首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Multiple unique protein markers sorted to the inner nuclear membrane (INM) from the Autographa californica nucleopolyhedrovirus occlusion-derived virus (ODV) envelope were used to decipher common elements of the sorting pathway of integral membrane proteins from their site of insertion into the membrane of the endoplasmic reticulum (ER) through their transit to the INM. The data show that during viral infection, the viral protein FP25K is a partner for all known ODV envelope proteins and that BV/ODV-E26 (designated E26) is a partner for some, but not all, such proteins. The association with the ER membrane of FP25K, E26, and the cellular INM-sorting protein importin-α-16 is not static; rather, these sorting proteins are actively recruited to the ER membrane based upon requirements of the proteins in transit to the INM. Colocalization analysis using an ODV envelope protein and importin-α-16 shows that during viral infection, importin-α-16 translocates across the pore membrane to the INM and then is incorporated into the virus-induced intranuclear membranes. Thus, the association of importin-α-16 and INM-directed proteins appears to remain at least through protein translocation across the pore membrane to the INM. Overall, the data suggest that multiple levels of regulation facilitate INM-directed protein trafficking, and that proteins participating in this sorting pathway have a dynamic relationship with each other and the membrane of the ER.  相似文献   

3.
昆虫包涵体衍生病毒囊膜蛋白的分子生物学   总被引:1,自引:0,他引:1  
相兴伟  吴小锋 《昆虫学报》2010,53(7):809-817
了解杆状病毒的囊膜蛋白对揭示病毒入侵、 囊膜蛋白核定向转运机制以及研究控制昆虫新策略等方面具有重要意义。 目前研究表明,包涵体衍生病毒(occlusion-derived virus, ODV)的囊膜蛋白包括ODV-E25, ODV-E66, ODV-E56, ODV-E18, ODV-E28, P74, PIF1, PIF2, PIF3, GP41, ODV-EC27, ODV-E35, ODV-EC43,BV/ODV-E26,P91和ORF150。 本文结合国内外的研究成果系统的综述了囊膜蛋白的结构和功能,其在经口感染、调节细胞周期和囊膜蛋白的传送等方面起作用。 囊膜蛋白的核定向转运机制,ODV与昆虫中肠之间和包涵体基质之间相互作用以及ODV结构蛋白之间的相互作用等将是今后的研究重点。  相似文献   

4.
5.
Wu W  Liang H  Kan J  Liu C  Yuan M  Liang C  Yang K  Pang Y 《Journal of virology》2008,82(24):12356-12364
It has been shown that the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) 38K (ac98) is required for nucleocapsid assembly. However, the exact role of 38K in nucleocapsid assembly remains unknown. In the present study, we investigated the relationship between 38K and the nucleocapsid. Western blotting using polyclonal antibodies raised against 38K revealed that 38K was expressed in the late phase of infection in AcMNPV-infected Spodoptera frugiperda cells and copurified with budded virus (BV) and occlusion-derived virus (ODV). Biochemical fractionation of BV and ODV into the nucleocapsid and envelope components followed by Western blotting showed that 38K was associated with the nucleocapsids. Immunoelectron microscopic analysis revealed that 38K was specifically localized to the nucleocapsids in infected cells and appeared to be distributed over the cylindrical capsid sheath of nucleocapsid. Yeast two-hybrid assays were performed to examine potential interactions between 38K and nine known nucleocapsid shell-associated proteins (PP78/83, PCNA, VP1054, FP25, VLF-1, VP39, BV/ODV-C42, VP80, and P24), three non-nucleocapsid shell-associated proteins (P6.9, PP31, and BV/ODV-E26), and itself. The results revealed that 38K interacted with the nucleocapsid proteins VP1054, VP39, VP80, and 38K itself. These interactions were confirmed by coimmunoprecipitation assays in vivo. These data demonstrate that 38K is a novel nucleocapsid protein and provide a rationale for why 38K is essential for nucleocapsid assembly.  相似文献   

