首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of agaric acid as inducer of mitochondrial permeability transition was studied. It was found that: (i) agaric acid (AA) promoted efflux of accumulated Ca2+, collapse of transmembrane potential, and mitochondrial swelling; (ii) these effects depend on membrane fluidity; (iii) ADP inhibited the effect of AA on Ca2+ efflux, and (iv) AA blocked binding of the sulfhydryl reagent, eosin-5-maleimide, to the adenine nucleotide translocase. It is proposed that AA induces pore opening through binding of the citrate moiety to the ADP/ATP carrier; this interaction must be stabilized by insertion of the alkyl chain in the lipid milieu of the membrane.  相似文献   

2.
Large-conductance Ca2+-activated K+ channels (BK channels) constitute an key physiological link between cellular Ca2+ signaling and electrical signaling at the plasma membrane. Thus these channels are critical to the control of action potential firing and neurotransmitter release in several types of neurons, as well as the dynamic control of smooth muscle tone in resistance arteries, airway, and bladder. Recent advances in our understanding of K+ channel structure and function have led to new insight toward the molecular mechanisms of opening and closing (gating) of these channels. Here we will focus on mechanisms of BK channel gating by Ca2+, transmembrane voltage, and auxiliary subunit proteins.  相似文献   

3.
In this work we studied permeability transition by incubating mitochondria in the presence of 50 M Ca2+ and malate/glutamate as substrates. This condition, besides inducing the release of pyridine nucleotides, promotes the generation of reactive oxygen-derived species by the complex I of the respiratory chain. The latter leads to the opening of the mitochondrial permeability transition pore. Ca2+ release, mitochondrial swelling and collapse of the transmembrane electric potential, were analyzed to assess this process. We propose that the mechanism for pore opening, in addition to the oxidative stress, involves the uncoupling effect of fatty acids providing activation of phospholipase A2, lipid peroxidation, and the oxidation of membrane thiols. This proposal emerges from the data indicating the protective effect of bovine serum albumin and N-ethylmaleimide. The key role of reactive oxygen species was implied based on the fact that the scavenger -phenyl-tert-butyl nitrone inhibited pore opening.  相似文献   

4.
S. Rapoport  W. Dubiel  M. Müller 《FEBS letters》1983,160(1-2):134-136
The ATP-dependent proteolysis of rat liver mitochondria prepared in electrolyte-poor sucrose media requires the presence of Ca2+. Lanthanum, an inhibitor of Ca2+ uptake, inhibits the proteolysis. In contrast, proteolysis of mitochondria prepared in a salt medium does not require Ca2+, nor is it inhibited by lanthanum. It is concluded that Caa+ exerts its effect in an indirect manner, by causing swelling and thereby increasing the accessibility of the membrane proteins of the inner mitochondrial membrane.  相似文献   

5.
Several studies have demonstrated that the mitochondrial membrane switches from selective to non-selective permeability because of its improved matrix Ca2+ accumulation and oxidative stress. This process, known as permeability transition, evokes severe dysfunction in mitochondria through the opening of a non-specific pore, whose chemical nature is still under discussion. There are some proposals regarding the components of the pore structure, e.g., the adenine nucleotide translocase and dimers of the F1 Fo-ATP synthase. Our results reveal that Ca2+ induces oxidative stress, which not only increases lipid peroxidation and ROS generation but also brings about both the collapse of the transmembrane potential and the membrane release of cytochrome c. Additionally, it is shown that Ca2+ increases the binding of the probe eosin-5-maleimide to adenine nucleotide translocase. Interestingly, these effects are diminished after the addition of ADP. It is suggested that pore opening is caused by the binding of Ca2+ to the adenine nucleotide translocase.  相似文献   

