首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Previous studies have established a role for cytoplasmic phospholipase A(2) (PLA(2)) activity in tubule-mediated retrograde trafficking between the Golgi complex and the endoplasmic reticulum (ER). However, little else is known about how membrane tubule formation is regulated. This study demonstrates that isotetrandrine (ITD), a biscoclaurine alkaloid known to inhibit PLA(2) enzyme activation by heterotrimeric G-proteins, effectively prevented brefeldin A (BFA)-induced tubule formation from the Golgi complex and retrograde trafficking to the ER. In addition, ITD inhibited BFA-stimulated tubule formation from the trans-Golgi network and endosomes. ITD inhibition of the BFA response was potent (IC(50) approximately 10-20 microM) and rapid (complete inhibition with a 10-15-min preincubation). ITD also inhibited normal retrograde trafficking as revealed by the formation of nocodazole-induced Golgi mini-stacks at ER exit sites. Treatment of cells with ITD alone caused the normally interconnected Golgi ribbons to become fragmented and dilated, but cisternae were still stacked and located in a juxtanuclear position. These results suggest that a G-protein-binding PLA(2) enzyme plays a pivotal role in tubule mediated trafficking between the Golgi and the ER, the maintenance of the interconnected ribbons of Golgi stacks, and tubule formation from endosomes.  相似文献   

2.
The fungal metabolite brefeldin A (BFA) induces the disassembly of the Golgi complex in mammalian cells. The drug seems to accentuate tubule formation and causes the subsequent fusion with the endoplasmic reticulum (ER). To investigate the biochemical requirements and kinetics of BFA-induced Golgi disassembly, we have reconstituted the process of green fluorescent protein-tagged Golgi complex disassembly in streptolysin O-permeabilized semi-intact Chinese hamster ovary cells. For quantitative analysis of the morphological changes to the Golgi complex in semi-intact cells, we developed a novel morphometric analysis. Based on this analysis, we have dissected the BFA-induced Golgi disassembly process biochemically into two processes, Golgi tubule formation and fusion with the ER, and found that the formation is induced by only ATP and the residual factors in the cells and that the subsequent fusion is mediated in an N-ethylmaleimide-sensitive factor-dependent manner via Golgi tubules. Tubulation occurs by two pathways that depend on either microtubule integrity or exogenously added cytosol. In the presence of GTPgammaS, coat protein I inhibited the Golgi tubule fusion with the ER but showed no apparent effect on tubulation. Additionally, we analyzed the kinetics of tubulation and fusion independently in nocodazole-treated and -untreated semi-intact cells and found that tubulation is a rate-limiting step of the Golgi disassembly.  相似文献   

3.
Addition of brefeldin A (BFA) to most cells results in both the formation of extensive, uncoated membrane tubules through which Golgi components redistribute into the ER and the failure to transport molecules out of this mixed ER/Golgi system. In this study we provide evidence that suggests BFA's effects are not limited to the Golgi apparatus but are reiterated throughout the central vacuolar system. Addition of BFA to cells resulted in the tubulation of the endosomal system, the trans-Golgi network (TGN), and lysosomes. Tubule formation of these organelles was specific to BFA, shared near identical pharmacologic characteristics as Golgi tubules and resulted in targeted membrane fusion. Analogous to the mixing of the Golgi with the ER during BFA treatment, the TGN mixed with the recycling endosomal system. This mixed system remained functional with normal cycling between plasma membrane and endosomes, but traffic between endosomes and lysosomes was impaired.  相似文献   

