首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of the Na/K-ATPase inhibitor ouabain on phosphoinositide (Ptdlns) hydrolysis was studied in rat brain cortical slices. Ouabain induced a dose-dependent accumulation of inositol phosphates (InsPs) which was much higher in neonatal rats (1570±40% of basal) than in adult animals (287±18% of basal). For this reason, all experiments were conducted with 7 day-old rats. Strophantidin caused a similar stimulation of Ptdlns hydrolysis, although it was less potent than ouabain. The order of potency for ouabain-stimulated InsPs accumulation in brain areas was hippocampus>cortex>brainstem>cerebellum. The effect of ouabain was not blocked by antagonists for the muscarinic, alpha1-adrenergic and glutamate receptors. Also ineffective were the K+ channel blockers 4-aminopyridine and tetraethylammonium, the sodium channel blocker tetrodotoxin, and the calcium channel blocker verapamil, whereas the Na/Ca exchanger blocker amiloride partially antagonized the effect of ouabain. The accumulation of InsPs induced by ouabain was additive to that of carbachol and norepinephrine, as well as to that induced by high K+ and veratrine, but not to that of glutamate. Removal of Na+ ions from the incubation buffer completely prevented the accumulation of InsPs induced by ouabain. The effect of ouabain was also dependent upon extracellular calcium and was under negative feedback control of protein kinase C. Despite the higher effect of ouabain on Ptdlns hydrolysis of immature rats, the density of [3H]ouabain binding sites, as well as the activity of Na/K-ATPase were higher in adult animals. Furthermore, a poor correlation was found between ouabain-stimulated Ptdlns hydrolysis and [3H]ouabain binding in brain regions. These results suggest an involvement of Na+ pump in the hydrolysis of Ptdlns, possibly related to an effect on Na+ and Ca2+ homeostasis. The immature rat appear to be an useful model for studying the relationship between Na/K-ATPase and inositol metabolism.  相似文献   

2.
Cultured Ehrlich ascites tumor cells equilibrate d-glucose via a carrier mechanism with a Km and V of 14 mM and 3 μmol/s per ml cells, respectively. Cytochalasin B competitively inhibits this carrier-mediated glycose transport with an inhibition constant (Ki) of approx. 5·10?7 M. Cytochalasin E does not inhibit this carrier function. With cytochalasin B concentrations up to 1·10?5 M, the range where the inhibition develops to practical completion, three discrete cytochalasin B binding sites, namely L, M and H, are distinguished. The cytochalasin B binding at L site shows a dissociation constant (Kd) of approx. 1·10-6 M, represents about 30% of the total cytochalasin B binding of the cell (8·106 molecules/cell), is sensitively displaced by cytochalasin E but not by d-glucose, and is located in cytosol. The cytochalasin B binding to M site shows a Kd of 4–6·10?7 M, represents approx. 60% of the total saturable binding (14·106 molecules/cell), is specifically displaced by d-glucose with a displacement constant of 15 mM, but not by l-glucose, and is insensitive to cytochalasin E. The sites are membrane-bound and extractable with Triton X-100 but not by EDTA in alkaline pH. The cytochalasin B binding at H site shows a Kd of 2–6 · 10?8 M, represents less than 10% of the total sites (2 · 106 molecules/cell), is not affected by either glucose or cytochalasin E and is of non-cytosol origin. It is concluded that the cytochalasin B binding at M site is responsible for the glucose carrier inhibition by cytochalasin B and the Ehrlich ascites cell is unique among other animal cells in its high content of this site. Approx. 16-fold purification of this site has been achieved.  相似文献   

3.
Seiji Sonobe 《Protoplasma》1990,155(1-3):239-242
Summary Miniprotoplasts capable of cytokinesis were isolated from cultured tobacco cells (BY-2) at anaphase by brief centrifugation in the absence of cytochalasin B. The cytokinesis was observed both in the absence and in the presence of cytochalasin B. Formation of furrow and spherical daughter cells were enhanced in the presence of cytochalasin B.  相似文献   

