首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RecBCD enzyme is a heterotrimeric helicase/nuclease that initiates homologous recombination at double-stranded DNA breaks. The enzyme is driven by two motor subunits, RecB and RecD, translocating on opposite single-strands of the DNA duplex. Here we provide evidence that, although both motor subunits can support the translocation activity for the enzyme, the activity of the RecB subunit is necessary for proper function of the enzyme both in vivo and in vitro. We demonstrate that the RecBCD(K177Q) enzyme, in which RecD helicase is disabled by mutation of the ATPase active site, complements recBCD deletion in vivo and displays all of the enzymatic activities that are characteristic of the wild-type enzyme in vitro. These include helicase and nuclease activities and the abilities to recognize the recombination hotspot chi and to coordinate the loading of RecA protein onto the ssDNA it produces. In contrast, the RecB(K29Q)CD enzyme, carrying a mutation in the ATPase site of RecB helicase, fails to complement recBCD deletion in vivo. We further show that even though RecB(K29Q)CD enzyme displays helicase and nuclease activities, its inability to translocate along the 3'-terminated strand results in the failure to recognize chi and to load RecA protein. Our findings argue that translocation by the RecB motor is required to deliver RecC subunit to chi, whereas the RecD subunit has a dispensable motor activity but an indispensable regulatory function.  相似文献   

2.
To investigate the role that the individual subunits play in the ATP-dependent helicase activity of the RecBCD protein we have investigated the ability of the RecB, RecC and RecD proteins to displace various 20-mer oligonucleotides annealed to either end or to the centre of an oligonucleotide 60 bases long. The results show that the only subunit which can displace the 20-mers in the absence of the other subunits is the RecB protein. Moreover, the 20-mer is displaced only if it is annealed to the 60-mer at the 5′ end or the middle, suggesting that the RecB protein translocates along the 60-mer in the 3′ to 5′ direction, displacing annealed 20-mers as it proceeds. We have shown that reconstituted RecBC and RecBCD complexes displace the 20-mers but, unlike RecB, they do not require a 3′-ended single-stranded region for helicase action, but can displace the 20-mers from either end of the 60-mer. The level of helicase activity of the RecBC complex is considerably greater than that of RecB alone, and the activity of the RecBCD complex appears to be greater still. This hierarchy of activity is also shown by DNA binding studies, but is not reflected in the ATPase activities of the enzymes. We have also shown that the ability of trypsin to cleave various sites on the RecB molecule is modified by the presence of ATP or ATP-γ-S, suggesting that conformational changes may be induced in RecB upon ATP binding. We discuss a model for the ATP-driven, unidirectional motion of the RecB translocase along single-stranded DNA. In this model, the RecB molecule binds to single-stranded DNA and then translocates along it, one base at a time, in the 3′ to 5′ direction, by a `ratchet' mechanism in which repeated stretching and contraction of the protein is coupled to ATP hydrolysis. The RecC protein in the RecBC complex is proposed to act as a `sliding clamp' which increases processivity by preventing dissociation.  相似文献   

3.
The RecBCD enzyme of Escherichia coli consists of three subunits RecB, RecC and RecD. RecBCD enzyme activities are regulated by its interaction with recombination hotspot Chi. Biochemical and genetic evidence suggest that interaction with Chi affects RecD subunit, and that RecD polypeptide overproduction antagonizes this interaction, suggesting that intact RecD replaces a Chi-modified one. We used bacteria with fragmented chromosomes due to double-strand breaks inflicted by UV and gamma-irradiation to explore in which way increased concentrations of RecBCD's individual subunits affect DNA metabolism. We confirmed that RecD overproduction alters RecBCD-dependent DNA repair and degradation in E. coli. Also, we found that RecB and RecC overproduction did not affect these processes. To determine the basis for the effects of RecD polypeptide overproduction, we monitored activities of RecBCD enzyme on gamma-damaged chromosomal DNA and, in parallel, on lambda and T4 2 phage DNA duplexes provided at intervals. We found that gamma-irradiated wild-type bacteria became transient, and RecD overproducers permanent recB(-)/C(-) phenocopies for processing phage DNA that is provided in parallel. Since this inability of irradiated bacteria to process extrachromosomal DNA substrates coincided in both cases with ongoing degradation of chromosomal DNA, which lasted much longer in RecD overproducers, we were led to conclude that the RecB(-)/C(-) phenotype is acquired as a consequence of RecBCD enzyme titration on damaged chromosomal DNA. This conclusion was corroborated by our observation that no inhibition of RecBCD activity occurs in gamma-irradiated RecBCD overproducers. Together, these results strongly indicate that RecD overproduction prevents dissociation of RecBCD enzyme from DNA substrate and thus increases its processivity.  相似文献   

