‐like processes can also be induced in single‐celled lineages, the paradigm of altruistic cell death has been extended to include these active cell death processes in unicellular organisms. Here, we critically evaluate the current conceptual framework and the experimental data used to support the notion of altruistic suicide in unicellular lineages, and propose new perspectives. We argue that importing the paradigm of altruistic cell death from multicellular organisms to explain active death in unicellular lineages has the potential to limit the types of questions we ask, thus biasing our understanding of the nature, origin, and maintenance of this trait. We also emphasize the need to distinguish between the benefits and the adaptive role of a trait. Lastly, we provide an alternative framework that allows for the possibility that active death in single‐celled organisms is a maladaptive trait maintained as a byproduct of selection on pro‐survival functions, but that could—under conditions in which kin/group selection can act—be co‐opted into an altruistic trait.  相似文献   

9.
Programmed cell death (PCD) is an essential process in the growth and development of multicellular organisms. However, accumulating evidence indicates that unicellular eukaryotes can also undergo PCD with apoptosis-like features. The protozoan parasite Blastocystis hominis has been reported to exhibit both apoptotic and non-apoptotic features of PCD when exposed to a variety of stimuli. Recent observations of PCD pathways in Blastocystis suggest that this protozoan, as is the case with its multicellular counterparts, possesses complex cell-death mechanisms.  相似文献   

10.
Programmed cell death (PCD) is a biochemical process that plays an essential role in the development of multicellular organisms. However, accumulating evidence indicates that PCD is also present in single-celled eukaryotes. Thus, trypanosomatids might be endowed with a PCD mechanism that is derived from ancestral death machinery. PCD in trypanosomatids could be a process without a defined function, inherited through eukaryotic cell evolution, which might be triggered in response to diverse stimuli and stress conditions. However, recent observations suggest that PCD might be used by trypanosomatids to maximize their biological fitness. Therefore, PCD could represent a potential pharmacological target for protozoan control.  相似文献   

11.
14-3-3蛋白通常也称为通用调节因子(general regulatory factors,GRF),是一类丝氨酸和苏氨酸磷酸化结合蛋白,通过与其他转录因子或信号蛋白相互作用参与调节细胞内基础代谢、信号传导、参与植物生长发育以及环境胁迫应答等一系列生理过程。本研究从刚毛柽柳干旱转录组中克隆获得一条干旱胁迫差异表达的ThGRF2基因。ThGRF2基因CDS片段全长为786 bp,编码261个氨基酸。相对分子质量为29.40 kDa,理论等电点(pI)为4.76。将ThGRF2基因构建到pROK2过表达载体上,瞬时转化刚毛柽柳,渗透胁迫前后生理指标结果显示,渗透胁迫后ThGRF2过表达提高了转基因柽柳的叶绿素含量、SOD和POD活性,降低了丙二醛(MDA)含量、电导率(EL)和失水率,表明ThGRF2基因在刚毛柽柳渗透胁迫应答中起重要作用。为进一步探究刚毛柽柳ThGRF2基因的非生物胁迫耐受性功能奠定基础。  相似文献   

12.
Protozoan programmed cell death or apoptosis is an important factor in the survival of the parasite and its pathogenicity. The most amazing aspect of protozoan cell death is in its molecular architecture. To date, protozoa lack most of the components of the highly complex cell death machinery studied in multicellular organisms. Hence the unique apoptotic machinery in protozoa can be exploited for the development of therapeutic drugs and diagnostic markers. This review focuses on human intestinal protozoa undergoing cell death and inducing or inhibiting host cell apoptosis. The first part of this review focuses on intestinal protozoa that undergo PCD under various stress conditions. The second part focuses on protozoa that induce or inhibit PCD in their host cell. Although these intestinal parasites differ in their mechanism of infection and intracellular localization, they may activate conserved cell death pathways within themselves and in the host cell. Understanding conserved cell death pathways in the intestinal protozoa and their host-parasite PCD relationship may lead to drug targets which can be used for a broad range of parasitic diseases.  相似文献   

13.
The origin of programmed cell death (PCD) has been linked to the emergence of multicellular organisms. Trypanosoma cruzi, a member of one of the earliest diverging eukaryotes, is a protozoan unicellular parasite that undergoes three major differentiation changes and requires two different hosts. We report that the in vitro differentiation of the proliferating epimastigote stage into the G0/G1 arrested trypomastigote stage is associated with massive epimastigote death that shows the cytoplasmic and nuclear morphological features and DNA fragmentation pattern of apoptosis, the most frequent phenotype of PCD in multicellular organisms. Apoptosis could be accelerated or prevented by modifying culture conditions or cell density, indicating that extracellular signals influenced the epimastigote decision between life and death. Epimastigotes responded to complement-mediated immunological agression by undergoing apoptosis, while undergoing necrosis in response to nonphysiological saponin-mediated damage. PCD may participate into the optimal adaptation of T. cruzi to its different hosts, and the avoidance of a local competition between a G0/G1 arrested stage and its proliferating progenitor. The existence of a regulated cell death programme inducing an apoptotic phenotype in a unicellular eukaryote provides a paradigm for a widespread role for PCD in the control of cell survival, which extends beyond the evolutionary constraints that may be specific to multicellular organisms and raises the question of the origin and nature of the genes involved. Another implication is that PCD induction could represent a target for therapeutic strategies against unicellular pathogens.  相似文献   