4.
We previously showed that lovastatin, an HMG-CoA reductase inhibitor, suppresses cell growth by inducing apoptosis in rat brain neuroblasts. Our aim was to study intracellular signalling induced by lovastatin in neuroblasts. Lovastatin significantly decreases the phosphoinositide 3-kinase (PI3-K) activity in a concentration-dependent manner. Expression of p85 subunit and its association with phosphotyrosine-containing proteins are unaffected by lovastatin. Lovastatin decreases protein kinase B (PKB)/Akt phosphorylation, and its downstream effectors, p70S6K and the eukaryotic initiation factor 4E (eIF4E) regulatory protein 1, 4E-BP1, in a concentration-dependent manner, and reduces p70S6K expression. Lovastatin effects are fully prevented with mevalonate. Only the highest dose of PI3-K inhibitors that significantly reduce PI3-K kinase activity induces apoptosis in neuroblasts but to a lower degree than lovastatin. In summary, this work shows that treatment of brain neuroblasts with lovastatin leads to an inhibition of the main pathway that controls cell growth and survival, PI3-K/PKB and the subsequent blockade of downstream proteins implicated in the regulation of protein synthesis. This work suggests that inactivation of the antiapoptotic PI3-K appears insufficient to induce the degree of neuroblasts apoptosis provoked by lovastatin, which must necessarily involve other intracellular pathways. These findings might contribute to elucidate the molecular mechanisms of some statins effects in the central nervous system.  相似文献   

5.
The technique of photoaffinity labelling with [4-3H]cytochalasin B was applied to osmotically lysed cerebral microvessels isolated from sheep brain. Cytochalasin B was photo-incorporated into a membrane protein of average apparent Mr 53,000. Incorporation of cytochalasin B was inhibited by D-glucose, but not by L-glucose, which strongly suggests that the labelled protein is, or is a component of, the glucose transporter of the blood-brain barrier. Investigation of noncovalent [4-3H]cytochalasin B binding to cerebral microvessels by equilibrium dialysis indicated the presence of a single set of high-affinity binding sites with an association constant of 9.8 +/- 1.7 (SE) microM-1. This noncovalent binding was inhibited by D-glucose, with a Ki of 23 mM. These results provide preliminary identification of the glucose transporter of the ovine blood-brain barrier, and reveal both structural and functional similarities to the glucose transport protein of the human erythrocyte.  相似文献   

6.
Summary A morpho-functional study of the effects of cytochalasin B (CB) on Na and water transport was made in amphibian epithelia. The functional studies confirmed the dissociation of the natriferic and hydrosmotic effects of vasopressin in toad urinary bladders exposed to CB and showed in addition that the block of the hydrosmotic effect was reversible and could still be induced in epithelia maximally stimulated with the hormone. Scanning electron microscopy revealed that CB, per se, did not alter the apical surface of the bladders. An almost total loss of microvilli of granular cells was seen, however, if CB was associated with vasopressin and an osmotic gradient. The results suggest two points: a) the block of the hydrosmotic flow induced by CB is due to factors beyond the apical membrane; b) microfilaments may be important mechanochemical transducers in the chain of events leading to the hydrosmotic effect of vasopressin.Supported by the grants Nos 3.1300.73 and 3.043-0.76 of the Swiss National Science FoundationThe authors are grateful to Miss C. Brücher, SEM operator of the Department of Physics, Ciba-Geigy, for skillful collaboration, to Mr. R. Mira for the illustrations and to Mrs. A. Cergneux for secretarial assistance  相似文献   

7.
In recent years, it has been hypothesized that muscarinic receptor-stimulated phosphoinositide (PI) metabolism may represent a relevant target for the developmental neurotoxicity of ethanol. Age-, brain region-, and receptor-specific inhibitory effects of ethanol on this system have been found, both in vitro and after in vivo administration. As a direct consequence of this action, alterations of calcium homeostasis would be expected, through alterations of inositol trisphosphate formation, which mediates intracellular calcium mobilization. In the present study, the effects of ethanol (50–500 mM) on carbachol-stimulated PI metabolism and free intracellular calcium levels were investigated in rat primary cortical cultures, by measuring release of inositol phosphates and utilizing the two calcium probes fluo-3 and indo-1 on an ACAS (Adherent Cell Analysis and Sorting) Laser Cytometer. Ethanol exerted a concentration-dependent inhibition of carbachol-stimulated PI metabolism. In addition, ethanol's inhibitory effect paralleled the temporal development of the muscarinic receptor signal transduction system, with the strongest inhibition (25–50%) occurring when maximal stimulation by carbachol occurs (days 5–7). Ethanol also exerted a concentration-dependent decrease in free intracellular calcium levels following carbachol stimulation. Both initial calcium spike amplitude, seen in all responsive cells, as well as the total number of cells responding to carbachol, were decreased by ethanol. The inhibitory effects of ethanol seemed dependent upon preincubation time, in that a longer preincubation (30 min) with the lowest dose (50 mM), showed almost the same decrease in responding cell number and reduction in spike amplitude in responding cells, as a shorter incubation (10 min) with the highest ethanol dose (500 mM). The specificity of the response to carbachol was demonstrated by blocking the response with 10 M atropine. Moreover, experiments with carbachol in calcium-free buffer with 1 mM EGTA indicated that the initial calcium spike was due to intracellular calcium mobilization from intracellular stores. Since calcium is believed to play important roles in cell proliferation and differentiation, these results support the hypothesis that this intracellular signal-transduction pathway may be a target for ethanol, contributing to its developmental neurotoxicity.  相似文献   