6.
The role of Ca2+ in glycerol dissimilation under hypoosmotic stress in the halotolerant alga Dunaliella tertiolecta was investigated using a pharmacological approach. A stretch-activated Ca2+ channel blocker, GdCl3, inhibited glycerol dissimilation under hypoosmotic stress. However, addition of voltage-dependent Ca2+ channel blockers and inhibitors of mitochondrial and endoplasmic reticulum Ca2+ channels did not affect the glycerol dissimilation under hypoosmotic stress. The results of the present study suggest that the influx of Ca2+ from the extracellular space via the stretch-activated Ca2+ channels localized in the plasma membrane is required for the transduction of osmotic signal of D. tertiolecta.  相似文献   

7.
YCT is a semipurified extract from Cratoxylum cochinchinense that has antioxidant properties and contains mostly mangiferin. We show here that YCT is selectively toxic to certain cell types and investigate the mechanisms of this toxicity in Jurkat T cells. By flow cytometric analyses, we show that YCT causes intense oxidative stress and a rise in cytosolic Ca2+. This is followed by a rise in mitochondrial Ca2+, release of cytochrome c, collapse of Δψm, a fall in ATP levels, and eventually cell death. The mechanism(s) of intense oxidative stress may involve a plasma membrane redox system, as cell death is inhibited by potassium ferricyanide. Cell death has some features of apoptosis (propidium iodide staining, externalization of phosphatidylserine, limited caspase-3 and -9 activities), but there was no internucleosomal DNA fragmentation.  相似文献   

8.
The relationship between mitochondrial Ca2+ transport and permeability transition pore (PTP) opening as well as the effects of mitochondrial energetic status on mitochondrial Ca2+ transport and PTP opening were studied. The results showed that the calcium-induced calcium release from mitochondria (mCICR) induced PTP opening. Inhibitors for electron transport of respiratory chain inhibited mCICR and PTP opening. Partial recovery of electron transport in respiratory chain resulted in partial recovery of mCICR and PTP opening. mCICR and PTP opening were also inhibited by CCCP which eliminated transmembrane proton gradient. The results indicated that mitochondrial Ca2+ transport and PTP opening are largely dependent on electron transport and energy coupling.  相似文献   

9.
Although the rapid and considerable membrane depolarization response which accompanies activation of the phagocyte NADPH oxidase is due to transmembrane electron fluxes, little is known about the involvement of reactive oxidant species (ROS) in the subsequent repolarization response. In the current study, we have investigated the effects of superoxide dismutase (SOD), catalase, methionine, and the myeloperoxidase (MPO) inhibitors, sodium azide and 4-aminobenzoyl hydrazide (ABAH), as well as those of H2O2 and HOCl (both at 100 μM) on the alterations in membrane potential which accompany activation of human neutrophils with the chemoattractant, FMLP (1 μM), and on store-operated uptake of Ca2+. The generation of ROS by FMLP-activated neutrophils was monitored according to the magnitude of oxygen consumption and autoiodination, while spectrofluorimetric procedures were used to measure alterations in membrane potential and influx of Ca2+. Treatment of the cells with H2O2, and HOCl, significantly impeded membrane repolarization, while sodium azide, ABAH, methionine, and catalase exerted the opposite effects, potentiating both the rates and the magnitudes of membrane repolarization and store-operated uptake of Ca2+. These observations demonstrate that NADPH oxidase regulates neutrophil membrane potential and Ca2+ influx not only via its electrogenic activity, but also as a consequence of the generation of ROS.  相似文献   

10.
Ca2+ loading in mitochondria promotes the opening of a non-selective transmembrane pathway. Permeability transition is also associated with the interaction of cyclophilin D at the internal surface of the non-specific transmembrane pore. This interaction is circumvented by cyclosporin A and ADP. Our results show that, in the absence of ADP, liver mitochondria were unable to retain Ca2+, they underwent a fast and large amplitude swelling, as well as a rapid collapse of the transmembrane potential. In contrast, in the absence of ADP, kidney mitochondria retained Ca2+, swelling did not occur, and the collapse of the membrane potential was delayed. Ca2+ efflux was reversed by the addition of ADP and cyclosporin A. Our findings indicate that the differences between liver and kidney mitochondria are due to the low association of cyclophilin D to the ADP/ATP carrier found in kidney mitochondria as compared to liver mitochondria.  相似文献   