4.
Brefeldin A (BFA) causes rapid redistribution of Golgi proteins into the ER, leaving no definable Golgi apparatus, and blocks transport of proteins into post-Golgi compartments in the cell. In this study we follow the disassembly of the Golgi apparatus in BFA-treated, living cells labeled with NBD-ceramide and demonstrate that forskolin can both inhibit and reverse this process. Long, tubular processes labeled with NBD-ceramide were observed emerging from Golgi elements and extending out to the cell periphery in cells treated with BFA for 5 min. With longer incubations in BFA, the NBD label was dispersed in a fine reticular pattern characteristic of the ER. Treatment with forskolin inhibited these effects of BFA as well as BFA's earliest morphologic effect on the Golgi apparatus: the redistribution to the cytosol of a 110-kD Golgi peripheral membrane protein. In addition, forskolin could reverse BFA's block in protein secretion. Forskolin inhibition of BFA's effects was dose dependent and reversible. High concentrations of BFA could overcome forskolin's inhibitory effect, suggesting forskolin and BFA interact in a competitive fashion. Remarkably, in cells already exposed to BFA, forskolin could reverse BFA's effects causing the 110-kD Golgi peripheral membrane protein to reassociate with Golgi membrane and juxtanuclear Golgi complexes to reassemble. Neither membrane permeant cAMP analogues nor cAMP phosphodiesterase inhibitors could replicate or enhance forskolin's inhibition of BFA. 1,9-Dideoxyforskolin, which does not activate adenylyl cyclase, was equally as effective as forskolin in antagonizing BFA. A derivative of forskolin, 7-HPP-forskolin, that is less potent than forskolin at binding to adenylyl cyclase, was also equally effective as forskolin in antagonizing BFA. In contrast a similar derivative, 6-HPP-forskolin, that is equipotent with forskolin at binding to adenylyl cyclase, did not inhibit BFA's effects. These results suggest that forskolin acts as a competitive antagonist to BFA, using a cAMP-independent mechanism to prevent and reverse the morphologic effects induced by BFA.  相似文献   

5.
S A Wood  J E Park  W J Brown 《Cell》1991,67(3):591-600
Brefeldin A (BFA) is a fungal metabolite that causes a redistribution of the stacked cisternae of the Golgi complex into the endoplasmic reticulum by inhibiting anterograde transport. We report that BFA also causes membrane tubules derived from the trans-Golgi network (TGN) to fuse with early endosomes. In the presence of BFA, a mannose-6-phosphate receptor (M6PR)-enriched tubular network rapidly forms from the TGN, not from the prelysosomal compartment, and can be labeled with endocytic tracers after only 5 min of uptake at either 20 degrees C or 37 degrees C, indicating that it is also functionally an early endosome. Formation of the TGN-early endosome network is microtubule dependent and may involve modification of membrane processes affected by microtubule-associated motor activity. Concomitant with the formation of the fused TGN-early endosome network, there is a greater than 5-fold increase in cell surface M6PRs. The data suggest that BFA has revealed a membrane transport cycle between the TGN and early endosomes, perhaps used for the secretion or delivery of molecules to the cell surface.  相似文献   

6.
The release of a 110-kD peripheral membrane protein from the Golgi apparatus is an early event in brefeldin A (BFA) action, preceding the movement of Golgi membrane into the ER. ATP depletion also causes the reversible redistribution of the 110-kD protein from Golgi membrane into the cytosol, although no Golgi disassembly occurs. To further define the effects of BFA on the association of the 110-kD protein with the Golgi apparatus we have used filter perforation techniques to produce semipermeable cells. All previously observed effects of BFA, including the rapid redistribution of the 110-kD protein and the movement of Golgi membrane into the ER, could be reproduced in the semipermeable cells. The role of guanine nucleotides in this process was investigated using the nonhydrolyzable analogue of GTP, GTP gamma S. Pretreatment of semipermeable cells with GTP gamma S prevented the BFA-induced redistribution of the 110-kD protein from the Golgi apparatus and movement of Golgi membrane into the ER. GTP gamma S could also abrogate the observed release of the 110-kD protein from Golgi membranes which occurred in response to ATP depletion. Additionally, when the 110-kD protein had first been dissociated from Golgi membranes by ATP depletion, GTP gamma S could restore Golgi membrane association of the 110-kD protein, but not if BFA was present. All of these effects observed with GTP gamma S in semipermeable cells could be reproduced in intact cells treated with AlF4-. These results suggest that guanine nucleotides regulate the dynamic association/dissociation of the 110-kD protein with the Golgi apparatus and that BFA perturbs this process by interfering with the association of the 110-kD protein with the Golgi apparatus.  相似文献   