6.
Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), the type species of the Nucleopolyhedrovirus genus (Baculoviridae family), has two highly unusual traits shared by several baculovirus species. First, the occlusion-derived virus (ODV) that establishes primary infection in the midgut following its ingestion by host larvae contains multiple nucleocapsids, all of which enter the same midgut cell. Second, GP64, the envelope fusion protein of the budded virus (BV) that spreads infection beyond the midgut, is synthesized both early and late during infection. We tested the hypothesis that, together, these two traits enable parental ODV nucleocapsids to bud from infected midgut cells, essentially as BV, to establish secondary infections prior to completion of viral replication within the midgut. This "pass-through" strategy would enable the virus to counter the host's principal defense, sloughing of infected midgut cells, by accelerating the onset of systemic infections. To test this hypothesis, we created an AcMNPV recombinant, AcLate21/20-64HB, that can express gp64 only during the late phase of infection (coincident with the other structural proteins). We then compared the virulence of this virus to that of a control recombinant virus that expresses gp64 in a wild-type manner. We found that when administered orally, the control virus was far more virulent and established secondary infection earlier than AcLate21/20-64HB, but when administered intrahemocoelically, infectivity and virulence of the two recombinants were identical. Our results demonstrate that early gp64 expression is a key component of a unique and highly adaptive baculovirus infection strategy.  相似文献   

7.
Fang M  Dai X  Theilmann DA 《Journal of virology》2007,81(18):9859-9869
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) exon0 (orf141) has been shown to be required for the efficient production of budded virus (BV). The deletion of exon0 reduces the level of BV production by up to 99% (X. Dai, T. M. Stewart, J. A. Pathakamuri, Q. Li, and D. A. Theilmann, J. Virol. 78:9633-9644, 2004); however, the function or mechanism by which EXON0 affects BV production is unknown. In this study, we further elucidated the function of EXON0 by investigating the localization of EXON0 in infected Sf9 cells and in virions and by identifying interactions between EXON0 and other viral proteins. In addition, electron microscopy was used to study the cellular localization of nucleocapsids in cells transfected with an exon0 knockout (KO) virus. The results showed that EXON0 was localized to both the cytoplasm and the nuclei of infected Sf9 cells throughout the infection. Western blotting results also showed that EXON0 was purified along with BV and occlusion-derived virus (ODV). The fractionation of BV into the nucleocapsid and envelope components showed that EXON0 localized to the BV nucleocapsid. Yeast two-hybrid screening, coimmunoprecipitation, and confocal microscopy revealed that it interacted with nucleocapsid proteins FP25 and BV/ODV-C42. Cells transfected with the exon0 KO virus exhibited normally appearing nucleocapsids in the nuclei in numbers equal to those in the nuclei of cells transfected with the EXON0 repaired virus. In contrast, the numbers of nucleocapsids in the cytoplasm of cells transfected with the exon0 KO virus were significantly lower than those in the cytoplasm of cells transfected with the repaired virus. These results support the conclusion that EXON0 is required in the BV pathway for the efficient egress of nucleocapsids from the nucleus to the cytoplasm.  相似文献   

8.
Baculoviruses produce two viral phenotypes, the budded virus (BV) and the occlusion-derived virus (ODV). ODVs are released from occlusion bodies in the midgut where they initiate a primary infection. Due to the lack of an in vitro system, the molecular mechanism of ODV infection is still unclear. Here we present data demonstrating that Helicoverpa armigera nucleopolyhedrovirus (HearNPV) ODV infected cultured Hz-AM1 cells in a pH dependent manner. The optimal pH for ODV infection was 8.5, which is same to that in the microvilli of midgut epithelial cells, the ODV native infection sites. Antibodies neutralization analysis indicated that four HearNPV oral infection essential genes p74, pif-1, pif-2 and pif-3 are also essential for HearNPV ODV infection in vitro. Thus, HearNPV-HzAM1 system can be used to analyze the mechanism of ODV entry.  相似文献   

9.
Baculoviruses produce two viral phenotypes, the budded virus (BV) and the occlusion-derived virus (ODV). ODVs are released from occlusion bodies in the midgut where they initiate a primary infection. Due to the lack of an in vitro system, the molecular mechanism of ODV infection is still unclear. Here we present data demonstrating that Helicoverpa armigera nucleopolyhedrovirus (HearNPV) ODV infected cultured Hz-AM1 cells in a pH dependent manner. The optimal pH for ODV infection was 8.5, which is same to that in the microvilli of midgut epithelial cells, the ODV native infection sites. Antibodies neutralization analysis indicated that four HearNPV oral infection essential genes p74, pif-l, pif-2 and pif-3 are also essential for HearNPV ODV infection in vitro. Thus, HearNPV-HzAM1 system can be used to analyze the mechanism of ODV entry.  相似文献   

