首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Ecological risk assessment (ERA) is a scientific tool used to support ecosystem-based management (EBM), but most current ERA methods consider only a few indices of particular species or components. Such limitations restrict the scope of results so that they are insufficient to reflect the integrated risk characterization of an ecosystem, thereby inhibiting the application of ERA in EBM. We incorporate the concept of ecosystem services into ERA and develop an improved ERA framework to create a comprehensive risk map of an ecosystem, accounting for multiple human activities and ecosystem services. Using the Yellow River as a case study, we show how this framework enables the implementation of integrated risk characterization and prioritization of the most important ecological risk issues in the ecosystem-based river management of the Yellow River. This framework can help practitioners facilitate better implementation of ERA within EBM in rivers or any target ecosystem.  相似文献   

2.
It has become increasingly common to apply ecological risk assessment (ERA) principles to watershed and regional scale environmental management. This article describes the application of watershed ERA principles to the development of a source water protection assessment and a strategic watershed management plan. The primary focus was on the protection of drinking water quality, a concern typically addressed by human health risk assessors. The approach emphasizes adaptations to the problem formulation phase of ERA (defining assessment endpoints, developing conceptual models and an analysis plan) suitable for watershed management planning in a multi-objective, multi-stressor context. Physical, chemical, and biological attributes were selected for primary drinking water quality assessment endpoints, and coupled with additional assessment endpoints relevant to other environmental and social management objectives. Conceptual models helped the planning team to better understand and communicate the multiple natural and human stressors in the watershed and the causal pathways by which they affected drinking water. The article provides an example of the types of adaptations that can make ERA principles suitable for watershed management related to human health goals, and illustrates the efficiency of integrating health and ecological assessments.  相似文献   

3.
The U.S. Environmental Protection Agency has recognized the need to develop a framework for human health risk assessment that puts a perspective on the approaches in practice throughout the Agency. In response, the Agency's Risk Assessment Forum has begun the long-term process of developing a framework for human health risk assessment. The framework will be a communication piece that will lay out the scientific basis, principles, and policy choices underlying past and current risk assessment approaches and will provide recommendations for integrating/harmonizing risk assessment methodologies for all human health endpoints.  相似文献   

4.
The US EPA published guidelines for the application of ecological risk assessment (ERA) in the USA in 1998 (US EPA 1998). The process diagram derived by Murray and Claassen (1999) in an evaluation of the US EPA framework is discussed in the context of the South African National Water Act. The evaluation discusses the various steps involved in an ERA and how it can be applied in the implementation of the National Water Act. It is concluded that the application of ERA can make a significant contribution towards sustainable water resource management. Two requirements for this are the need for more demonstration projects and that capacity be developed in risk assessment and risk-based decision making.  相似文献   

5.
The terrestrial environment acts as a “sink” for contaminants that have been purposely or accidentally released into the environment. Science and policy that support protective measures for terrestrial ecosystems have run behind those of aquatic toxicology and water quality concerns. As a result ecological risk assessment (ERA) involving terrestrial environments tends to be conducted at a simplistic level, relying on numeric targets (soil quality criteria) as a basis for decision-making. However, soil criteria for ecological receptors are somewhat deficient in terms of the numbers available and the data that supports these numbers. Direct toxicity assessments (DTA) for terrestrial environments, such as those used for water quality evaluations, can provide additional useful information about the toxicity and bioavailability of mixtures of contaminants present in soils. This article outlines the approaches used for assessing the toxicity of soil contaminants in terrestrial environments and critiques their advantages and pitfalls.  相似文献   

