首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: Adenosine A1 receptors as well as other components of the adenylate cyclase system have been studied in cultured cerebellar granule cells. No significant changes in adenosine A1 receptor number, assayed by radioligand binding in intact cells, were detected from 2 days in vitro (DIV) until 7 DIV. Nevertheless, a decline in this parameter was detected at 9 DIV. The steady-state levels of α-Gs and α-Gi, detected by immunoblotting, showed similar profiles, increasing from 2 to 5 DIV and decreasing afterward. Forskolin-stimulated adenylate cyclase levels also showed an increase until 5 DIV, decreasing at 7 and 9 DIV. The adenosine A1 receptor analogue cyclopentyladenosine (CPA) was able to inhibit cyclic AMP accumulation at 2, 5, and 7 DIV but failed to do so at 9 DIV. This inhibition was prevented by the specific adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine. The presence of adenosine deaminase in the culture increased adenosine A1 receptor number during the period studied and induced recovery of the inhibitory effect of CPA, lost after 7 DIV. These data suggest that functional expression of adenosine A1 receptors and the other components of the adenylate cyclase system is subjected to regulation during the maturation of cultured cerebellar granule cells and demonstrates a key role for endogenous adenosine in the process.  相似文献   

2.
Barbiturates Are Selective Antagonists at A1 Adenosine Receptors   总被引:3,自引:0,他引:3  
Barbiturates in pharmacologically relevant concentrations inhibit binding of (R)-N6-phenylisopropyl[3H]adenosine ([3H]PIA) to solubilized A1 adenosine receptors in a concentration-dependent, stereospecific, and competitive manner. Ki values are similar to those obtained for membrane-bound receptors and are 31 microM for (+/-)-5-(1,3-dimethyl)-5-ethylbarbituric acid [(+/-)-DMBB] and 89 microM for (+/-)-pentobarbital. Kinetic experiments demonstrate that barbiturates compete directly for the binding site of the receptor. The inhibition of rat striatal adenylate cyclase by unlabelled (R)-N6-phenylisopropyladenosine [(R)-PIA] is antagonized by barbiturates in the same concentrations that inhibit radioligand binding. The stimulation of adenylate cyclase via A2 adenosine receptors in membranes from N1E 115 neuroblastoma cells is antagonized only by 10-30 times higher concentrations of barbiturates. It is concluded that barbiturates are selective antagonists at the A1 receptor subtype. In analogy to the excitatory effects of methylxanthines it is suggested that A1 adenosine receptor antagonism may convey excitatory properties to barbiturates.  相似文献   

3.
4.
Serotonin has no obvious effect on basal cyclic AMP levels but reduces the forskolin-, isoproterenol-, and vasoactive intestinal peptide-induced stimulation of cyclic AMP levels in a dose-dependent manner. Serotonergic, cholinergic, muscarinic, alpha-adrenergic, and dopaminergic antagonists have no effect on the serotonin response. Topical application of a serotonin/pargyline solution to the living eye causes desensitisation of the serotonin response in the iris-ciliary body, an observation confirming the presence of specific serotonergic receptors linked to adenylate cyclase. The 5-HT1A [5-hydroxytryptamine (serotonin) type 1A] receptor agonists 8-hydroxy-2-(di-n-propylamino)tetralin and buspirone mimic the serotonin response in reducing the forskolin-stimulated cyclic AMP levels, as do the indole derivatives 5-methoxytryptamine, 5-hydroxtryptophan, and tryptamine. However, the ineffectiveness of the 5-HT1A agonist ipsapirone and the inability of spiroxatrine to block the serotonin response show that classical 5-HT1A receptors are not involved. The serotonin response is blocked by pertussis toxin and is insensitive to the phosphodiesterase inhibitor theophylline, which indicates the involvement of an inhibitory guanine regulatory protein in the coupling of the serotonin receptor to the adenylate cyclase catalytic unit.  相似文献   

5.
Chronic ethanol ingestion by mice resulted in the loss of high-affinity beta-adrenergic agonist binding sites and a significant decrease in activation of adenylate cyclase by guanine nucleotides and beta-adrenergic agonists in the hippocampus, although no significant change was noted in the total number of beta-adrenergic receptors, as defined by the binding of the antagonist [125]iodocyanopindolol. In cerebellum, chronic ethanol ingestion resulted in a 16% decrease in the total concentration of beta-adrenergic receptors and in a decrease in the affinity for agonist of the high-affinity beta-adrenergic agonist binding sites. However, neither the amount of the high-affinity agonist binding sites nor the activation of adenylate cyclase by agonist was affected. The different responses to ethanol in hippocampus and cerebellum may result from quantitative differences in distribution of beta 1- and beta 2-adrenergic receptors in the tested brain areas and/or differential effects of ethanol on stimulatory guanine nucleotide binding protein in these brain areas.  相似文献   