8.
The effects of chronic haloperidol administration on the accumulation of inositol phosphates were examined in rat brain slices pre-labeled with [3H]myo-inositol and incubated with various dopaminergic drugs. Rats were treated with haloperidol-decanoate or its vehicle (sesame oil) for two, four or six weeks. Dopamine and the selective D1 agonist, SKF38393, induced a significant increase in lithium-dependent accumulation of [3H]inositol monophosphate (IP1) in the frontal cortex, hippocampus and striatum of vehicle-treated animals, while the selective D2 agonist quinpirole did not show any effect on IP1 accumulation. The actions of dopamine and SKF38393 were blocked by the D1 antagonist, SCH23390, but not by the D2 antagonist, spiperone, in all three brain regions. Haloperidol treatment did not affect basal phosphoinositide turnover in the three brain regions. Four or six weeks of haloperidol treatment significantly decreased dopamine-induced IP1 accumulation in the striatum (by 30% and 25%, respectively), but not in the frontal cortex and the hippocampus. Four weeks of treatment with haloperidol significantly decreased IP1 levels in the striatal slices when measured in the presence of quinpirole. However, the accumulation of IP1 measured in the presence of SKF38393 was not significantly altered after haloperidol treatment. The loss of dopamine-sensitive IP accumulation was not observed in the presence of spiperone after haloperidol treatment. The number, but not the affinity, of [3H]sulpiride binding sites in the striatum was significantly increased (by 34–46%) after chronic haloperidol treatment. A timecourse study suggests that the inhibition by chronic haloperidol treatment of dopamine-induced phosphoinositide hydrolysis may involve an effect secondary to an increase in the number of dopamine D2 receptors in the striatum.  相似文献   

9.
The stimulation of production of inositol phosphates in rat cortical slices by KCl depolarization and the effects of calcium channel active drugs were investigated. Elevation of K+ in the medium up to 48 mM KCl caused a linear concentration-dependent increase in [3H]inositol phosphate accumulation. The KCl stimulated response was not significantly inhibited in the presence of muscarinic or 1-adrenergic antagonists. KCl stimulated the production of inositol trisphosphate at 60 min but not 10 min. Addition of peptidase inhibitors did not significantly affect KCl-stimulated PI hydrolysis. The KCl-stimulated response was still observed in the absence of extracellular calcium, although the net accumulation of inositol phosphates was greater in the presence of 0.1 or 0.5 mM calcium. KCl (48 mM) inhibited [3H]inositol uptake into phospholipids of cortical slices. The dihydropyridine calcium channel agonist BAY K 8644 stimulated PI hydrolysis in cortical slices in a concentration dependent manner in the presence of 19 mM KCl. The BAY K 8644-stimulated PI response was partially inhibited by 1M atropine but not by 1M prazosin. Calcium channel blockers nitrendipine, verapamil, flunarizine, and nifedipine slightly inhibited the PI response stimulated by 19 mM KCl in the presence or absence of BAY K 8644. The effects of the calcium channel antagonists were attenuated in the presence of 1 M atropine. The peptide calcium channel blocker -conotoxin did not affect KCl-stimulated PI hydrolysis. These results suggest that endogenous muscarinic or adrenergic neurotransmitters are not involved in KCl-stimulated PI hydrolysis in cortical slices. Although extracellular calcium is necessary for optimal KCl-stimulated PI hydrolysis, it is not required for the expression of the KCl-evoked response suggesting that depolarization is the primary trigger for this stimulant.  相似文献   