7.
Recent in vivo studies with the fungal metabolite, brefeldin A (BFA), have shown that in the absence of vesicle formation, membranes of the Golgi complex and the trans-Golgi network (TGN) are nevertheless able to extend long tubules which fuse with selected target organelles. We report here that the ability to form tubules (> 7 microns long) could be reproduced in vitro by treatment of isolated, intact Golgi membranes with BFA under certain conditions. Surprisingly, an even more impressive degree of tubulation could be achieved by incubating Golgi stacks with an ATP-reduced cytosolic fraction, without any BFA at all. Similarly, tubulation of Golgi membranes in vivo occurred after treatment of cells with intermediate levels of NaN3 and 2-deoxyglucose. The formation of tubules in vitro, either by BFA treatment or low-ATP cytosol, correlated precisely with a loss of the vesicle-associated coat protein beta-COP from Golgi membranes. After removal of BFA or addition of ATP, membrane tubules served as substrates for the rebinding of beta-COP and for the formation of vesicles in vitro. These results provide support for the idea that a reciprocal relationship exists between tubulation and vesiculation (Klausner, R. D., J. G. Donaldson, and J. Lippincott-Schwartz. 1992. J. Cell Biol. 116:1071- 1080). Moreover, they show that tubulation is an inherent property of Golgi membranes, since it occurs without the aid of microtubules or BFA treatment. Finally the results indicate the presence of cytosolic factors, independent of vesicle-associated coat proteins, that mediate the budding/tubulation of Golgi membranes.  相似文献   

8.
Brefeldin A (BFA) is a fungal antibiotic which disrupts protein transport between the endoplasmic reticulum and the Golgi. A BFA-resistant mutant of monkey kidney Vero cells, BER-40, which exhibited about a 90-fold increase in the LD50 of BFA (5.2 ng/ml for Vero cells versus 460 ng/ml for BER-40 cells), has been isolated. The increased resistance of BER-40 cells toward BFA was also manifested in a greatly reduced inhibition of protein secretion by BFA in the mutant and a lack of protection by BFA of the mutant cells from ricin cytotoxicity. Somatic cell hybridization between the Vero and BER-40 cells showed that the BFA-resistance in BER-40 behaved as a codominant trait. The structure of the Golgi region, as examined by immunofluorescence microscopy with antibodies against Golgi markers (the 110-kDa protein and mannosidase II) or with fluorescent lipid NBD-ceramide, was unchanged in the mutant cells as compared to that in the wild-type cells. Treatment of Vero cells with BFA (1 micrograms/ml) or with 2-deoxyglucose plus sodium azide resulted in a rapid release of the 110-kDa protein, mannosidase II, and NBD-ceramide from the Golgi membrane to a more diffuse distribution in the cytosol. In contrast, these three Golgi markers remained to be Golgi-associated following treatment of BER-40 cells with BFA or with 2-deoxyglucose plus sodium azide. Immunoblotting of cell extracts from Vero and BER-40 cells with monoclonal antibody against the 110-kDa protein did not reveal any significant difference in the level of this Golgi marker in the mutant cells. These data suggest that the BFA-resistance mutation in BER-40 has rendered the cyclic pathway of the 110-kDa protein assembly to the Golgi membrane resistant to both BFA and 2-deoxyglucose plus sodium azide.  相似文献   