10.
orf61 (bm61) of Bombyx mori Nucleopolyhedrovirus (BmNPV) is a highly conserved baculovirus gene, suggesting that it performs an important role in the virus life cycle whose function is unknown. In this study, we describe the characterization of bm61. Quantitative polymerase chain reaction (qPCR) and western blot analysis demonstrated that bm61 was expressed as a late gene. Immunofluorescence analysis by confocal microscopy showed that BM61 protein was localized on nuclear membrane and in intranuclear ring zone of infected cells. Structure localization of the BM61 in BV and ODV by western analysis demonstrated that BM61 was the protein of both BV and ODV. In addition, our data indicated that BM61 was a late structure protein localized in nucleus.  相似文献   

11.
Deng F  Wang R  Fang M  Jiang Y  Xu X  Wang H  Chen X  Arif BM  Guo L  Wang H  Hu Z 《Journal of virology》2007,81(17):9377-9385
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry were used to analyze the structural proteins of the occlusion-derived virus (ODV) of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HearNPV), a group II NPV. Twenty-three structural proteins of HearNPV ODV were identified, 21 of which have been reported previously as structural proteins or ODV-associated proteins in other baculoviruses. These include polyhedrin, P78/83, P49, ODV-E18, ODV-EC27, ODV-E56, P74, LEF-3, HA66 (AC66), DNA polymerase, GP41, VP39, P33, ODV-E25, helicase, P6.9, ODV/BV-C42, VP80, ODV-EC43, ODV-E66, and PIF-1. Two proteins encoded by HearNPV ORF44 (ha44) and ORF100 (ha100) were discovered as ODV-associated proteins for the first time. ha44 encodes a protein of 378 aa with a predicted mass of 42.8 kDa. ha100 encodes a protein of 510 aa with a predicted mass of 58.1 kDa and is a homologue of the gene for poly(ADP-ribose) glycohydrolase (parg). Western blot analysis and immunoelectron microscopy confirmed that HA44 is associated with the nucleocapsid and HA100 is associated with both the nucleocapsid and the envelope of HearNPV ODV. HA44 is conserved in group II NPVs and granuloviruses but does not exist in group I NPVs, while HA100 is conserved only in group II NPVs.  相似文献   

12.
D L Jarvis  D A Bohlmeyer    A Garcia  Jr 《Journal of virology》1992,66(12):6903-6911
Polyhedrin is the major component of the nuclear viral occlusions produced during replication of the baculovirus Autographa californica multicapsid nuclear polyhedrosis virus (AcMNPV). Since viral occlusions are responsible for the horizontal transmission of AcMNPV in nature, the biosynthesis, localization, and assembly of polyhedrin are important events in the viral replication cycle. We recently defined the sequence requirements for nuclear localization and assembly of polyhedrin. In this study, we examined the localization of polyhedrin at different times of infection. The results showed that nuclear localization of polyhedrin becomes more efficient as the occlusion phase of infection progresses. Several different factors were identified that might contribute to this overall effect, including a higher rate of polyhedrin nuclear localization and a higher rate of polyhedrin biosynthesis. We also examined the biosynthesis and processing of polyhedrin in cells infected with an AcMNPV few polyhedra (FP) mutant, which produces smaller numbers of viral occlusions that contain few or no virions. Compared with wild type, the FP mutant produced polyhedrin more slowly and localized it to the nucleus less efficiently at the beginning of the occlusion phase of infection (24 h postinfection). This supported the idea that the efficiency of polyhedrin nuclear localization is tightly coupled to its rate of biosynthesis. It also revealed that expression of the viral 25K gene, which is inactivated in the FP mutant, is directly or indirectly associated with an enhancement of polyhedrin biosynthesis and nuclear localization at the beginning of the occlusion phase of infection. This enhancement effect appears to be necessary to ensure the normal assembly of viral occlusions.  相似文献   

13.
Yuan M  Huang Z  Wei D  Hu Z  Yang K  Pang Y 《Journal of virology》2011,85(22):11664-11674
Autographa californica nucleopolyhedrovirus (AcMNPV) orf93 (ac93) is a highly conserved uncharacterized gene that is found in all of the sequenced baculovirus genomes except for Culex nigripalpus NPV. In this report, using bioinformatics analyses, ac93 and odv-e25 (ac94) were identified as baculovirus core genes and thus p33-ac93-odv-e25 represent a cluster of core genes. To investigate the role of ac93 in the baculovirus life cycle, an ac93 knockout AcMNPV bacmid was constructed via homologous recombination in Escherichia coli. Fluorescence and light microscopy showed that the AcMNPV ac93 knockout did not spread by infection, and titration assays confirmed a defect in budded virus (BV) production. However, deletion of ac93 did not affect viral DNA replication. Electron microscopy indicated that ac93 was required for the egress of nucleocapsids from the nucleus and the formation of intranuclear microvesicles, which are precursor structures of occlusion-derived virus (ODV) envelopes. Immunofluorescence analyses showed that Ac93 was concentrated toward the cytoplasmic membrane in the cytoplasm and in the nuclear ring zone in the nucleus. Western blot analyses showed that Ac93 was associated with both nucleocapsid and envelope fractions of BV, but only the nucleocapsid fraction of ODV. Our results suggest that ac93, although not previously recognized as a core gene, is one that plays an essential role in the formation of the ODV envelope and the egress of nucleocapsids from the nucleus.  相似文献   