6.
Ecological risk assessment (ERA) is a process that evaluates the potential for adverse ecological effects occurring as a result of exposure to contaminants or other stressors. ERA begins with hazard identification/problem formulation, progresses to effects and exposure assessment, and finishes with risk characterization (an estimate of the incidence and severity of any adverse effects likely to occur). Risk management initially sets the boundaries of the ERA and then uses its results for decision-making. Key information required for an ERA includes: the emissions, pathways and rates of movement of contaminants in the environment; and, information on the relationship between contaminant concentrations and the incidence and (or) severity of adverse effects. Because of specific properties and characteristics of metals in general and of certain metals in particular, a generalized ERA process applicable to organic substances is inappropriate for metals. First, metals are naturally occurring and can arise, sometimes in very high concentrations, from non-anthropogenic sources; organisms can and do adapt to a wide range of metal concentrations. Second, certain metals (e.g., copper, zinc) are essential for biotic health, which means there is an effect threshold for both deficiency and excess, and that standard body burden indices such as bioaccumulation factors (BCFs) can be misleading. Third, metals can occur in the environment in a variety of forms that are more or less available to biota but adverse biological effects can only occur if metals are or may become bioavailable. Fourth, whereas the bioavailability and hence the possibility of toxicity of persistent organic substances are mainly dependent on their intrinsic properties (i.e., lipophilicity), those of metals are generally controlled by external environmental conditions. Examples include pH and ligands, which affect the metal speciation and coexisting cations (e.g., H+, Ca2+) which compete with the metal ions. ERAs involving metals must include the above four major considerations; other considerations vary depending on whether the ERA is for a site, a region, or is global in scope.  相似文献   

7.
Current measures used to estimate the risks of toxic chemicals are not relevant to the goals of the environmental protection process, and thus ecological risk assessment (ERA) is not used as extensively as it should be as a basis for cost-effective management of environmental resources. Appropriate population models can provide a powerful basis for expressing ecological risks that better inform the environmental management process and thus that are more likely to be used by managers. Here we provide at least five reasons why population modeling should play an important role in bridging the gap between what we measure and what we want to protect. We then describe six actions needed for its implementation into management-relevant ERA.  相似文献   

8.
生态风险研究述评   总被引:56,自引:6,他引:50  
生态风险(EcologicalRisk,ER),指一个种群、生态系统或整个景观的正常功能受外界胁迫,从而在目前和将来减小该系统健康、生产力、遗传结构、经济价值和美学价值的一种状况[20]。生态风险评估(EcologicalRiskAssessment,ERA)指受一个或多个胁迫因素影响后,对不利的生态后果出现的可能性进行的评估。美国环保局(EPA)把这种尚不为人们所重视的领域叫做生态风险评估[20,48]。随着新技术和新方法的应用,ERA的研究领域迅速扩展。早期的生态风险评估主要是针对人类健康而言的,也就是人类健康风险…  相似文献   

9.
The scientific approach toward ecological risk assessment (ERA) has advanced greatly during the 1990s. This growth has been accompanied by the development of ERA guidance by USEPA Headquarters, individual USEPA Regions, state environmental agencies, as well as international agencies. This compilation of ERA guidance and procedural documents identifies many of the existing ERA reference materials from the regulatory and/or governmental agency arena. In addition, this compilation provides annotations pertaining to the focus of each reviewed document, and compares/contrasts the approaches presented in the documents. As such, the evaluation provides insight into some of the qualities and levels of detail provided by each document. Examples of documents which are highlighted include recently published USEPA's “Guidelines for Ecological Risk Assessment;” USEPA's “Ecological Risk Assessment Guidance for Superfund;” the U.S. Army's “Procedural Guidelines for Ecological Risk Assessments;” and Environment Canada's “Ecological Risk Assessments Under the Canadian Environmental Protection Act.”  相似文献   