10.
Identification of hexose transporter sites by cytochalasin B binding was conducted with a centrifugation assay. The determination of KD and Bmax values by LIGAND computer analysis provided binding data that are similar in primary astrocytes (238 nM and 14 pmol/mg protein) and neuroblastoma cells (179 nM and 13.6 pmol/mg protein). In contrast, only an insignificant number of transporter sites was detectable in C6 glioma cells, irrespective of whether membrane fractions were obtained by a two-phase polymer system or by a latex phagocytosis technique yielding inside-out plasma membranes. The latter membrane preparation was utilized to identify and quantitate the transporter molecules at the inner membrane surface of primary astrocytes, i.e., 160 nM (KD) and 5.8 pmol/mg protein (Bmax), respectively.  相似文献   

11.
白藜芦醇抑制大鼠海马 CA1区神经元放电   总被引:6,自引:2,他引:6  
Li M  Wang QS  Chen Y  Wang ZM  Liu Z  Guo SM 《生理学报》2005,57(3):355-360
应用细胞外记录单位放电技术,在大鼠海马脑片上观察了白藜芦醇(resveratrol)对海马CAI区神经元放电的影响。实验结果如下:(1)在52个CAI区神经元放电单位给予白藜芦醇(0.05、0.5、5μmol/L)2min,有46个放电单位(88.5%)放电频率明显降低,且呈剂量依赖性;(2)预先用0.2mmol/L的L-glutamate灌流海码腑片,8个放电单位放电频率明显增加,表现为癫痫样放电,在此基础上灌流白藜芦醇(5μmol/L)2min,其癫痫样放电被抑制;(3)预先用L型钙通道开放剂Bay K8644灌流7个海马5脑片,有6个单位(85.7%)放电增加,在此基础上灌流白藜芦醇(5μmol/L)2min,其放电被抑制;(4)9个放电单位灌流一氧化氮合酶抑制剂L-NAME(N^0-nitro-L-arginine methylester)50μmol/L,有7个单位(77.8%)放电明显增加,在此基础上灌流白藜芦醇(5μmol/L)2min,放电被抑制;(5)10个放电单位灌流人电导钙激活性钾通道阻断剂TEA(tetraethylarnmonium chloride)1mmol/L后,有9个单位(90%)放电增加,在此基础上灌流白藜芦醇(5μmol/L)2min,8个放电单位(88,9%)放电频率明显减低。以上结果提示:白藜芦醇能抑制海马神经元自发放电以及由L-glutamate、L-NAME、Bay K8644和TEA诱发的放电,可能与白藜芦醇抑制L型钙通道,减少钙内流有关;似乎与大电导钙激活性钾通道无关。  相似文献   

12.
In this study, slices of rat anterior pituitary were prelabeled with [3H]myo-inositol and the ability of angiotensins II and III to stimulate [3H]phosphoinositide hydrolysis was characterized. When using tissue derived from ovariectomized rats, dose-response experiments revealed that angiotensin II significantly increases [3H]inositol monophosphate formation (in the presence of 10 mM LiCI) at concentrations of 10 nM and above. Maximal stimulation by angiotensin II was observed at 1 μM (228% of basal) and 50% maximal stimulation was at 10.8 ± 2.7 nM. Angiotensin III was less potent when compared to angiotensin II (maximal stimulation at 10 μM; 220% of basal: 50% maximal stimulation, 475 ± 159 nM). When using normal female rats, significant stimulation by angiotensin II was not observed until 1 μM angiotensin II. When ovariectomized rats were treated for 7 days with 17β-estradiol, increases in [3H]inositol monophosphate induced by 1 μM angiotensin II were significantly reduced when compared to sesame oil vehicle controls.This study shows that estrogen down-regulates angiotensin receptor coupling in the anterior pituitary. Moreover, it illustrates the influence of the hormonal state of the animal on the regulation of the effects of angiotensins in this tissue.  相似文献   

13.
1. Using a novel technique of organotypic cultures, in which two hippocampal slices were cocultured in a bilayer style, we found that the mossy fibers arising from the dentate gyrus grafted onto another dentate tissue grew along the CA3 stratum lucidum of the host hippocampal slice. The same transplantation of a CA1 microslice failed to form a network with the host hippocampus.2. Thus, the type of grafted neurons is important to determine whether they can form an appropriate network after transplantation.  相似文献   