11.
The relationship between mitochondrial Ca2+ transport and permeability transition pore (PTP) opening as well as the effects of mitochondrial energetic status on mitochondrial Ca2+ transport and PTP opening were studied. The results showed that the calcium-induced calcium release from mitochondria (mCICR) induced PTP opening. Inhibitors for electron transport of respiratory chain inhibited mCICR and PTP opening. Partial recovery of electron transport in respiratory chain resulted in partial recovery of mCICR and PTP opening. mCICR and PTP opening were also inhibited by CCCP which eliminated transmembrane proton gradient. The results indicated that mitochondrial Ca2+ transport and PTP opening are largely dependent on electron transport and energy coupling.  相似文献   

12.
Increase in cytoplasmic cyclic AMP concentration stimulates Ca2+ influx through the cyclic AMP-gated cation channel in the plasma membrane of cultured carrot cells. However, the Ca2+ current terminated after a few minutes even in the presence of high concentrations of cyclic AMP indicating that hydrolysis of the nucleotide is not responsible for stop of the Ca2+ influx. Cyclic AMP evoked discharge of Ca2+ from inside-out sealed vesicles of carrot plasma membrane, and it was strongly inhibited when the suspension of the vesicles was supplemented with 1 μM of free Ca2+, while Ca2+ lower than 0.1 μM did not affect the Ca2+-release. The Ca2+ flux across plasma membrane was restored from this Ca2+-induced inhibition by the addition of calmodulin inhibitors or anti-calmodulin. These results suggest that Ca2+ influx initiated by the increase in intracellular cAMP in cultured carrot cells is terminated when the cytosolic Ca2+ concentration reaches the excitatory level in the cells, and calmodulin located in the plasma membrane plays an important role in the response decay of the cyclic nucleotide-gated Ca2+ channel.  相似文献   

13.
Measurements of Ca2+ influx and [Ca2+]i changes in Fura-2/AM-loaded prothoracic glands (PGs) of the silkworm, Bombyx mori, were used to identify Ca2+ as the actual second messenger of the prothoracicotropic hormone (PTTH) of this insect. Dose-dependent increases of [Ca2+]i in PG cells were recorded in the presence of recombinant PTTH (rPTTH) within 5 minutes. The rPTTH-mediated increases of [Ca2+]i levels were dependent on extracellular Ca2+. They were not blocked by the dihydropyridine derivative, nitrendipine, an antagonist of high-voltage-activated (HVA) Ca2+ channels, and by bepridil, an antagonist of low-voltage-activated (LVA) Ca2+ channels. The trivalent cation La3+, a non-specific blocker of plasma membrane Ca2+ channels, eliminated the rPTTH-stimulated increase of [Ca2+]i levels in PG cells and so did amiloride, an inhibitor of T-type Ca2+ channels. Incubation of PG cells with thapsigargin resulted in an increase of [Ca2+]i levels, which was also dependent on extracellular Ca2+ and was quenched by amiloride, suggesting the existence of store-operated plasma membrane Ca2+ channels, which can also be inhibited by amiloride. Thapsigargin and rPTTH did not operate independently in stimulating increases of [Ca2+]i levels and one agent’s mediated increase of [Ca2+]i was eliminated in the presence of the other. TMB-8, an inhibitor of intracellular Ca2+ release from inositol 1,4,5 trisphosphate (IP3)-sensitive Ca2+ stores, blocked the rPTTH-stimulated increases of [Ca2+]i levels, suggesting an involvement of IP3 in the initiation of the rPTTH signaling cascade, whereas ryanodine did not influence the rPTTH-stimulated increases of [Ca2+]i levels. The combined results indicate the presence of a cross-talk mechanism between the [Ca2+]i levels, filling state of IP3-sensitive intracellular Ca2+ stores and the PTTH-receptor’s-mediated Ca2+ influx.  相似文献   