6.
The putative regulatory effect of opioids on adenylate cyclase was investigated in two different preparations containing, respectively, two different populations of opioid receptors: the rabbit cerebellum (greater than 75% mu-opioid receptors) and the guinea pig cerebellum (greater than 80% kappa-opioid receptors). In the mu-preparation, but not in the kappa-preparation, opioids inhibited the basal and the forskolin-stimulated adenylate cyclase activity in a dose-dependent manner and stereospecifically. The inhibition was in the 20-30% range, required the presence in the assay medium of Mg2+ and of GTP, but was independent of the presence of Na+. Pharmacological characterization of the inhibitory response in the rabbit cerebellum clearly showed that it was under the control of a mu-opioid binding site, with the effect being elicited by non-selective (etorphine and morphine) and mu-selective (Tyr-D-Ala-Gly-Me-Phe-Gly-ol) agonists, whereas delta- and kappa-selective agonists were almost totally ineffective. ADP ribosylation of inhibitory GTP-binding protein by pertussis toxin failed to block the inhibitory effect of opioids, and data presented suggest that this failure is likely to be the consequence of a limited access of the toxin to its substrate in rabbit cerebellum membranes.  相似文献   

7.
The effect of a single electroconvulsive shock (ECS) (30 min and 24 h after treatment) and repeated ECS (10 once-daily) on the adenosine neuromodulatory system was investigated in rat cerebral cortex, cerebellum, hippocampus, and striatum. The present study examined the adenosine A1 receptor using N6-[3H]cyclohexyladenosine ([3H]CHA), the A2 receptor using 5'-N-[3H]ethylcarboxyamidoadenosine ([ 3H]NECA), adenylate cyclase using [3H]forskolin, and the adenosine uptake site using [3H]nitrobenzylthioinosine ([3H]NBI). At 30 min after a single ECS, the Bmax of the [3H]NBI binding in striatum was increased by 20%, which is in good agreement with the well-known postictal adenosine release. The Bmax of [3H]forskolin binding in striatum and cerebellum was increased by 60 and 20%, respectively. In contrast to earlier reported changes following chemically induced seizures, [3H]CHA binding was not altered postictally. At 24 h after a single ECS, there were no changes for any ligand in any brain region. Following repeated ECS, there was a 20% increase of [3H]CHA binding sites in cerebral cortex, which lasted for at least 14 days after the last ECS. [3H]Forskolin binding in hippocampus and striatum was 20% lowered 24 h after 10 once-daily ECS but had already returned to control levels 48 h after the last treatment. Evidence is provided that the upregulated adenosine A1 receptors are coupled to guanine nucleotide binding proteins and, furthermore, that this upregulation is not paralleled by an increase in adenylate cyclase activity as labeled by [3H]forskolin.  相似文献   

8.
Abstract: Excitatory amino acid (EAA)-induced polyphosphoinositide (PPI) hydrolysis was studied during the development in culture of cerebellar granule cells. The developmental pattern was similar using metabotropic glutamate (Glu) receptor (mGluR) agonists, including L-Glu, quisqualate, and trans -(±)-1-amino-1,3-cyclopentanedicarboxylic acid: The stimulation of [3H]inositol monophosphate ([3H]-InsP) formation was low at 2 days in vitro (DIV), but the response increased steeply, reaching a peak at 4 DIV, followed by a progressive decline. In contrast, carbamylcholine-induced PPI hydrolysis exhibited a plateau after a pronounced increase during the first week in vitro. At 6 DIV, but not at 4 DIV, when the activity peaked, PPI hydrolysis elicited by Glu was reduced by the N -methyl- d -aspartate (NMDA) receptor antagonist MK-801, indicating that in cultured granule cells, NMDA receptors contribute to [3H]-InsP formation and that this component of the response develops relatively late. Accordingly, NMDA-induced [3H]-InsP formation, estimated under Mg2+-free conditions, increased markedly from very low values at 2 DIV to a plateau at 8–10 DIV. The developmental pattern of EAA-induced PPI hydrolysis was paralleled by changes in the level of an mRNA for a specific mGluR subtype ( mGluR1 mRNA). RNA blot analysis performed with the pmGR1 cDNA probe revealed that the hybridization signal in RNA extracts from cultures at 1 DIV was very weak, but mGluR mRNA levels increased dramatically between 1 and 3 DIV, followed by a progressive decrease, so that by 15 DIV the mRNA levels were only ∼10% of the values at 3 DIV. These observations indicate that the functional expression of the mGluR is subject to developmental regulation, which critically involves receptor mRNA levels.  相似文献   