14.
Trypanosome alternative oxidase (TAO) and the cytochrome oxidase (COX) are two developmentally regulated terminal oxidases of the mitochondrial electron transport chain in Trypanosoma brucei. Here, we have compared the import of TAO and cytochrome oxidase subunit IV (COIV), two stage-specific nuclear encoded mitochondrial proteins, into the bloodstream and procyclic form mitochondria of T. brucei to understand the import processes in two different developmental stages. Under in vitro conditions TAO and COIV were imported and processed into isolated mitochondria from both the bloodstream and procyclic forms. With mitochondria isolated from the procyclic form, the import of TAO and COIV was dependent on the mitochondrial inner membrane potential (delta psi) and required protein(s) on the outer membrane. Import of these proteins also depended on the presence of both internal and external ATP. However, import of TAO and COIV into isolated mitochondria from the bloodstream form was not inhibited after the mitochondrial delta psi was dissipated by valinomycin, CCCP, or valinomycin and oligomycin in combination. In contrast, import of these proteins into bloodstream mitochondria was abolished after the hydrolysis of ATP by apyrase or removal of the ATP and ATP-generating system, suggesting that import is dependent on the presence of external ATP. Together, these data suggest that nuclear encoded proteins such as TAO and COIV are imported in the mitochondria of the bloodstream and the procyclic forms via different mechanism. Differential import conditions of nuclear encoded mitochondrial proteins of T. brucei possibly help it to adapt to different life forms.  相似文献   

15.
Trypanosome alternative oxidase (TAO) is the cytochrome-independent terminal oxidase of the mitochondrial electron transport chain. TAO is a diiron protein that transfers electrons from ubiquinol to oxygen, reducing the oxygen to water. The mammalian bloodstream forms of Trypanosoma brucei depend solely on TAO for respiration. The inhibition of TAO by salicylhydroxamic acid (SHAM) or ascofuranone is trypanocidal. TAO is present at a reduced level in the procyclic form of T. brucei, where it is engaged in respiration and is also needed for developmental processes. Alternative oxidases similar to TAO have been found in a wide variety of organisms but not in mammals, thus rendering TAO an important chemotherapeutic target for African trypanosomiasis.  相似文献   

16.
Xia Guangmin  Chen Huimin 《Plant science》1996,120(2):13617-203
The suspension derived protoplasts of wheat (Triticum aestivum) cv. Jinan 177 were used as a recipient to fuse with the protoplasts of the 60Co gamma-ray irradiated calli of Legmus chinensis. The wheat suspension cells and their protoplasts were not capable of differentiating to whole plants. The irradiated calli of L. chinensis were also the same. The protoplasts originated from the treated or untreated calli were both unable to divide under the conditions of this experiment. However, the fusion products grew and developed to whole plants which were identified as hybrids according to the analysis of chromosome, isozyme and morphology. The above result revealed that the lost regeneration capacity of both parents could be complementarily restored through somatic hybridization. This phenomenon also occurred with our work on Triticum aestivum (+) Haynaldia villosa, T. aestivum (+) Agropyron elongatum and T. aestivum (+) Psathyrostachys juncea.  相似文献   

17.
It has been proposed that the apoptosis is an essential requirement for the evolution of all animals, in fact the apoptotic program is highly conserved from nematodes to mammals. Throughout development, apoptosis is employed by multicellular organisms to eliminate damaged or unnecessary cells. Here, we will discuss both developmental programmed cell death (PCD) under normal conditions and stress induced apoptosis, in sea urchin embryos. Sea urchin represent an excellent model system for studying embryogenesis and cellular processes involved in metamorphosis. PCD plays an essential role in sculpting and remodelling the embryos and larvae undergoing metamorphosis. Moreover, this marine organism directly interacts with its environment, and is susceptible to effects of several aquatic contaminants. Apoptosis can be adopted as a defence mechanism against any environmental chemical, physical and mechanical stress, for removing irreversibly damaged cells. This review, while not comprehensive in its reporting, aims to provide an overview of current knowledge on mechanisms to regulate physiological and the induced apoptotic program in sea urchin embryos.  相似文献   

18.
The processes involved in the development of complex multicellular communities, including the programmed elimination of individual cells during the formation of specialized structures, exhibit fundamental similarities between prokaryotic and eukaryotic organisms. Mechanistic similarities may also exist at the molecular level, as bacterial proteins hypothesized to be related to the apoptosis regulator Bax/Bcl-2 family have been identified, fueling speculation about the existence of bacterial PCD. Here we review the regulatory networks controlling cell death and lysis in Staphylococcus aureus and examine the environmental parameters that might influence them during the development of a biofilm. We hypothesize that the heterogeneous environmental conditions found within a developing biofilm generate distinct physiological signals that coordinate the differential expression of cell death and lysis effectors.  相似文献   

19.
20.
Programmed cell death (PCD) has a key role in defence and development of all multicellular organisms. In plants, there is a large gap in our knowledge of the molecular machinery involved at the various stages of PCD, especially the early steps. Here, we identify kiss of death (KOD) encoding a 25-amino-acid peptide that activates a PCD pathway in Arabidopsis thaliana. Two mutant alleles of KOD exhibited a reduced PCD of the suspensor, a single file of cells that support embryo development, and a reduced PCD of root hairs after a 55°C heat shock. KOD expression was found to be inducible by biotic and abiotic stresses. Furthermore, KOD expression was sufficient to cause death in leaves or seedlings and to activate caspase-like activities. In addition, KOD-induced PCD required light in leaves and was repressed by the PCD-suppressor genes AtBax inhibitor 1 and p35. KOD expression resulted in depolarization of the mitochondrial membrane, placing KOD above mitochondria dysfunction, an early step in plant PCD. A KOD∷GFP fusion, however, localized in the cytosol of cells and not mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号