14.
E. Schnepf 《Protoplasma》1988,143(1):22-28
Summary In the presence of cytochalasin D, dinoflagellates undergo mitosis and the cells begin to divide, but the completion of cell division is inhibited. InPausenella (dinospore formation),Gymnodinium andProrocentrum, Siamese twins arise which remain connected at the epicones whereas the hypocones, containing the nuclei, are separated. InScripsiella where the nucleus is centrally located, irregular binucleate cell bodies result. Cyst divisions which give rise to secondary or tertiary cysts inPaulsenella are not affected. In the athecatesPaulsenella andGymnodinium the morphogenesis of the separated cell portions is not or nearly not, respectively, disturbed by cytochalasin D. In the thecatesScripsiella andProrocentrum morphogenesis is heavily affected. InProrocentrum, wrinkled theca material is deposited instead of complete valvae. Doubling of the flagellar apparatus is not inhibited. It is concluded that the first phase of cytokinesis does not depend on actin. The daughter cells begin to separate by a mechanism which seems to be associated with the mitotic apparatus. Actin, however, is involved in the further constriction of the cleavage furrow in the second phase of cytokinesis and in the morphogenesis of the theca.  相似文献   

15.
Hensel W 《Protoplasma》1985,129(2-3):178-187
Summary The effect of cytochalasin B (CB; 25 ·ml–1 in 1% dimethylsulfoxide, DMSO) upon the structural polarity of statocytes in cress roots is demonstrated. If normal, vertically grown roots are incubated in CB, the structural polarity of the statocytes is altered according to the developmental stage of the root. Statocytes from young roots (13 or 17 hours, additionally 7 hours CB) are characterized by proximal ER cisternae and a sparsely developed distal ER-complex. Statocytes from older roots (24 hours, additionally 7 hours CB) still accumulate distal ER, as in control roots, but at the proximal cell pole in the vicinity of the nucleus additional ER is found. These effects are reversed by washing out the drug in DMSO. Growth of the roots under a continuous supply of CB yields statocytes with sedimented nuclei, proximal ER and almost no distal ER. Together with quantitative data from morphometric studies, a dynamic model of the expression of inherent cell polarity in structural polarity is proposed.Abbreviations CB cytochalasin B - DMSO dimethylsulfoxide - ER endoplasmic reticulum Preliminary results were presented at the joint Annual Meeting of the Belgian and German Society for Cell Biology, Bonn, 18–22 March 1985; Eur. J. Cell Biol. 36 (Suppl. 7), 1985, 25.Dedicated to Professor Dr. A.Betz on the occasion of his 65th birthday.  相似文献   

16.
Several studies have indicated that weak, extremely-low-frequency (ELF; 1–100 Hz) magnetic fields affect brain electrical activity and memory processes in man and laboratory animals. Our studies sought to determine whether ELF magnetic fields could couple directly with brain tissue and affect neuronal activity in vitro. We used rat hippocampal slices to study field effects on a specific brain activity known as rhythmic slow activity (RSA), or theta rhythm, which occurs in 7–15 s bursts in the hippocampus during memory functions. RSA, which, in vivo, is a cholinergic activity, is induced in hippocampal slices by perfusion of the tissue with carbachol, a stable analog of acetylcholine. We previously demonstrated that the free radical nitric oxide (NO), synthesized in carbachol-treated hippocampal slices, lengthened and destabilized the intervals between successive RSA episodes. Here, we investigate the possibility that sinusoidal ELF magnetic fields could trigger the NO-dependent perturbation of the rate of occurrence of the RSA episodes. Carbachol-treated slices were exposed for 10 min epochs to 1 or 60 Hz magnetic fields with field intensities of 5.6, 56, or 560 μT (rms), or they were sham exposed. All exposures took place in the presence of an ambient DC field of 45 μT, with an angle of -66° from the horizontal plane. Sinusoidal 1 Hz fields at 56 and 560 μT, but not at 5.6 μT, triggered the irreversible destabilization of RSA intervals. Fields at 60 Hz resulted in similar, but not statistically significant, trends. Fields had no effects on RSA when NO synthesis was pharmacologically inhibited. However, field effects could take place when extracellular NO, diffusing from its cell of origin to the extracellular space, was chelated by hemoglobin. These results suggest that ELF magnetic fields exert a strong influence on NO systems in the brain; therefore, they could modulate the functional state of a variety of neuronal ensembles. © 1996 Wiley-Liss, Inc.  相似文献   