9.
Summary Brefeldin A (BFA) induces a major aggregation of the Golgi apparatus (GA) in root cells followed by a complete, but reversible, vesiculation of the Golgi stacks which form two or more BFA compartments in the cytosol. This effect is monitored by the immunofluorescence of a Golgi antigen stained with a monoclonal antibody JIM 84, and by transmission electron microscopy. Depolymerisation of the microtubule cytoskeleton after oryzalin or colchicine treatment does not disturb the three dimensional organisation of the GA in control cells and does not affect any BFA induced Golgi stack movements. After disruption of the actin cytoskeleton with cytochalasin D many aggregates of Golgi stacks can be observed in root cells and these are sensitive to BFA treatment, forming multiple BFA compartments. N-ethyl-maleimide has no effect on the organisation of the GA in control roots but totally inhibits the action of BFA. Thus, it appears that spatial organisation of the GA and the BFA induced Golgi stack movements are actin dependent whilst BFA induced vesiculation of the GA is a structurally separate event.  相似文献   

10.
A mAb AD7, raised against canine liver Golgi membranes, recognizes a novel, 200-kD protein (p200) which is found in a wide variety of cultured cell lines. Immunofluorescence staining of cultured cells with the AD7 antibody produced intense staining of p200 in the juxtanuclear Golgi complex and more diffuse staining of p200 in the cytoplasm. The p200 protein in the Golgi complex was colocalized with other Golgi proteins, including mannosidase II and beta-COP, a coatomer protein. Localization of p200 by immunoperoxidase staining at the electron microscopic level revealed concentrations of p200 at the dilated rims of Golgi cisternae. Biochemical studies showed that p200 is a peripheral membrane protein which partitions to the aqueous phase of Triton X-114 solutions and is phosphorylated. The p200 protein is located on the cytoplasmic face of membranes, since it was accessible to trypsin digestion in microsomal preparations, and is recovered in approximately equal amounts in membrane pellets and in the cytosol of homogenized cells. Immunofluorescence staining of normal rat kidney cells exposed to the toxin brefeldin A (BFA), showed that there was very rapid redistribution of p200, which was dissociated from Golgi membranes in the presence of this drug. The effect of BFA was reversible, since upon removal of the toxin, AD7 rapidly reassociated with the Golgi complex. In the BFA-resistant cell line PtK1, BFA failed to cause redistribution of p200 from Golgi membranes. Taken together, these results indicate that the p200 Golgi membrane-associated protein has many properties in common with the coatomer protein, beta-COP.  相似文献   

11.
Brefeldin A (BFA) is a fungal metabolite that disassembles the Golgi apparatus into tubular networks and causes the dissociation of coatomer proteins from Golgi membranes. We have previously shown that an additional effect of BFA is to stimulate the ADP-ribosylation of two cytosolic proteins of 38 and 50 kDa (brefeldin A-ADP-riboslyated substrate (BARS)) and that this effect greatly facilitates the Golgi-disassembling activity of the toxin. In this study, BARS has been purified from rat brain cytosol and microsequenced, and the BARS cDNA has been cloned. BARS shares high homology with two known proteins, C-terminal-binding protein 1 (CtBP1) and CtBP2. It is therefore a third member of the CtBP family. The role of BARS in Golgi disassembly by BFA was verified in permeabilized cells. In the presence of dialyzed cytosol that had been previously depleted of BARS or treated with an anti-BARS antibody, BFA potently disassembled the Golgi. However, in cytosol complemented with purified BARS, or even in control cytosols containing physiological levels of BARS, the action of BFA on Golgi disassembly was strongly inhibited. These results suggest that BARS exerts a negative control on Golgi tubulation, with important consequences for the structure and function of the Golgi complex.  相似文献   