9.
Kainic acid (KA), quisqualic acid (QUIS), and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) stimulated D-[3H]aspartate release from cultured cerebellar granule cells in a concentration-dependent way. The EC50 values were 50 microM for KA (Gallo et al., 1987) and 20 microM for both QUIS and AMPA, but the efficacy of QUIS appeared to be greater than that of AMPA. The release of D-[3H]aspartate induced by KA, QUIS, and AMPA was blocked, in a dose-dependent way, by the new glutamate receptor antagonist 6-cyano-2,3-dihydroxy-7-nitroquinoxaline (CNQX); IC50 values were 0.7 microM in the case of AMPA (50 microM) and 1 microM in the case of KA (50 microM). AMPA (50-300 microM) inhibited the effect of 50 microM KA on D-[3H]aspartate release. At 300 microM AMPA, the effect of KA plus AMPA was not antagonized by the KA receptor antagonist kynurenic acid (KYN). In contrast, when KA was used at an ineffective concentration (10 microM), the addition of AMPA at concentrations below the EC50 value (10-20 microM) resulted in a synergistic effect on D-[3H]aspartate release. In this case, the evoked release of D-[3H]aspartate was sensitive to KYN. KA stimulated the formation of cyclic GMP, whereas QUIS, AMPA, and glutamate were ineffective. The accumulation of cyclic GMP elicited by KA (100 microM) was prevented not only by the antagonists CNQX (IC50 = 1.5 microM) and KYN (IC50 = 200 microM), but also by the agonists AMPA (IC50 = 50 microM) QUIS (IC50 = 3.5 microM), and glutamate (IC50 = 100 microM). We conclude that AMPA, like QUIS, may act as a partial agonist at KA receptors. Moreover, CNQX effectively antagonizes non-N-methyl-D-aspartate receptor-mediated responses in cultured cerebellar granule cells.  相似文献   

10.
Clathrin-coated vesicles purified from bovine brain express adenosine A1 receptor binding activity. N6-Cyclohexyl[3H]adenosine [( 3H]CHA), an agonist for the A1 receptor, binds specifically to coated vesicles. High and low agonist affinity states of the receptor for the radioligand [3H]CHA with KD values of 0.18 and 4.4 nM, respectively, were detected. The high purity of coated vesicles was established by assays for biochemical markers and by electron microscopy. Binding competition experiments using agonists (N6CHA, N-cyclopentyladenosine, 5'-(N-ethylcarboxamido)adenosine, and N6-[(R)- and N6-[(S)-phenylisopropyl]adenosine) and antagonists (theophylline, 3-isobutyl-1-methylxanthine, and caffeine) confirmed the typical adenosine A1 nature of the binding site. This binding site presents stereospecificity for N6-phenylisopropyladenosine, showing 33 times more affinity for N6-[(R)- than for N6-[(S)-phenylisopropyl]adenosine. The specific binding of [3H]CHA in coated vesicles is regulated by guanine nucleotides. [3H]CHA specific binding was decreased by 70% in the presence of the hydrolysis-resistant GTP analogue guanyl-5-yl-imidodiphosphate. Bovine brain coated vesicles present adenylate cyclase activity. This activity was modulated by forskolin and CHA. The results of this study support the evidence that adenosine A1 receptors present in coated vesicles are coupled to adenylate cyclase activity through a Gi protein.  相似文献   

