首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated whether turnover of basal lamina glycosaminoglycan (GAG), an active process during epithelial morphogenesis, involves the mesenchyme. Fixed, prelabeled, isolated mouse embryo submandibular epithelia were prepared retaining radioactive surface components, as determined by autoradiographic and enzymatic studies, and a basal lamina, as assessed by electron microscopy. Recombination of mouse embryo submandibular mesenchyme with these epithelia stimulates the release of epithelial radioactivity when the labeled precursor is glucosamine or glucose but not when it is amino acid. The release is linear with time during 150 min incubation. Augmented release of epithelial label requires living mesenchyme which must be close proximity with the epithelia. Although heterologous mesenchymes, including lung, trachea, and jaw, stimulate the release of submandibular epithelial label, epithelial tissues do not. The label released by intact submandibular mesenchyme from prelabeled epithelia is in GAG and in two unique fractions: heterogeneous materials of tetrasaccharide or smaller size and N-acetylglucosamine. Enzymatic treatment of the heterogeneous materials revealed the presence of glycosaminoglycan-derived oligosaccharides. These unique products were not obtained by incubating prelabeled epithelia with a mesenchymal cell extract, suggesting that intact mesenchymal cells are required. N-Acetylglucosamine was also released when mesenchyme was recombined with living prelabeled epithelia which contained labeled basal laminar GAG. Our results establish that submandibular epithelial basal lamina GAGs are degraded by submandibular mesenchyme. We propose that one mechanism of epithelial-mesenchymal interaction is the degradation of epithelial basal laminar GAG by mesenchyme.  相似文献   

2.
The ultrastructural organization and the composition of newly synthesized glycosaminoglycan (GAG) in the epithelial basal lamina of mouse embryo submandibular glands were assessed. The labeled GAG accumulating in the lamina is distinct from that in its tissue of origin, the epithelium, or from that in the surrounding mesenchyme. In the lamina, hyaluronic acid accounts for approximately 50% of the labeled GAG, chondroitin-4-sulfate is twice the chondroitin-6-sulfate, and there is a low proportion of chondroitin. This composition is constant regardless of whether the lamina is labeled by whole glands or, in the absence of mesenchyme, by isolated epithelia retaining a lamina and by isolated epithelia generating a lamina de novo. The results andicate that the labeled GAG are bona fide components of the lamina, and suggest that laminar GAG is deposited in units of constant composition. Ultrastructural observations following ruthenium red staining or tannic acid fixation extablish that the lamina is a highly ordered specialization of the basal cell surface. Discrete structures in macroperiodic arrays apparently attached to the plasmalemma are visualized. This organization is seen in intact glands and in the laminae produced by epithelia in the absence of mesenchyme or biological substrate. The data are interpreted as indicating that the basal lamina contains supramolecular complexes of hyaluronic acid and proteoglycan which are organized into an extracellular scaffolding which imposes structural form on the epithelium.  相似文献   

3.
The morphogenetic role of the acid mucopolysaccharide (glycosaminoglycan) at the epithelial surface of mouse embryo submandibular glands has been studied by comparing the in vitro morphogenesis of epithelia from which the mucopolysaccharide was removed with that of those that retained the mucopolysaccharide. Epithelia isolated free of mesenchyme by procedures which retain the bulk of surface mucopolysaccharide maintain their lobular shape and undergo uninterrupted branching morphogenesis in culture in direct combination with fresh mesenchyme. Under identical culture conditions, epithelia from which surface mucopolysaccharide was removed lose their lobules and become spherical masses of tissue. During continued culture, the spherical epithelia produce outgrowths from which branching morphogenesis resumes. The morphogenetically active mucopolysaccharide is localized within the basal lamina of the epithelial basement membrane and appears to be bound to protein. During culture in combination with mesenchyme, epithelia undergoing uninterrupted morphogenesis show maximal accumulation of newly synthesized surface mucopolysaccharide at the distal ends of the lobules, the sites of incipient branching. In contrast, the material accumulates nearly equivalently over the surface of the spherical epithelia, with the exception that there is greater accumulation of the material at the surfaces of the budding outgrowths, the sites where morphogenesis will resume. Rapidly proliferating cells are localized within the lobules of epithelia undergoing uninterrupted morphogenesis, but are distributed uniformly in the cortex of the spherical epithelia, except for the outgrowths which show a greater localization of proliferating cells. It is concluded that normal salivary epithelial morphology and branching morphegenesis require the presence of acid mucopolysaccharide-protein within the epithelial basal lamina.  相似文献   

4.
In this paper the ultrastructural features of the epithelial-mesenchymal interface in mandibular processes of embryonic chicks have been examined using scanning electron microscopy. Mandibular epithelium is required for the mesenchyme to differentiate as osteoblasts and to deposit the membrane bones of the mandible. The surface morphology of the epithelium changes from the lateral to the medial face of the mandible from rounded cells, each with a central cilium to flattened cells with numerous microvilli. Treatment with trypsin and pancreatin was used to digest the basal lamina so as to separate epithelium from mesenchyme. This exposed a thick, fibrillar basement membrane (reticular lamina), which was thicker underlying the caudal epithelium than under the cephalad epithelium. Addition of collagenase to the trypsin/pancreatin solution degraded some of the basement lamella, especially that underlying epithelium on the caudal portion of each mandibular process. Selective degradation of basement lamella is postulated as one means of regulating inductive epithelial-mesenchymal interactions. EDTA was used to isolate basal laminae on mandibular mesenchyme. SEM was used to confirm the integrity of the basal lamina, its structure, and its association with overlying epithelial cells and underlying basement lamella.  相似文献   