17.
Agonist occupancy of muscarinic cholinergic receptors in human SH-SY-5Y neuroblastoma cells elicited two kinetically distinct phases of phosphoinositide hydrolysis when monitored by either an increased mass of inositol 1,4,5-trisphosphate, or the accumulation of a total inositol phosphate fraction. Within 5s of the addition of the muscarinic agonist, oxotremorine-M, the phosphoinositide pool was hydrolyzed at a maximal rate of 9.5%/min. This initial phase of phosphoinositide hydrolysis was short-lived (t1/2=14s) and after 60s of agonist exposure, the rate of inositol lipid breakdown had declined to a steady state level of 3.4%/min which was then maintained for at least 5–10 min. This rapid, but partial, attenuation of muscarinic receptor stimulated phosphoinositide hydrolysis occurred prior to the agonist-induced internalization of muscarinic receptors.Abbreviations I(1,4,5)P3 inositol 1,4,5-trisphosphate - IP total inositol phosphate fraction - IPL total inositol lipid fraction - mAChR muscarinic acetylcholine receptor - NMS N-methylscopolamine - Oxo-M oxotremorine-M - PI phosphatidylinositol - PIP phosphatidylinositol 4-phosphate - PIP2 phosphatidylinositol 4,5-bisphosphate - PPI phosphoinositide - QNB quinuclidinyl benzilate Special issue dedicated to Dr. Bernard W. Agranoff  相似文献   

18.
The adenosine A1 receptor selective agonist, N 6-cyclopentyladenosine (CPA, 300 nM) inhibited basal accumulation of [3H]inositol phosphates ([3H]InsPs), but not the total levels of membrane [3H]-phosphoinositides, in rat hippocampal slices. This action of CPA was not significantly modified when synaptic transmission was blocked with tetrodotoxin (TTX, 200 nM) but was prevented in slices pre-incubated with pertussis toxin (PTX, 5 g/mL) for 12-16 hr. Neither PTX nor TTX, when applied in the absence of CPA, influenced basal [3H]InsPs accumulation. It is concluded that the inhibition of the basal phosphatidylinositol metabolism by adenosine A1 receptor activation is independent of neurotransmission and involves a PTX-sensitive G protein, probably of the Gi/Go family.  相似文献   

19.
Neurofilaments subunits (NF-H, NF-M, NF-L) and glial fibrillary acidic protein (GFAP) were investigated in the hippocampus of rats after distinct periods of reperfusion (1 to 15 days) following 20 min of transient global forebrain ischemia in the rat. In vitro [14Ca]leucine incorporation was not altered until 48 h after the ischemic insult, however concentration of intermediate filament subunits significantly decreased in this period. Three days after the insult, leucine incorporation significantly increased while the concentration NF-H, NF-M, and NF-L were still diminished after 15 days of reperfusion. In vitro incorporation of32P into NF-M and NF-L suffered immediately after ischemia, but returned to control values after two days of reperfusion. GFAP levels decreased immediately after ischemia but quickly recovered and significantly peaked from 7 to 10 days after the insult. These results suggest that transient ischemia followed by reperfusion causes proteolysis of intermediate filaments in the hippocampus, and that proteolysis could be facilitated by diminished phosphorylation levels of NF-M and NF-L.  相似文献   

20.
The concentrations of glucose transporter in the cerebral cortex and brainstem of neonatal (4–7 days old) and adult rats were measured using [3H]cytochalasin B binding. There was significantly lower binding in neonatal cortex (1.9 ± 0.7 pmol/mg protein) compared to adult (8.9 ± 2.5 pmol/mg protein). Scatchard analysis indicates this difference is due to a lower Bmax (neonate, 9.7 pmol/mg protein; adult, 18.6 ± 1.3 pmol/mg protein). Measurement of [3H]cytochalasin B binding in microvessels prepared from cortex of adult (28.1 ± 3.5 pmol/mg protein) and neonate (12.8 ± 1.9 pmol/mg protein) indicates a lower binding in the microvasculature of neonates, whereas no such difference was seen in the binding in microvessels prepared from adult and neonatal brainstem (adult, 11.8 ± 2.3 pmol/mg protein; neonate, 9.4 ± 2.7 pmol/mg protein). In both adult and neonate brain, there is an enrichment of glucose transporters in the microvasculature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号