14.
Baculoviruses generally produce two progeny phenotypes—the budded virus (BV) and the occlusion-derived virus (ODV)—and the intricate mechanisms that regulate the temporal synthesis of the two phenotypes are critical for the virus replication cycle, which are far from being clearly understood. FP25K was reported to be responsible for the regulation of BV/ODV, and the mutations within result in a decrease of normal ODVs formation and an increase of BVs production. In this study, we demonstrated that the increase of BV titer in an fp25k knockout recombinant (fp25k-negative) was a result of higher infectivity of BVs rather than an increased production of BVs. The constitution of the major structural proteins and genome of parental and fp25k-negative BVs were analyzed. The results showed that the integrity of the majority of DNA packaged into the fp25k-negative BVs was intact; i.e., the genomic DNA of fp25k-negative BV had better transformation and transfection efficiency than that of the parental virus, indicating more intact genomes in the virions. Although the analysis of proteins associated with BVs revealed that more envelope protein GP64 were incorporated into the fp25k-negative BVs, subsequent experiments suggested that overexpression of GP64 did not improve the titer of BVs. Thus, we conclude that the main reason for higher infectivity of BVs is due to better genome integrity, which benefits from the deletion of fp25k resulting in increased stability of the genome and produce a higher proportion of infectious BVs. FP25K acts as a negative factor for the infectivity of BV.  相似文献   

15.
To develop complementary baculovirus-based tools for gene delivery and display technologies, the interaction of occlusion-derived baculovirus (ODV) with human cells, and the functionality of the P74 ODV envelope protein for display of the IgG-binding Z domains (ZZP74) were evaluated. The cellular binding of ODV was concentration-dependent and saturable. Only minority of the bound virions were internalized at both 37 and 4 degrees C, suggesting usage of direct membrane fusion as the entry mode. The intracellular transport of ODV was confined in vesicular structures peripheral to the plasma membrane, impeding subsequent nuclear entry and transgene expression. Transduction of ODV was not rescued by mimicking the preferred alkaline environment and lowered temperature of the ODV infective entry, or following treatment with the microtubule depolymerizing agent nocodazole or with the histone deacetylase inhibitor sodium butyrate. Similar to unmodified P74, the ZZP74 chimera localized in the intranuclear ring zone, and was enriched in virus-induced microvesicles. However, Western blotting of ODV and budded virions (BV), as well as viral envelope and nucleocapsid fractions combined with functional infection/transduction studies revealed incorporation of the ZZP74 fusion protein into viral nucleocapsids. The ZZP74 BV preserved normal infectivity, polypeptide profile, and morphology, but became incapable of entering and transducing human cells.  相似文献   

16.
orf101 is a late gene of Autographa californica nucleopolyhedrovirus (AcMNPV). It encodes a protein of 42 kDa which is a component of the nucleocapsid of budded virus (BV) and occlusion-derived virus (ODV). To reflect this viral localization, the product of orf101 was named BV/ODV-C42 (C42). C42 is predominantly detected within the infected-cell nucleus: at 24 h postinfection (p.i.), it is coincident with the virogenic stroma, but by 72 h p.i., the stroma is minimally labeled while C42 is more uniformly located throughout the nucleus. Yeast two-hybrid screens indicate that C42 is capable of directly interacting with the viral proteins p78/83 (1629K) and ODV-EC27 (orf144). These interactions were confirmed using blue native gels and Western blot analyses. At 28 h p.i., C42 and p78/83 are detected in two complexes: one at approximately 180 kDa and a high-molecular-mass complex (500 to 600 kDa) which also contains EC27.  相似文献   