11.
The effect of γ-aminobutyric acid (GABA) and its agonists muscimol and 4,5,6,7-tetrahydroisoxazolo[5-4-c]pyridin-3-ol (THIP) on the development of GABA receptors on cerebellar granule cells was studied by cultivation of the cells in media containing these substances. It was found that the presence of 50 μM GABA in the culture media led to the induction of low-affinity GABA receptors (KD 546 ± 117 nM) in addition to the high-affinity receptors (KD 7 ± 0.5 nM) which were present regardless of the presence of GABA in the culture media. The functional activity of the GABA receptors was tested by investigating the ability of GABA to modulate evoked glutamate release from the cells. It was found that GABA could inhibit evoked glutamate release (ED50 10 ± 3 (μM) only when the cells had been cultured in the presence of 50 νM GABA, 50 μM muscimol, or 150 μM THIP, i.e., under conditions where low-affinity GABA receptors were present on the cells. This inhibitory effect of GABA could be blocked by 120 μM bicuculline and mimicked by 50 μM muscimol or 150 μM THIP whereas 150 μM (-)-baclofen had no effect. It is concluded that GABA acting extracellularly induces formation of low-affinity receptors on cerebellar granule cells and that these receptors are necessary for mediating an inhibitory effect of GABA on evoked glutamate release. The pharmacological properties of these GABA receptors indicate that they belong to the so-called GABAA receptors.  相似文献   

12.
Both A1 and A2a Purine Receptors Regulate Striatal Acetylcholine Release   总被引:2,自引:2,他引:0  
The receptors responsible for the adenosine-mediated control of acetylcholine release from immunoaffinity-purified rat striatal cholinergic nerve terminals have been characterized. The relative affinities of three analogues for the inhibitory receptor were (R)-phenylisopropyladenosine greater than cyclohexyladenosine greater than N-ethylcarboxamidoadenosine (NECA), with binding being dependent of the presence of Mg2+ and inhibited by 5'-guanylylimidodiphosphate [Gpp(NH)p] and adenosine receptor antagonists. Adenosine A1 receptor agonists inhibited forskolin-stimulated cholinergic adenylate cyclase activity, with an IC50 of 0.5 nM for (R)-phenylisopropyladenosine and 500 nM for (S)-phenylisopropyladenosine. A1 agonists inhibited acetylcholine release at concentrations approximately 10% of those required to inhibit the cholinergic adenylate cyclase. High concentrations (1 microM) of adenosine A1 agonists were less effective in inhibiting both adenylate cyclase and acetylcholine release, due to the presence of a lower affinity stimulatory A2 receptor. Blockade of the A1 receptor with 8-cyclopentyl-1,3-dipropylxanthine revealed a half-maximal stimulation by NECA of the adenylate cyclase at 10 nM, and of acetylcholine release at approximately 100 nM. NECA-stimulated adenylate cyclase activity copurified with choline acetyltransferase in the preparation of the cholinergic nerve terminals, suggesting that the striatal A2 receptor is localized to cholinergic neurones. The possible role of feedback inhibitory and stimulatory receptors on cholinergic nerve terminals is discussed.  相似文献   

13.
As shown by autoradiography, peripheral injections of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) induced a dose-dependent decrease of [3H]SCH 23390 and [3H]prazosin high-affinity binding sites in the rat prefrontal cortex. EEDQ showed similar efficacy in inactivating cortical and striatal dopamine (DA) D1 receptors, whereas prazosin-sensitive alpha 1-adrenergic receptors were more sensitive to the action of the alkylating agent, as for all doses of EEDQ tested (from 0.8 to 3 mg/kg, i.p.), the decrease in cortical [3H]SCH 23390 binding was less pronounced than that of [3H]prazosin. The effects of EEDQ on [3H]SCH 23390 binding and DA-sensitive adenylate cyclase activity were then simultaneously compared in individual rats. In the striatum, whatever the dose of EEDQ used, the decrease of DA-sensitive adenylate cyclase activity was always lower than that of D1 binding sites, suggesting the occurrence of a large proportion of spare D1 receptors. In the prefrontal cortex, a significant increase in DA-sensitive adenylate cyclase activity was observed in rats treated with a low dose of EEDQ (0.8 mg/kg), this effect being associated with a slight reduction in [3H]SCH 23390 binding sites (-20%). Parallel decreases in the enzyme activity and D1 binding sites were observed with higher doses. The EEDQ-induced supersensitivity of DA-sensitive adenylate cyclase did not occur in rats in which the decrease in [3H]prazosin binding sites was higher than 35%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The Action of Adenosine Analogs on PC12 Cells   总被引:16,自引:5,他引:11  
Abstract: PC12 cells, a nerve growth factor–responsive clone of rat pheochromocytoma, contain a membrane–bound adenylate cyclase, which can be activated by adenosine analogs. The characteristics of the cyclase response indicate the presence of stimulatory adenosine receptors. Adenosine analogs also produce a marked increase in the ornithine decarboxylase levels of the cells, and the characteristics of this response suggest that it is linked to the adenylate cyclase–stimulatory adenosine receptors. The ornithine decarboxylase response elicited by 5'- N -ethyIcarboxamideadenosine (NECA), a potent stimulatory adenosine analog, is synergistic with that produced by nerve growth factor. Differentiation of the cells with nerve growth factor, however, does not substantially alter either the response of cyclase to the adenosine analog or the magnitude of the adenosine–evoked ornithine decarboxylase response. Treatment of the cells with NECA produces an increase in the phosphorylation of a specific non–histone nuclear protein. While causing little or no morphological alteration by itself, NECA is synergistic with nerve growth factor in producing neurite outgrowth in PC12 cells. NECA does not cause an induction of acetylcholinesterase in the cells, nor does it appear to affect the induction of this enzyme by nerve growth factor.  相似文献   