12.
Golgi inheritance under a block of anterograde and retrograde traffic   总被引:1,自引:0,他引:1  
In mitosis, the Golgi complex is inherited following its dispersion, equal partitioning and reformation in each daughter cell. The state of Golgi membranes during mitosis is controversial, and the role of Golgi-intersecting traffic in Golgi inheritance is unclear. We have used brefeldin A (BFA) to perturb Golgi-intersecting membrane traffic at different stages of the cell cycle and followed by live cell imaging the fate of Golgi membranes in those conditions. We observed that addition of the drug on cells in prometaphase prevents mitotic Golgi dispersion. Under continuous treatment, Golgi fragments persist throughout mitosis and accumulate in a Golgi-like structure at the end of mitosis. This structure localizes at microtubule minus ends and contains all classes of Golgi markers, but is not accessible to cargo from the endoplasmic reticulum or the plasma membrane because of the continuous BFA traffic block. However, it contains preaccumulated cargo, and intermixes with the reforming Golgi upon BFA washout. This structure also forms when BFA is added during metaphase, when the Golgi is not discernible by light microscopy. Together the data indicate that independent Golgi fragments that contain all classes of Golgi markers (and that can be isolated from other organelles by blocking anterograde and retrograde Golgi-intersecting traffic) persist throughout mitosis.  相似文献   

13.
The Golgi complex is a dynamic organelle engaged in both secretory and retrograde membrane traffic. Here, we use green fluorescent protein–Golgi protein chimeras to study Golgi morphology in vivo. In untreated cells, membrane tubules were a ubiquitous, prominent feature of the Golgi complex, serving both to interconnect adjacent Golgi elements and to carry membrane outward along microtubules after detaching from stable Golgi structures. Brefeldin A treatment, which reversibly disassembles the Golgi complex, accentuated tubule formation without tubule detachment. A tubule network extending throughout the cytoplasm was quickly generated and persisted for 5–10 min until rapidly emptying Golgi contents into the ER within 15–30 s. Both lipid and protein emptied from the Golgi at similar rapid rates, leaving no Golgi structure behind, indicating that Golgi membranes do not simply mix but are absorbed into the ER in BFA-treated cells. The directionality of redistribution implied Golgi membranes are at a higher free energy state than ER membranes. Analysis of its kinetics suggested a mechanism that is analogous to wetting or adsorptive phenomena in which a tension-driven membrane flow supplements diffusive transfer of Golgi membrane into the ER. Such nonselective, flow-assisted transport of Golgi membranes into ER suggests that mechanisms that regulate retrograde tubule formation and detachment from the Golgi complex are integral to the existence and maintenance of this organelle.  相似文献   

14.
The distribution and dynamics of both the ER and Golgi complex in animal cells are known to be dependent on microtubules; in many cell types the ER extends toward the plus ends of microtubules at the cell periphery and the Golgi clusters at the minus ends of microtubules near the centrosome. In this study we provide evidence that the microtubule motor, kinesin, is present on membranes cycling between the ER and Golgi and powers peripherally directed movements of membrane within this system. Immunolocalization of kinesin at both the light and electron microscopy levels in NRK cells using the H1 monoclonal antibody to kinesin heavy chain, revealed kinesin to be associated with all membranes of the ER/Golgi system. At steady-state at 37 degrees C, however, kinesin was most concentrated on peripherally distributed, pre- Golgi structures containing beta COP and vesicular stomatitis virus glycoprotein newly released from the ER. Upon temperature reduction or nocodazole treatment, kinesin's distribution shifted onto the Golgi, while with brefeldin A (BFA)-treatment, kinesin could be found in both Golgi-derived tubules and in the ER. This suggested that kinesin associates with membranes that constitutively cycle between the ER and Golgi. Kinesin's role on these membranes was examined by microinjecting kinesin antibody. Golgi-to-ER but not ER-to-Golgi membrane transport was found to be inhibited by the microinjected anti-kinesin, suggesting kinesin powers the microtubule plus end-directed recycling of membrane to the ER, and remains inactive on pre-Golgi intermediates that move toward the Golgi complex.  相似文献   