4.
The RecD subunit of the RecBCD enzyme from Escherichia coli contains an amino acid sequence common to many enzymes which bind ATP or GTP (Gly-X-X-Gly-X-Gly-Lys-Thr). We have changed the conserved lysine residue (amino acid number 177) in the RecD protein to glutamine to investigate the role of RecD, and ATP-binding to RecD, in the enzymatic activities of RecBCD. The mutant RecD protein assembles with the RecB and RecC subunits and the mutant enzyme, designated RecBCD-K177Q, can be purified in the same way as the wild-type RecBCD enzyme. The mutant RecD subunit in RecBCD-K177Q is photolabeled to a lesser extent by the ATP analogue 8-azido-adenosine-5'-triphosphate than is the wild-type RecD subunit in RecBCD, suggesting that the mutation has reduced the affinity of RecD for ATP.  相似文献   

5.
    
To investigate the role that the individual subunits play in the ATP-dependent helicase activity of the RecBCD protein we have investigated the ability of the RecB, RecC and RecD proteins to displace various 20-mer oligonucleotides annealed to either end or to the centre of an oligonucleotide 60 bases long. The results show that the only subunit which can displace the 20-mers in the absence of the other subunits is the RecB protein. Moreover, the 20-mer is displaced only if it is annealed to the 60-mer at the 5′ end or the middle, suggesting that the RecB protein translocates along the 60-mer in the 3′ to 5′ direction, displacing annealed 20-mers as it proceeds. We have shown that reconstituted RecBC and RecBCD complexes displace the 20-mers but, unlike RecB, they do not require a 3′-ended single-stranded region for helicase action, but can displace the 20-mers from either end of the 60-mer. The level of helicase activity of the RecBC complex is considerably greater than that of RecB alone, and the activity of the RecBCD complex appears to be greater still. This hierarchy of activity is also shown by DNA binding studies, but is not reflected in the ATPase activities of the enzymes. We have also shown that the ability of trypsin to cleave various sites on the RecB molecule is modified by the presence of ATP or ATP-γ-S, suggesting that conformational changes may be induced in RecB upon ATP binding. We discuss a model for the ATP-driven, unidirectional motion of the RecB translocase along single-stranded DNA. In this model, the RecB molecule binds to single-stranded DNA and then translocates along it, one base at a time, in the 3′ to 5′ direction, by a `ratchet' mechanism in which repeated stretching and contraction of the protein is coupled to ATP hydrolysis. The RecC protein in the RecBC complex is proposed to act as a `sliding clamp' which increases processivity by preventing dissociation. Received: 10 September 1996 / Accepted: 18 November 1996  相似文献   

6.
In Escherichia coli, chi (5'-GCTGGTGG-3') is a recombination hotspot recognized by the RecBCD enzyme. Recognition of chi reduces both nuclease activity and translocation speed of RecBCD and activates RecA-loading ability. RecBCD has two motor subunits, RecB and RecD, which act simultaneously but independently. A longstanding hypothesis to explain the changes elicited by chi interaction has been "ejection" of the RecD motor from the holoenzyme at chi. To test this proposal, we visualized individual RecBCD molecules labeled via RecD with a fluorescent nanoparticle. We could directly see these labeled, single molecules of RecBCD moving at up to 1835 bp/s (approximately 0.6 microm/s). Those enzymes translocated to chi, paused, and continued at reduced velocity, without loss of RecD. We conclude that chi interaction induces a conformational change, resulting from binding of chi to RecC, and not from RecD ejection. This change is responsible for alteration of RecBCD function that persists for the duration of DNA translocation.  相似文献   