10.
Traditionally, ecological risk assessments (ERAs) have emphasized risks to individual organisms or populations of species. Although habitats may be a potential target for chemical stressors, and are considered in the framework for ERAs, the actual use of habitat evaluation methods in this process is limited. Habitats obviously represent an important entity to protect since damaged aquatic and wildlife habitats may be totally irretrievable over a human life span compared to deleterious biochemical and physiological changes which may be reversible within the life cycle of an organism, if exposure is terminated. Habitat methods have been largely used as management tools to evaluate impacts of planned water and land development projects. Habitat evaluation methods represent a structured, systematic and logical approach to determine changes to habitats because they consider important life requisites and environmental variables limiting to species. Their use in the ERA process will provide a means to differentiate habitat changes resulting from physical, chemical and/or biological factors or a combination of such factors. In addition, minimal and optimum habitat suitability can be determined for different habitat variables under different chemical exposure scenarios. The objectives of this paper are to review several available habitat evaluation methods and discuss their use in risk assessment. Particular emphasis is given to USFWS's Habitat Evaluation Procedures (HEPs) and the Instream Flow Incremental Method (IFIM).  相似文献   

11.
Chemical-specific hazard quotient (HQ) risk characterization in ecological risk assessment (ERA) can be a value-added tool for risk management decision-making at chemical release sites, when applied appropriately. However, there is little consensus regarding how HQ results can be used for risk management decision-making at the population, community, and ecosystem levels. Furthermore, stakeholders are reluctant to consider alternatives to HQ results for risk management decisions. Chemical-specific HQs risk characterization should be viewed as only one of several approaches (i.e., tools) for addressing ecological issues; and in many situations, other quantitative and qualitative approaches will likely result in superior risk management decisions. The purpose of this paper is to address fundamental issues and limitations associated with chemical-specific HQ risk characterization in ERA, to identify when it may be appropriate, to explore alternatives that are currently available, and to identify areas that could be developed for the future. Several alternatives (i.e., compensatory restoration, performance-based ecological monitoring, ecological significance criteria, net environmental benefit analysis), including their limitations, that can supplement, augment, or substitute for HQs in ERA are presented. In addition, areas of research (i.e., wildlife habitat assessment/landscape ecology/population biology, and field validated risk-based screening levels) that could yield new tools are discussed.  相似文献   

12.
Ecological risk assessment (ERA) is concerned with making decisions about the natural environment under uncertainty. Statistical methodology provides a natural framework for risk characterization and manipulation with many quantitative ERAs relying heavily on Neyman-Pearson hypothesis testing and other frequentist modes of inference. Bayesian statistical methods are becoming increasingly popular in ERA as they are seen to provide legitimate ways of incorporating subjective belief or expert opinion in the form of prior probability distributions. This article explores some of the concepts, strengths and weaknesses, and difficulties associated with both paradigms. The main points are illustrated with an example of setting a risk-based “trigger” level for uranium concentrations in the Magela Creek catchment of the Northern Territory of Australia.  相似文献   

13.
Failure of on-going management programs to restore oyster populations in Chesapeake Bay, USA, prompted state and federal agencies to consider the introduction of the non-native Asian oyster (Crassostrea ariakensis). An ecological risk assessment (ERA) of the proposed introduction was an essential element in preparation of a programmatic environmental impact statement (PEIS). The ERA had to assess risks of not only the proposed action (Asian oyster introduction) but also of the eight alternatives evaluated in the PEIS. The ERA suggested that the risk that the Asian oyster would not provide ecosystem services similar to those afforded by the native Eastern oyster was low, but there was moderate uncertainty associated with that conclusion. There was a non-zero risk of self-sustaining Asian oyster populations becoming established even if aquaculture with triploid, purportedly sterile Asian oysters were to be permitted. Nearly all of the risk conclusions had associated moderate to high uncertainty, not providing the level of proof that the agencies felt sufficient to justify proceeding with any action involving the Asian oyster. The irreversible nature of an introduction of the species bolstered that decision. Maryland and Virginia agencies have implemented numerous actions focused on the native oyster, but the outcome of these on-going actions is not yet known.  相似文献   