15.
We have studied the cytotoxicity of ricin in cells treated with brefeldin A (BFA), which dramatically disrupts the structure of the Golgi apparatus causing Golgi content and membrane to redistribute to the ER. BFA inhibits the cytotoxicity of ricin in Chinese hamster ovary, normal rat kidney, and Vero cells and abolishes the enhancement of ricin cytotoxicity by NH4Cl, nigericin, swainsonine, and tunicamycin or by a mutation in endosomal acidification. BFA protects cells from the cytotoxicities of modeccin and Pseudomonas toxin, but has no effect on the intoxication by diphtheria toxin. Pretreatment of BFA does not protect cells from ricin treatment in the absence of BFA. Our results suggest that ricin, modeccin, and Pseudomonas toxin share a common pathway of intracellular transport from endosomes to the Golgi region where they are released into the cytosol. In contrast, the lack of protection of Vero cells from diphtheria toxin by BFA indicates that diphtheria toxin is released from acidified endosomes without involving the Golgi region.  相似文献   

16.
M S Robinson  T E Kreis 《Cell》1992,69(1):129-138
Brefeldin A (BFA) causes a rapid redistribution of coat proteins (e.g., gamma-adaptin) associated with the clathrin-coated vesicles that bud from the trans-Golgi network (TGN), while the clathrin-coated vesicles that bud from the plasma membrane are unaffected. gamma-Adaptin redistributes with the same kinetics as beta-COP, a coat protein associated with the non-clathrin-coated vesicles that bud from the Golgi complex. Upon removal of BFA, however, gamma-adaptin recovers its perinuclear distribution more rapidly. Redistribution of both proteins can be prevented by pretreating cells with AlF4-. Recruitment of adaptors from the cytosol onto the TGN membrane has been reconstituted in a permeabilized cell system and is increased by addition of GTP gamma S and blocked by addition of BFA. These results suggest a role for G proteins in the control of the clathrin-coated vesicle cycle at the TGN and further extend the similarities between clathrin-coated vesicles and non-clathrin-coated vesicles.  相似文献   

17.
Brefeldin A (BFA) is a useful tool for studying protein trafficking and identifying organelles in the plant secretory and endocytic pathways. At low concentrations (5–10 μg ml?1), BFA caused both the Golgi apparatus and trans‐Golgi network (TGN), an early endosome (EE) equivalent in plant cells, to form visible aggregates in transgenic tobacco BY‐2 cells. Here we show that these BFA‐induced aggregates from the Golgi apparatus and TGN are morphologically and functionally distinct in plant cells. Confocal immunofluorescent and immunogold electron microscope (EM) studies demonstrated that BFA‐induced Golgi‐ and TGN‐derived aggregates are physically distinct from each other. In addition, the internalized endosomal marker FM4‐64 co‐localized with the TGN‐derived aggregates but not with the Golgi aggregates. In the presence of the endocytosis inhibitor tyrphostin A23, which acts in a dose‐ and time‐dependent manner, SCAMP1 (secretory carrier membrane protein 1) and FM4‐64 are mostly excluded from the SYP61‐positive BFA‐induced TGN aggregates, indicating that homotypic fusion of the TGN rather than de novo endocytic trafficking is important for the formation of TGN/EE‐derived BFA‐induced aggregates. As the TGN also serves as an EE, continuously receiving materials from the plasma membrane, our data support the notion that the secretory Golgi organelle is distinct from the endocytic TGN/EE in terms of its response to BFA treatment in plant cells. Thus, the Golgi and TGN are probably functionally distinct organelles in plants.  相似文献   

18.
The role of cis-medial Golgi matrix proteins in retrograde traffic is poorly understood. We have used imaging techniques to understand the relationship between the cis-medial Golgi matrix and transmembrane proteins during retrograde traffic in control and brefeldin A (BFA)-treated cells. All five of the cis-medial matrix proteins tested were associated with retrograde tubules within 2-3 min of initiation of tubule formation. Then, at later time points (3-10 min), transmembrane proteins are apparent in the same tubules. Strikingly, both the matrix proteins and the transmembrane proteins moved directly to endoplasmic reticulum (ER) exit sites labeled with p58 and Sec13, and there seemed to be a specific interaction between the ER exit sites and the tips or branch points of the tubules enriched for the matrix proteins. After the initial interaction, Golgi matrix proteins accumulated rapidly (5-10 min) at ER exit sites, and Golgi transmembrane proteins accumulated at the same sites approximately 2 h later. Our data suggest that Golgi cis-medial matrix proteins participate in Golgi-to-ER traffic and play a novel role in tubule formation and targeting.  相似文献   