15.
The hydrolysis of phosphoinositides (PI) elicited in cerebellar granule cell cultures by agonists of metabolotropic glutamate receptors, glutmate and quisqualate, was enhanced when the cells were pretreated with concanavalin A (Con-A). A similar effect was produced by wheat germ agglutinin, but not by several other lectins tested. Con-A produced a dose-dependent effect (EC50 = 3 microM) and increased the efficacy but not the potency of the agonists. In contrast, Con-A failed to enhance PI hydrolysis evoked by N-methyl-D-aspartate, kainate, carbachol, the calcium ionophore A23187, or 50 mM K+. The Con-A stimulatory effect was prevented by simultaneous pretreatment with the agonists of ionotropic quisqualate receptors quisqualate, kainate, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, but not by the antagonist 6-cyano-7-nitroquioxaline-2,3-dione (CNQX). CNQX, which did not inhibit quisqualate-stimulated PI hydrolysis in untreated cells, abolished the component of quisqualate response enhanced by Con-A pretreatment. The pretreatment with Con-A also increased the influx of 45Ca2+ in granule cells stimulated by quisqualate. This increase was inhibited by CNQX. Moreover, the potentiation of PI hydrolysis by Con-A, but not the response to quisqualate alone, was abolished in the absence of Ca2+ and Na+. Pretreatment of granule cells with pertussis toxin inhibited PI hydrolysis stimulated by the metabolotropic quisqualate receptor and the Con-A-potentiated response by the same percentage, but Ca2+ influx induced by quisqualate was not affected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Abstract: In primary cultures of cerebellar granule cells, glutamate, aspartate, and N -methyl-d-aspartate (NMDA) induced a dose-dependent release of [3H]arachidonic acid ([3H]AA) which was selective for these agonists and was inhibited by NMDA receptor antagonists. The agonist-induced [3H]AA release was reduced by quinacrine at concentrations that inhibited phospholipase A2 (PLA2) but affected neither the activity of phospholipase C (PLC) nor the hydrolysis of phosphoinositides induced by glutamate or quisqualate. Thus, the increased formation of AA was due to the receptor-mediated activation of PLA2 rather than to the action of PLC followed by diacylglycerol lipase. The receptor-mediated [3H]AA release was dependent on the presence of extracellular Ca2+ and was mimicked by the Ca2+ ionophore ionomycin. Pretreatment of granule cells with either pertussis or cholera toxin failed to inhibit the receptor-mediated [3H]AA release. Hence, in cerebellar granule cells, the stimulation of NMDA-sensitive glutamate receptors leads to the activation of PLA2 that is mediated by Ca2+ ions entering through the cationic channels functioning as effectors of NMDA receptors. A coupling through a toxin-sensitive GTP-binding protein can be excluded.  相似文献   

17.
Abstract: The ability of receptors coupled to phosphoinositide turnover to evoke accumulation of inositol 1,4,5-trisphosphate (InsP3) over extended incubation periods, and consequently to affect the level of InsP3 receptor expression, was studied in cultured cerebellar granule cells. The cholinergic agonist carbachol (CCh; 1 m M ) evoked a biphasic accumulation of InsP3, a rapid three- to fourfold peak increase over control levels at ∼10 s, decreasing within 1 min to a long-lasting plateau elevation. Using an antibody against the type I InsP3 receptor, it was demonstrated that >50% down-regulation of type I InsP3 receptor expression in cerebellar granule cells occurred within 1 h of incubation with 1 m M CCh. Over 24 h, 1 m M CCh caused an ∼85% decrease in type I InsP3 receptor levels, and significant decreases in immunoreactivity were evident at much lower concentrations of CCh. Direct assessment of total InsP3 receptor expression using a radioligand binding method also detected down-regulation, but to an apparently lesser extent. 1-Aminocyclopentane-1 S ,3 R -dicarboxylic acid (200 µ M ), an agonist of metabotropic glutamate receptors, evoked a marked decrease in type I InsP3 receptors after 24 h of incubation. These findings demonstrate that a functional consequence of maintained InsP3 production in cerebellar granule cells is the down-regulation of InsP3 receptor expression and that this down-regulation may be a common mechanism of action of phosphoinositide-linked receptors during prolonged stimulation.  相似文献   