14.
International harmonization of risk assessment approaches affords a number of opportunities and advantages. Overall, harmonization will lead to more efficient use of resources, but also will lead to better understanding amongst scientists and regulators worldwide. It is with these goals in mind that in 1994 the International Programme on Chemical Safety (IPCS) initiated its Project on the Harmonization of Approaches to the Assessment of Risk from Exposure to Chemicals (Harmonization Project). An ongoing activity under this project addresses uncertainty and variability in risk assessment. The goal of the overall activity is to promote harmonization of risk assessment methodologies for noncancer endpoints. However, given the common links in uncertainty and variability that apply across a range of end-point-specific activities, these links are identified wherever possible. This paper provides an overview of the IPCS Harmonization Project and reviews the activity and future plans related to uncertainty and variability.  相似文献   

15.
During the past two decades scientists, regulatory agencies and the European Commission have acknowledged pharmaceuticals to be an emerging environmental problem. In parallel, a regulatory framework for environmental risk assessment (ERA) of pharmaceutical products has been developed. Since the regulatory guidelines came into force the German Federal Agency (UBA) has been evaluating ERAs for human and veterinary pharmaceutical products before they are marketed. The results show that approximately 10% of pharmaceutical products are of note regarding their potential environmental risk. For human medicinal products, hormones, antibiotics, analgesics, antidepressants and antineoplastics indicated an environmental risk. For veterinary products, hormones, antibiotics and parasiticides were most often discussed as being environmentally relevant. These results are in good correlation with the results within the open scientific literature of prioritization approaches for pharmaceuticals in the environment. UBA results revealed that prospective approaches, such as ERA of pharmaceuticals, play an important role in minimizing problems caused by pharmaceuticals in the environment. However, the regulatory ERA framework could be improved by (i) inclusion of the environment in the risk–benefit analysis for human pharmaceuticals, (ii) improvement of risk management options, (iii) generation of data on existing pharmaceuticals, and (iv) improving the availability of ERA data. In addition, more general and integrative steps of regulation, legislation and research have been developed and are presented in this article. In order to minimize the quantity of pharmaceuticals in the environment these should aim to (i) improve the existing legislation for pharmaceuticals, (ii) prioritize pharmaceuticals in the environment and (iii) improve the availability and collection of pharmaceutical data.  相似文献   

16.
Over the past decade, risk assessment has become increasingly relied upon for helping to make environmental management decisions. This trend has been accompanied by research and refinements in basic risk assessment methodologies to improve our ability to understand and evaluate the human health risks associated with chemical exposures.Despite this progress, significant uncertainties continue to be associated with the risk assessment process. These uncertainties typically derive from gaps in available data regarding chemical toxicity, and from difficulties in reliably estimating the magnitude of chemical exposures. Given these limitations, risk assessment is generally most valuable in evaluating relative risk; for example, when comparing alternatives to achieving a specified goal, setting priorities for protecting human health, or establishing procedures for properly allocating resources. Risk assessment can also be useful for developing regulatory benchmarks such as permit limits for air or water. In many cases, however, the limitations of the risk assessment process make it difficult (if not impossible) to reliably estimate an absolute level of risk, especially for a specific individual in an exposed population. In such cases, risk assessment can be seriously misapplied, and its results misinterpreted.This paper discusses some of the challenges that have been faced by the field of risk assessment during the 1990s. Current trends in risk assessment, and its use by regulatory agencies in making risk management decisions, are also described.  相似文献   

17.
Our review of existing approaches and regulatory uses of weight-of-evidence (WOE) methods suggested the need for a practical strategy for deploying WOE within a predictive ecological risk assessment (ERA). WOE is the process of considering strengths and weaknesses of various pieces of information in order to inform a decision being made among competing alternatives. A predictive ERA uses existing information relating cause and effect to estimate the probability that today's action X will lead to tomorrow's adverse outcome Y. There appears to be no practical guidance for use of WOE in predictive assessments. We therefore propose a strategy for using a WOE approach, within an ERA framework, to weigh and integrate outcomes from various lines of evidence to estimate the probability of an adverse outcome in an assessment endpoint. An ERA framework is necessary to connect the results of an assessment to the management goals of concern to decision-makers and stakeholders. Within that framework, a WOE approach provides a consistent and transparent means of interpreting the myriad types of data and information gathered during a complex ecological assessment. Impediments to application of WOE are discussed, including limited regulatory guidance, limited prior regulatory use, and persistent reliance on threshold-based decision-making.  相似文献   