19.
The Golgi complex functions in transport of molecules from the endoplasmic reticulum (ER) to the plasma membrane and other distal organelles as well as in retrograde transport to the ER. The fungal metabolite brefeldin A (BFA) promotes dissociation of ADP-ribosylation-factor-1 (ARF1) and the coatomer protein complex-I (COP-I) from Golgi membranes, followed by Golgi tubulation and fusion with the ER. Here we demonstrate that the cationic ionophore monensin inhibited the BFA-mediated Golgi redistribution to the ER without interfering with ARF1 and COP-I dissociation. Preservation of a perinuclear Golgi despite COP-I and ARF1 dissociation enables addressing the involvement of these proteins in anterograde ER to Golgi transport. The thermo-reversible folding mutant of vesicular stomatitis virus G protein (VSVGtsO45) was retained in the ER in the presence of both monensin and BFA, thus supporting ARF1/COP-I participation in ER-exit processes. Live-cell imaging revealed that BFA-induced Golgi tubulation persisted longer in the presence of monensin, suggesting that monensin inhibits tubule fusion with the ER. Moreover, monensin also augmented Golgi-derived tubules that contained the ER-Golgi-intermediate compartment marker, p58, in the absence of BFA, signifying the generality of this effect. Taken together, we propose that monensin inhibits membrane fusion processes in the presence or absence of BFA.  相似文献   

20.
Brefeldin A (BFA) was shown in earlier studies of numerous cell types to inhibit secretion, induce enzymes of the Golgi stacks to redistribute into the ER, and to cause the Golgi cisternae to disappear. Here, we demonstrate that the PtK1 line of rat kangaroo kidney cells is resistant to BFA. The drug did not disrupt the morphology of the Golgi complex in PtK1 cells, as judged by immunofluorescence using antibodies to 58- (58K) and 110-kD (beta-COP) Golgi proteins, and by fluorescence microscopy of live cells labeled with C6-NBD-ceramide. In addition, BFA did not inhibit protein secretion, not alter the kinetics or extent of glycosylation of the vesicular stomatitis virus (VSV) glycoprotein (G-protein) in VSV-infected PtK1 cells. To explore the mechanism of resistance to BFA, PtK1 cells were fused with BFA-sensitive CV-1 cells that had been infected with a recombinant SV-40 strain containing the gene for VSV G-protein and, at various times following fusion, the cultures were exposed to BFA. Shortly after cell fusion, heterokaryons contained one Golgi complex associated with each nucleus. Golgi membranes derived from CV-1 cells were sensitive to BFA, whereas those of PtK1 origin were BFA resistant. A few hours after fusion, most heterokaryons contained a single, large Golgi apparatus that was resistant to BFA and contained CV-1 galactosyltransferase. In unfused cells that had been perforated using nitrocellulose filters, retention of beta-COP on the Golgi was optimal in the presence of cytosol, ATP, and GTP. In perforated cell models of the BFA-sensitive MA104 line, BFA caused beta-COP to be released from the Golgi complex in the presence of nucleotides, and either MA104 or PtK1 cytosol. In contrast, when perforated PtK1 cells were incubated with BFA, nucleotides, and cytosol from either cell type, beta-COP remained bound to the Golgi complex. We conclude that PtK1 cells contain a nondiffusible factor, which is located on or very close to the Golgi complex, and confers a dominant resistance to BFA. It is possible that this factor is homologous to the target of BFA in cells that are sensitive to the drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号