7.
Zhou Q  Zhang X  Xu H  Xu B  Hua Y 《FEMS microbiology letters》2007,274(1):118-125
In Deinococcus radiodurans, RecBCD holoenzyme is not intact because of the absence of RecB and RecC, but a RecD-like protein does indeed exist. In this work, D. radiodurans recD disruptant was constructed and its possible biological functions were investigated. The results showed that disruption of the recD gene of D. radiodurans resulted in a remarkably increased sensitivity to hydrogen peroxide but had no apparent effect on the resistance to gamma and UV radiation. Furthermore, complementation experiments showed that Escherichia coli RecD, helicase domain or N-terminal domain of D. radiodurans RecD could not individually restore the resistant phenotype to hydrogen peroxide of the recD disruptant, whereas the complete D. radiodurans RecD protein could. Further studies showed that D. radiodurans RecD took part in antioxidant process by stimulating catalase activity and reactive oxygen species scavenging activity in D. radiodurans. These results suggest that D. radiodurans RecD has a new role in the antioxidant pathway.  相似文献   

8.
Amundsen SK  Taylor AF  Smith GR 《Genetics》2002,161(2):483-492
The heterotrimeric RecBCD enzyme of Escherichia coli is required for the major pathway of double-strand DNA break repair and genetic exchange. Assembled as a heterotrimer, the enzyme has potent nuclease and helicase activity. Analysis of recC nonsense and deletion mutations revealed that the C terminus of RecC is required for assembly of the RecD subunit into RecBCD holoenzyme but not for recombination proficiency; the phenotype of these mutations mimics that of recD deletion mutations. Partial proteolysis of purified RecC polypeptide yielded a C-terminal fragment that corresponds to the RecD-interaction domain. RecD is essential for nuclease activity, regulation by the recombination hotspot Chi, and high affinity for DNA ends. The RecC-RecD interface thus appears critical for the regulation of RecBCD enzyme via the assembly and, we propose, disassembly or conformational change of the RecD subunit.  相似文献   

9.

Background

The recD mutants of the Antarctic Pseudomonas syringae Lz4W are sensitive to DNA-damaging agents and fail to grow at 4°C. Generally, RecD associates with two other proteins (RecB and RecC) to produce RecBCD enzyme, which is involved in homologous recombination and DNA repair in many bacteria, including Escherichia coli. However, RecD is not essential for DNA repair, nor does its deletion cause any growth defects in E. coli. Hence, the assessment of the P. syringae RecBCD pathway was imperative.

Methodology/Principal Findings

Mutational analysis and genetic complementation studies were used to establish that the individual null-mutations of all three genes, recC, recB, and recD, or the deletion of whole recCBD operon of P. syringae, lead to growth inhibition at low temperature, and sensitivity to UV and mitomycin C. Viability of the mutant cells dropped drastically at 4°C, and the mutants accumulated linear chromosomal DNA and shorter DNA fragments in higher amounts compared to 22°C. Additional genetic data using the mutant RecBCD enzymes that were inactivated either in the ATPase active site of RecB (RecBK29Q) or RecD (RecDK229Q), or in the nuclease center of RecB (RecBD1118A and RecBΔnuc) suggested that, while the nuclease activity of RecB is not so critical in vivo, the ATP-dependent functions of both RecB and RecD are essential. Surprisingly, E. coli recBCD or recBC alone on plasmid could complement the defects of the ΔrecCBD strain of P. syringae.

Conclusions/Significance

All three subunits of the RecBCDPs enzyme are essential for DNA repair and growth of P. syringae at low temperatures (4°C). The RecD requirement is only a function of the RecBCD complex in the bacterium. The RecBCD pathway protects the Antarctic bacterium from cold-induced DNA damages, and is critically dependent on the helicase activities of both RecB and RecD subunits, but not on the nuclease of RecBCDPs enzyme.  相似文献   