18.
The use of molecular biomarkers in epidemiologic studies has been advancedas a way to improve risk assessments for occupational and environmental exposuresto toxic agents. We have used the detection of two cancer-related, molecular biomarkers of vinyl chloride exposure (mutant ras-p21 and mutant p53) to examine workers with equivalent cumulative exposures that would be above or below the current permissible workplace exposure limit for vinyl chloride for differences in the presence of these biomarkers. Workers with cumulative exposures above the current permissible exposure limit (equivalent of > 40 ppm-years) have a statistically significantly increased occurrence of both biomarkers in comparison to unexposed controls (p < 10?3). Although workers with cumulative exposures of < 10 ppm-years, i.e., well below the current limit, do not have a statistically significantly increased occurrence of these biomarkers (p > 0.05), workers with cumulative exposures of 10 to 40 ppm-years, i.e., still below the current limit, are found to have a statistically significant increase (p < 0.05). This suggests that the current exposure limit may not be adequately protective and illustrates the potential utility of molecular biomarkers in the refinement of risk assessments for toxic exposures.  相似文献   

19.
Previous studies on Ecological Risk Assessment (ERA) of produced water relied on the use of deterministic hydrodynamic models. The assessment was usually carried out in the North Sea context using a model such as the Chemical Hazard Assessment and Risk Management (CHARM), or in the North American context based on the output of a hydrodynamic model such as the Cornell Mixing Zone Expert System (CORMIX). In both these cases, however, probabilistic analysis has not been employed, particularly, to account for uncertainty associated with hydrodynamic models in the ERA study. In fact, it is the hydrodynamic model that has a direct linkage to the selection of the discharge alternatives. Apart from the monitoring purposes, in this article, it is suggested that criteria for evaluating discharge alternatives of produced water in a marine environment might incorporate an awareness of ecological risks by incorporating engineering and toxicological aspects. An ERA methodology consisting of problem formulation, analysis, and risk characterization is discussed in light of evaluating the discharge alternatives. A probabilistic analysis using Latin Hypercube Sampling (LHS)–based Monte Carlo (MC) simulations was employed. A depiction of associated risks for an area comparable to a regulatory mixing zone of typical effluent discharges is presented.  相似文献   

20.
Contamination within sediments of Sydney Harbour (once a major industrial port) were evaluated using a multiple lines-of-evidence (LOE) ecological risk assessment (ERA) approach prior to divestiture of the harbor. The multiple LOE approach included: (1) measurement of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals, metalloids, petroleum hydrocarbons(PHCs), and total organic carbon (TOC) concentrations in surface sediments from multiple Sydney Harbour locations; (2) identification and application of sediment quality guidelines (SQGs) from various jurisdictions; (3) comparisons of harbor sediment chemistry against background/reference sediment chemistry; (4) determining number and frequency of exceedances over SQGs; (5) calculating mean probable effect level-quotients (PEL-Qs); (6) PAH forensic source evaluation; (7) review of previous sediment chemistry and biota tissue data; and (8) characterizing benthic habitat at harbor stations. The ERA determined that current sediments exhibited mostly low probability of adverse effects. Furthermore, contaminated sediments exhibiting a high probability of adverse effects were localized to only a few stations within the harbor. Ongoing natural recovery of harbor sediments is likely responsible for attenuating contaminants that historically were higher than those measured in this study and were previously distributed over much wider areas of the harbor. Results suggest that legacy industrial activities and current urban sewage effluents are the major sources of contamination in Sydney Harbour sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号