17.
Baculoviruses produce two viral phenotypes, the budded virus (BV) and the occlusion-derived virus (ODV). ODVs are released from occlusion bodies in the midgut where they initiate a primary infection. Due to the lack of an in vitro system, the molecular mechanism of ODV infection is still unclear. Here we present data demonstrating that Helicoverpa armigera nucleopolyhedrovirus (HearNPV) ODV infected cultured Hz-AM1 cells in a pH dependent manner. The optimal pH for ODV infection was 8.5, which is same to that in the microvilli of midgut epithelial cells, the ODV native infection sites. Antibodies neutralization analysis indicated that four HearNPV oral infection essential genes p74, pif-1, pif-2 and pif-3 are also essential for HearNPV ODV infection in vitro. Thus, HearNPV-HzAM1 system can be used to analyze the mechanism of ODV entry. Foundation items: National Nature Science Foundations of China (30325002, 30470075); National Basic Research Priorities Program of China (2003CB1140).  相似文献   

18.
孟庆峰  刘晓勇 《昆虫学报》2013,56(8):925-933
杆状病毒与昆虫宿主相互作用是一种基本的分子和生态问题, 不仅在农业上, 而且在真核表达系统、 基因治疗、 蛋白表面展示 系统以及基因工程疫苗等方面都有重要的实际应用。杆状病毒还是一种很有潜力的病毒杀虫剂, 而且对环境来说是安全的。研究这些相互 作用也产生了许多重要和有价值的发现。杆状病毒生命循环中存在两种不同形式的病毒, 即包埋型病毒粒子(occlusion derived virus, ODV) 和出芽型病毒粒子(budded virus, BV)。ODV包裹于多角体中, 主要负责宿主的原发感染; 而BV由感染的宿主细胞释放后引发继发 感染。病毒侵染起始于敏感的昆虫宿主食用了污染包涵体病毒的植物。在宿主中肠的碱性环境中, 多角体溶解释放ODV, ODV与宿主肠道 柱状上皮细胞细胞膜融合, 通过内吞体进入细胞。之后核衣壳从内吞体中逃脱并被转运到细胞核。病毒转录和复制在细胞核进行, 新生 的BV粒子从基底膜出芽引起全身感染。杆状病毒与宿主细胞相互作用包括从病毒结合和进入时的相互作用, 到宿主基因表达调节, 以及 修饰与调节细胞和机体所发生的生理和防御的相互作用的复杂和微妙的机制。本文主要以杆状病毒侵染昆虫宿主的过程为线索, 总结和评 述了杆状病毒与昆虫宿主相互作用方面研究的最新进展, 特别是杆状病毒基因在病毒入侵过程中所起的作用。  相似文献   

19.
The Helicoverpa armigera nucleopolyhedrovirus (HearNPV) ORF80 (ha80) has 765 bp encoding a protein with approximately 254 amino acids and a predicted molecular weight of 30.8 kDa. Homologues of ha80 are found in most baculovirus sequences, including those from lepidopteran NPVs, lepidopteran granuloviruses (GVs), hymenopteran baculoviruses, and one dipteran baculovirus, yet their functions remain unclear. In this study we characterized ha80, and showed that it was transcribed late in infected host cells (HzAM1). The product of ha80 was a 31 kDa protein that was not a structural protein of budded virus (BV) or occlusion-derived virus (ODV) particles. Ha80 was first detected in the cytoplasm of infected HzAM1 cells at 12 h p.i., and was observed in the nucleus at later stages of infection, suggesting that it may be involved in transporting viral proteins into the host cell nucleus or play its roles in the nucleus.  相似文献   

20.
We used indirect immunofluorescence to examine the factors determining the intranuclear location of herpes simplex virus (HSV) DNA polymerase (Pol) in infected cells. In the absence of viral DNA replication, HSV Pol colocalized with the HSV DNA-binding protein ICP8 in nuclear framework-associated structures called prereplicative sites. In the presence of viral DNA replication, HSV Pol colocalized with ICP8 in globular intranuclear structures called replication compartments. In cells infected with mutant viruses encoding defective ICP8 molecules, Pol localized within the cell nucleus but showed a general diffuse intranuclear distribution. In uninfected cells transfected with a plasmid expressing Pol, Pol similarly showed a diffuse intranuclear distribution. Therefore, Pol can localize to the cell nucleus without other viral proteins, but functional ICP8 is required for Pol to localize to prereplicative sites. In cells infected with mutant viruses encoding defective Pol molecules, ICP8 localized to prereplicative sites. Thus, Pol or the portions of Pol not expressed by the mutant viruses are not essential for the formation of prereplicative sites or the localization of ICP8 to these structures. These results demonstrate that a specific nuclear protein can influence the intranuclear location of another nuclear protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号