18.
GABAA receptor mediated inhibition plays an important role in modulating the input/output dynamics of cerebellum. A characteristic of cerebellar GABAA receptors is the presence in cerebellar granule cells of subunits such as α6 and δ which give insensitivity to classical benzodiazepines. In fact, cerebellar GABAA receptors have generally been considered a poor model for testing drugs which potentially are active at the benzodiazepine site. In this overview we show how rat cerebellar granule cells in culture may be a useful model for studying new benzodiazepine site agonists. This is based on the pharmacological separation of diazepam-sensitive α1 β2/3 γ2 receptors from those which are diazepam-insensitive and contain the α6 subunit. This is achieved by utilizing furosemide/Zn2+ which block α6 containing and incomplete receptors.  相似文献   

19.
Rat striatal slices incubated with the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine at 1 mM were exposed to different concentrations (1-100 microM) of the catecholamine-releasing drug amphetamine. This produced both a concentration-dependent release of endogenous dopamine and accumulation of cyclic AMP in the slices. The cyclic AMP accumulation due to amphetamine was greatly increased when slices were coincubated with the selective dopamine D-2 antagonist (-)-sulpiride (30 microM), but the amphetamine-induced release of dopamine from the slices was the same in the presence or absence of (-)-sulpiride. Pretreatment of animals with reserpine (5 mg/kg s.c., 18 h before death) and in vitro incubation with alpha-methyl-p-tyrosine (50 microM for 90 min), respectively, reduced the ability of amphetamine (1-100 microM) [in the presence of 30 microM (-)-sulpiride] to induce release of dopamine and to elevate cyclic AMP accumulation in striatal slices. A similar reduction in amphetamine-induced dopamine release and cyclic AMP accumulation in striatal slices was observed 7 days following unilateral 6-OHDA lesions of the medial forebrain bundle of rats. These results suggest that amphetamine induces release of endogenous dopamine from the terminals of nigrostriatal dopamine neurones. Released dopamine is then able functionally and concomitantly to activate D-1 and D-2 receptors, seen as stimulation and inhibition of cyclic AMP accumulation, respectively.  相似文献   

20.
We identified receptors for neuropeptide Y (NPY) on an established human neuroblastoma cell line, SK-N-MC, which are functionally coupled to adenylate cyclase through the inhibitory guanine nucleotide-binding protein of adenylate cyclase, Gi. Intact SK-N-MC cells bound radiolabeled NPY with a KD of 2 nM and contained approximately 83,000 receptors/cell. Unlabeled porcine and human NPY and structurally related porcine peptide YY (PYY) competed with labeled NPY for binding to the receptors. NPY inhibited cyclic AMP accumulation in SK-N-MC cells stimulated by isoproterenol, dopamine, vasoactive intestinal peptide, cholera toxin, and forskolin. NPY inhibited isoproterenol-stimulated cyclic AMP production in a dose-dependent manner, with half-maximal inhibition at 0.5 nM NPY. Porcine and human NPY and porcine PYY gave similar dose-response curves. NPY also inhibited basal and isoproterenol-stimulated adenylate cyclase activity in disrupted cells. Pertussis toxin treatment of the cells completely blocked the ability of NPY to inhibit cyclic AMP production and adenylate cyclase activity. The toxin catalyzed the ADP-ribosylation of a 41-kDa protein in SK-N-MC cells that corresponds to Gi. The receptors on SK-N-MC cells appeared to be specific for NPY, as other neurotransmitter drugs, such as alpha-adrenergic, dopaminergic, muscarinic, and serotonergic antagonists, did not compete for either NPY binding or NPY inhibition of adenylate cyclase. Thus, SK-N-MC cells may be a useful model for investigating NPY receptors and NPY-mediated signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号