10.
Bacteriophage P22 Abc2 protein binds to the RecBCD enzyme from Escherichia coli to promote phage growth and recombination. Overproduction of the RecC subunit in vivo, but not RecB or RecD, interfered with Abc2-induced UV sensitization, revealing that RecC is the target for Abc2 in vivo. UV-induced ATP crosslinking experiments revealed that Abc2 protein does not interfere with the binding of ATP to either the RecB or RecD subunits in the absence of DNA, though it partially inhibits RecBCD ATPase activity. Productive growth of phage P22 in wild-type Salmonella typhimurium correlates with the presence of Abc2, but is independent of the absolute level of ATP-dependent nuclease activity, suggesting a qualitative change in the nature of Abc2-modified RecBCD nuclease activity relative to the native enzyme. In lambda phage crosses, Abc2-modified RecBCD could substitute for lambda exonuclease in Red-promoted recombination; lambda Gam could not. In exonuclease assays designed to examine the polarity of digestion, Abc2 protein qualitatively changes the nature of RecBCD double-stranded DNA exonuclease by increasing the rate of digestion of the 5' strand. In this respect, Abc2-modified RecBCD resembles a RecBCD molecule that has encountered the recombination hotspot Chi. However, unlike Chi-modified RecBCD, Abc2-modified RecBCD still possesses 3' exonuclease activity. These results are discussed in terms of a model in which Abc2 converts the RecBCD exonuclease for use in the P22 phage recombination pathway. This mechanism of P22-mediated recombination distinguishes it from phage lambda recombination, in which the phage recombination system (Red) and its anti-RecBCD function (Gam) work independently.  相似文献   

11.
Action of RecBCD enzyme on Holliday structures made by RecA   总被引:2,自引:0,他引:2  
In vitro, Escherichia coli RecA protein acts upon gapped and partially homologous linear duplex DNA to generate recombination products linked by Holliday junctions. When strand exchange reactions are supplemented with purified RecBCD enzyme, we observe the formation of products that resemble "patch" recombinants. The formation of "splice" recombinant products was not observed. The individual subunits, RecB, RecC, or RecD, had no effect on RecA protein-mediated strand exchange nor on the Holliday junctions formed in the reaction. Analysis of the way in which patch products arise indicates exonucleolytic digestion of the linear arms of the recombination intermediates (alpha-structures) by RecBCD enzyme. We find no evidence for specific resolution events at the site of the Holliday junction by RecBCD enzyme using these DNA substrates.  相似文献   

12.
RecBCD enzyme switches lead motor subunits in response to chi recognition   总被引:1,自引:0,他引:1  
RecBCD is a DNA helicase comprising two motor subunits, RecB and RecD. Recognition of the recombination hotspot, chi, causes RecBCD to pause and reduce translocation speed. To understand this control of translocation, we used single-molecule visualization to compare RecBCD to the RecBCD(K177Q) mutant with a defective RecD motor. RecBCD(K177Q) paused at chi but did not change its translocation velocity. RecBCD(K177Q) translocated at the same rate as the wild-type post-chi enzyme, implicating RecB as the lead motor after chi. P1 nuclease treatment eliminated the wild-type enzyme's velocity changes, revealing a chi-containing ssDNA loop preceding chi recognition and showing that RecD is the faster motor before chi. We conclude that before chi, RecD is the lead motor but after chi, the slower RecB motor leads, implying a switch in motors at chi. We suggest that degradation of foreign DNA needs fast translocation, whereas DNA repair uses slower translocation to coordinate RecA loading onto ssDNA.  相似文献   

13.
The RecB subunit of the Escherichia coli RecBCD enzyme has previously been reported to possess DNA-dependent ATPase activity (Hickson, I. D., Robson, C. N., Atkinson, K. E., Hutton, L., and Emmerson, P. T. (1985) J. Biol. Chem. 260, 1224-1229). Here we demonstrate that a specific interaction between RecB protein and ATP can also be shown by photoaffinity labeling with the ATP analogue 8-azido-ATP. Furthermore, the capacity of the RecB protein to support ATP hydrolysis varies with the structure and length of the DNA cofactor. Single-stranded linear and circular DNA are markedly better in promoting ATP hydrolysis than duplex DNA. The purified RecB protein can function as a DNA helicase, displacing oligonucleotides annealed to viral M13 DNA in an ATP-dependent and orientation-specific manner.  相似文献   