14.
By mediating the Ca2+ influx that triggers exocytotic fusion, Ca2+ channels play a central role in a wide range of secretory processes. Ca2+ channels consist of a complex of protein subunits, including an 1 subunit that constitutes the voltage-dependent Ca2+-selective membrane pore, and a group of auxiliary subunits, including β, γ, and 2–δ subunits, which modulate channel properties such as inactivation and channel targeting. Subtypes of Ca2+ channels are constituted by different combinations of 1 subunits (of which 10 have been identified) and auxiliary subunits, particularly β (of which 4 have been identified). Activity-secretion coupling is determined not only by the biophysical properties of the channels involved, but also by the relationship between channels and the exocytotic apparatus, which may differ between fast and slow types of secretion. Colocalization of Ca2+ channels at sites of fast release may depend on biochemical interactions between channels and exocytotic proteins. The aim of this article is to review recent work on Ca2+ channel structure and function in exocytotic secretion. We discuss Ca2+ channel involvement in selected types of secretion, including central neurotransmission, endocrine and neuroendocrine secretion, and transmission at graded potential synapses. Several different Ca2+ channel subtypes are involved in these types of secretion, and their function is likely to involve a variety of relationships with the exocytotic apparatus. Elucidating the relationship between Ca2+ channel structure and function is central to our understanding of the fundamental process of exocytotic secretion.  相似文献   

15.
Gliotoxin (GT) is a hydrophobic fungal metabolite of the epipolythiodioxopiperazine group which reacts with membrane thiols. When added to a suspension of energized brain mitochondria, it induces matrix swelling of low amplitude, collapse of membrane potential (DeltaPsi), and efflux of endogenous cations such as Ca2+ and Mg2+, typical events of mitochondrial permeability transition (MPT) induction. These effects are due to opening of the membrane transition pore. The addition of cyclosporin A (CsA) or ADP slightly reduces membrane potential collapse, matrix swelling and Ca2+ efflux; Mg2+ efflux is not affected at all. The presence of exogenous Mg2+ or spermine completely preserve mitochondria against DeltaPsi collapse, matrix swelling and Ca2+ release. Instead, Mg2+ efflux is only slightly affected by spermine. Our results demonstrate that, besides inducing MPT, gliotoxin activates a specific Mg2+ efflux system from brain mitochondria.  相似文献   

16.
The store-mediated Ca2+ entry was detected in single and cluster of rat submandibular acinar cells by measuring the Ca2+ activated ionic membrane currents. In the cells where intracellular Ca2+ was partly depleted by stimulation with submaximal concentration of acetylcholine (ACh) under a Ca2+-free extracellular condition, an employment of external Ca2+ in the absence of ACh caused a sustained increase of the K+ current without affecting the Cl current. A renewed ACh challenge without external Ca2+ caused repetitive spikes of both K+ and Cl currents due to the Ca2+ release. SK & F 96365 inhibited the generation of the sustained K+ current and refilling of the Ca2+ store following the Ca2+ readmission. It is suggested that the Ca2+ enters the cell through the store-mediated pathway near the K+ channels and is taken up by the store. Thus, only Ca2+ released from the store can activate both the K+ and Cl currents.  相似文献   