14.
Faithful repair of DNA double-strand breaks by homologous recombination is crucial to maintain functional genomes. The major Escherichia coli pathway of DNA break repair requires RecBCD enzyme, a complex protein machine with multiple activities. Upon encountering a Chi recombination hotspot (5′ GCTGGTGG 3′) during DNA unwinding, RecBCD's unwinding, nuclease, and RecA-loading activities change dramatically, but the physical basis for these changes is unknown. Here, we identify, during RecBCD's DNA unwinding, two Chi-stimulated conformational changes involving RecC. One produced a marked, long-lasting, Chi-dependent increase in protease sensitivity of a small patch, near the Chi recognition domain, on the solvent-exposed RecC surface. The other change was identified by crosslinking of an artificial amino acid inserted in this RecC patch to RecB. Small-angle X-ray scattering analysis confirmed a major conformational change upon binding of DNA to the enzyme and is consistent with these two changes. We propose that, upon DNA binding, the RecB nuclease domain swings from one side of RecC to the other; when RecBCD encounters Chi, the nuclease domain returns to its initial position determined by crystallography, where it nicks DNA exiting from RecC and loads RecA onto the newly generated 3′-ended single-stranded DNA during continued unwinding; a crevice between RecB and RecC increasingly narrows during these steps. This model provides a physical basis for the intramolecular “signal transduction” from Chi to RecC to RecD to RecB inferred previously from genetic and enzymatic analyses, and it accounts for the enzymatic changes that accompany Chi's stimulation of recombination.  相似文献   

15.
Nucleotide sequences called Chi (5'-GCTGGTGG-3') enhance homologous recombination near their location by the RecBCD enzyme in Escherichia coli (Chi activation). A partial inhibition of Chi activation measured in lambda red gam mutant crosses was observed after treatment of wild-type cells with DNA-damaging agents including UV, mitomycin, and nalidixic acid. Inhibition of Chi activation was not accompanied by an overall decrease of recombination. A lexA3 mutation which blocks induction of the SOS system prevented the inhibition of Chi activation, indicating that an SOS function could be responsible for the inhibition. Overproduction of the RecD subunit of the RecBCD enzyme from a multicopy plasmid carrying the recD gene prevented the induced inhibition of Chi activation, whereas overproduction of RecB or RecC subunits did not. It is proposed that in SOS-induced cells the RecBCD enzyme is modified into a Chi-independent recombination enzyme, with the RecD subunit being the regulatory switch key.  相似文献   

16.
E. coli RecBCD, a helicase/nuclease involved in double stranded (ds) DNA break repair, binds to a dsDNA end and melts out several DNA base pairs (bp) using only its binding free energy. We examined RecBCD-DNA initiation complexes using thermodynamic and structural approaches. Measurements of enthalpy changes for RecBCD binding to DNA ends possessing pre-melted ssDNA tails of increasing length suggest that RecBCD interacts with ssDNA as long as 17–18 nucleotides and can melt at least 10–11 bp upon binding a blunt DNA end. Cryo-EM structures of RecBCD alone and in complex with a blunt-ended dsDNA show significant conformational heterogeneities associated with the RecB nuclease domain (RecBNuc) and the RecD subunit. In the absence of DNA, 56% of RecBCD molecules show no density for the RecB nuclease domain, RecBNuc, and all RecBCD molecules show only partial density for RecD. DNA binding reduces these conformational heterogeneities, with 63% of the molecules showing density for both RecD and RecBNuc. This suggests that the RecBNuc domain is dynamic and influenced by DNA binding. The major RecBCD-DNA structural class in which RecBNuc is docked onto RecC shows melting of at least 11 bp from a blunt DNA end, much larger than previously observed. A second structural class in which RecBNuc is not docked shows only four bp melted suggesting that RecBCD complexes transition between states with different extents of DNA melting and that the extent of melting regulates initiation of helicase activity.  相似文献   