17.
The mitochondrial permeability transition pore (mtPTP) is a non specific channel that forms in the inner mitochondrial membrane to transport solutes with a molecular mass smaller than 1.5 kDa. Although the definitive molecular identity of the pore is still under debate, proteins such as cyclophilin D, VDAC and ANT contribute to mtPTP formation. While the involvement of mtPTP opening in cell death is well established1, accumulating evidence indicates that the mtPTP serves a physiologic role during mitochondrial Ca2+ homeostasis2, bioenergetics and redox signaling 3.mtPTP opening is triggered by matrix Ca2+ but its activity can be modulated by several other factors such as oxidative stress, adenine nucleotide depletion, high concentrations of Pi, mitochondrial membrane depolarization or uncoupling, and long chain fatty acids4. In vitro, mtPTP opening can be achieved by increasing Ca2+ concentration inside the mitochondrial matrix through exogenous additions of Ca2+ (calcium retention capacity). When Ca2+ levels inside mitochondria reach a certain threshold, the mtPTP opens and facilitates Ca2+ release, dissipation of the proton motive force, membrane potential collapse and an increase in mitochondrial matrix volume (swelling) that ultimately leads to the rupture of the outer mitochondrial membrane and irreversible loss of organelle function.Here we describe a fluorometric assay that allows for a comprehensive characterization of mtPTP opening in isolated mouse heart mitochondria. The assay involves the simultaneous measurement of 3 mitochondrial parameters that are altered when mtPTP opening occurs: mitochondrial Ca2+ handling (uptake and release, as measured by Ca2+ concentration in the assay medium), mitochondrial membrane potential, and mitochondrial volume. The dyes employed for Ca2+ measurement in the assay medium and mitochondrial membrane potential are Fura FF, a membrane impermeant, ratiometric indicator which undergoes a shift in the excitation wavelength in the presence of Ca2+, and JC-1, a cationic, ratiometric indicator which forms green monomers or red aggregates at low and high membrane potential, respectively. Changes in mitochondrial volume are measured by recording light scattering by the mitochondrial suspension. Since high-quality, functional mitochondria are required for the mtPTP opening assay, we also describe the steps necessary to obtain intact, highly coupled and functional isolated heart mitochondria.  相似文献   

18.
In this study we investigated the release of Ca2+ in brain microsomes after Ca2+ loading by the Ca2+-ATPase or by the Na+/Ca2+ exchanger. The results show that in microsomes loaded with Ca2+ by the Ca2+-ATPase, Ins(1,4,5)P3 (5 μM) release 21±2% of the total Ca2+ accumulated, and that in the microsomes loaded with Ca2+ by the Na2+/Ca2+ exchanger, Ins(1,4,5)P3 released 28±3% of the total Ca2+ accumulated. These results suggest that receptors of Ins(1,4,5)P3 may be co-localized with the Na2+/Ca2+ exchanger in the endoplasmic reticulum membrane or that there are Ins(1,4,5)P3 receptors in the plasma membrane where the Na2+/Ca2+ exchanger is normally present, or both. We also found that Ins(1,4,5)P3 inhibited the Ca2+-ATPase by 33.7%, but that it had no significant effect on the Na2+/Ca2+ exchanger.  相似文献   

19.
Induction of the nonselective cyclosporin-sensitive pore in the inner mitochondrial membrane under conditions of complete dissipation of ion gradients and transmembrane potential was studied. This approach allows the kinetics of Ca2+-dependent pore opening and the preceding processes of induction to be studied separately. The effects of mitochondrial heterogeneity were also minimized. We found that the kinetics of pore opening can be described by a minimal two-step scheme where only the rate constant at the first step depends on Ca2+ concentration. Oxidation of pyridine nucleotides in the matrix caused a slow transition in the pore complex and decreased the apparent dissociation constant of the Ca2+-binding site from >1 mM to approximately 30 microM. N-Ethylmaleimide (but not disulfide-reducing agents) prevented and slowly reverted the pore induction process. Data suggesting allosteric modulation of the pore by pyridine nucleotides are presented.  相似文献   

20.
The capacity of cyclosporin A to inhibit opening of a Ca2+-dependent pore in the inner membrane of heart mitochondria was investigated. Whereas in the presence of 25 nmol of Ca2+/mg of mitochondrial protein and 5 mM-Pi mitochondria were unable to maintain accumulated Ca2+, inner-membrane potential and sucrose impermeability, all three parameters were preserved when cyclosporin was included. Pore opening was assayed directly by [14C]sucrose entry and entrapment in the matrix space. [14C]Sucrose entry induced by both Ca2+ plus Pi and Ca2+ plus t-butyl hydroperoxide was almost completely inhibited by 60 pmol of cyclosporin/mg of mitochondrial protein. It is concluded that cyclosporin A is a potent inhibitor of the pore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号