17.
Sun JZ  Julin DA  Hu JS 《Biochemistry》2006,45(1):131-140
The 30 kDa C-terminal domain of the RecB protein (RecB30) has nuclease activity and is believed to be responsible for the nucleolytic activities of the RecBCD enzyme. However, the RecB30 protein, studied as a histidine-tagged fusion protein, appeared to have very low nucleolytic activity on single-stranded (ss) DNA [Zhang, X. J., and Julin, D. A. (1999) Nucleic Acids Res. 27, 4200-4207], which raised the question of whether RecB30 was indeed the sole nuclease domain of RecBCD. Here, we have purified the RecB30 protein without a fusion tag. We report that RecB30 efficiently degrades both linear and circular single- and double-stranded (ds) DNA. The endonucleolytic cleavage of circular dsDNA is consistent with the fact that RecB30 has amino acid sequence similarity to some restriction endonucleases. However, endonuclease activity on dsDNA had never been seen before for RecBCD or any fragments of RecBCD. Kinetic analysis indicates that RecB30 is at least as active as RecBCD on the ssDNA substrates. These results provide direct evidence that RecB30 is the universal nuclease domain of RecBCD. The fact that the RecB30 nuclease domain alone has high intrinsic nuclease activity and can cleave dsDNA endonucleolytically suggests that the nuclease activity of RecB30 is modulated when it is part of the RecBCD holoenzyme. A new model has been proposed to explain the regulation of the RecB30 nuclease in RecBCD.  相似文献   

18.
The bacterium Deinococcus radiodurans is extremely resistant to high levels of DNA-damaging agents, including gamma rays and ultraviolet light that can lead to double-stranded DNA breaks. Surprisingly, the organism does not appear to have a RecBCD enzyme, an enzyme that is critical for double-strand break repair in many other bacteria. The D. radiodurans genome does encode a protein whose closest characterized homologues are RecD subunits of RecBCD enzymes in other bacteria. We have purified this novel D. radiodurans RecD protein and characterized its biochemical activities. The D. radiodurans RecD protein is a DNA helicase that unwinds short (20 base pairs) DNA duplexes with either a 5'-single-stranded tail or a forked end, but not blunt-ended or 3'-tailed duplexes. Duplexes with 10-12 nucleotide (nt) 5'-tails are good unwinding substrates and are bound tightly, while DNA with shorter tails (4-8 nt) are poor unwinding substrates and are bound much less tightly. The RecD protein is much less efficient at unwinding slightly longer substrates (52 or 76 base pairs, with 12 nt 5'-tails). Unwinding of the longer substrates is stimulated somewhat (4-5-fold) by the single-stranded DNA-binding protein from D. radiodurans. These results show that the D. radiodurans RecD protein is a DNA helicase with 5'-3' polarity and low processivity.  相似文献   

19.
The Escherichia coli RecB protein, normally synthesized in low amounts, has been amplified by linkage of the recB gene to the phage lambda leftward promoter in an expression plasmid. From strains harboring this plasmid, RecB protein has been purified to homogeneity by a simple procedure which includes affinity chromatography on a column of RecC protein bound to agarose. The purified RecB protein has DNA-dependent ATPase activity but no exonuclease activity. RecC protein alone has neither ATPase nor exonuclease activity. However, when combined together, the RecB and RecC proteins show the ATP-dependent double-stranded exonuclease properties characteristic of the RecBC DNase.  相似文献   

20.
RecBCD enzyme is a heterotrimeric helicase/nuclease that initiates homologous recombination at double-stranded DNA breaks. Several of its activities are regulated by the DNA sequence chi (5'-GCTGGTGG-3'), which is recognized in cis by the translocating enzyme. When RecBCD enzyme encounters chi, the intensity and polarity of its nuclease activity are changed, and the enzyme gains the ability to load RecA protein onto the chi-containing, unwound single-stranded DNA. Here, we show that interaction with chi also affects translocation by RecBCD enzyme. By observing translocation of individual enzymes along single molecules of DNA, we could see RecBCD enzyme pause precisely at chi. Furthermore, and more unexpectedly, after pausing at chi, the enzyme continues translocating but at approximately one-half the initial rate. We propose that interaction with chi results in an enzyme in which one of the two motor subunits, likely the RecD motor, is uncoupled from the holoenzyme to produce the slower translocase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号