5.
The mammary epithelium was investigated to determine whether glycosaminoglycans (GAG) are components of the basal lamina of epithelia undergoing postnatal morphogenesis. Isolated epithelial tissues from midpregnant mice produce substantial amounts of GAG, consisting predominantly of hyaluronic acid and heparan sulfate. The basal surfaces of mammary epithelia at various postnatal developmental stages show GAG, as demonstrated by histochemistry and by autoradiography coupled with enzyme susceptibility. Electron microscopy using ruthenium red staining reveals polyanionic components, presumably GAG, within the epithelial basal lamina. Detailed ultrastructural analyses of tannic acid-treated and ruthenium red-stained material demonstrate that the lamina contains a two-dimensional symmetrical array of tetragonally ordered components colsely associated with the basal plasma membrane. This array is similar to that found in the hyaluronate-containing lamina of embryonic epithelia. A structurally ordered complex of GAG-containing macromolecules may characterize the basal lamina of all epithelia which undergo morphogenetic changes in cell shape.  相似文献   

6.
To investigate how the mesenchyme interacts with the epithelium, we employed three different culture systems: System A, in which intact submandibular gland rudiments at the mid 13-day stage were cultured on Millipore filters; System B, in which the 13-day epithelium and mesenchyme were separated once with dispase, recombined again, and cultured on the filter; System C, in which the separated 13-day epithelium was clotted with Matrigel and cultured with the mesenchyme across the filter or in the presence of EGF instead of the mesenchyme. In Systems A and B, 13-day epithelia expanded and produced similar lobules with narrow clefts and stalk. When the 13-day epithelium was cultured in System C under the influence of the mesenchyme, it formed rather oval lobules with stalk that were superficially similar to those in System A, but narrow clefts, as seen in the intact early 13-day gland, were rarely found in System C. Furthermore, no long stalk formation was observed when EGF was introduced in place of the mesenchyme. A bacterial collagenase from Clostridium histolyticum gave a considerable inhibition of branching of the 13-day epithelium in Systems A and B, but no significant inhibition was observed in System C when the mesenchyme or EGF was employed as the source of diffusible factor(s). In contrast, although the 13-day epithelium was significantly resistant to the action of heparitinase I from Flavobacterium heparinum in Systems A and B, the enzyme almost completely inhibited the expansion and branching of the epithelium in System C. Judging from these observations, we conclude that the mechanisms of lobular formation in Systems A and B are not the same as those in System C, where the epithelium is clotted with basement membrane matrix components during tissue culture.  相似文献   

7.
Epithelial tissues in various organ rudiments undergo extensive shape changes during their development. The processes of epithelial shape change are controlled by tissue interactions with the surrounding mesenchyme which is kept in direct contact with the epithelium. One of the organs which has been extensively studied is the mouse embryonic submandibular gland, whose epithelium shows the characteristic branching morphogenesis beginning with the formation of narrow and deep clefts as well as changes in tissue organization. Various molecules in the mesenchyme, including growth factors and extracellular matrix components, affect changes of epithelial shape and tissue organization. Also, mesenchymal tissue exhibits dynamic properties such as directional movements in groups and rearrangement of collagen fibers coupled with force-generation by mesenchymal cells. The epithelium, during early branching morphogenesis, makes a cell mass where cell-cell adhesion systems are less developed. Such properties of both the mesenchyme and epithelium are significant for considering how clefts, which first appear as unstable tiny indentations on epithelial surfaces, are formed and stabilized.  相似文献   

8.
Early morphogenesis of mouse submandibular gland provides an excellent model for the formation of epithelial lobules as a consequence of epithelial-mesenchymal interactions. Both proteoglycans and a glycosaminoglycan, high molecular weight components which contain amino-sugars and hexuronic acids, seem to be important in maintaining the lobular structure through the formation of epithelial basal lamina. Collagen also appears to play a crucial role in this morphogenesis. By visualizing the distribution of collagen fibrils and by changing the concentration of collagen in the gland, we have developed a new hypothesis which emphasizes the mechanical role of mesenchyme in epithelial cleft formation. Precise mechanisms for the involvement of these molecules have not been elucidated, yet it is now clear that knowledge of the function of the extracellular matrix components is a prerequisite for understanding the epithelial-mesenchymal interactions.  相似文献   

9.
During embryonic and neonatal mouse incisor tooth morphogenesis, direct epithelial-mesenchymal cell contacts were observed by electron microscopy. These direct contacts were evident along the epithelial-mesenchymal interface in the differentiation zone in which inner enamel epithelium was as yet a dividing cell population which had not as yet synthesized and secreted the enamel organic matrix. This region of cell differentiation was also characterized by the appearance of cell processes which extended from the epithelia through the basal lamina. Following the appearance of epithelial cell processes penetrating through the basal lamina, ectomesenchymal cell processes extended across the extracellular matrix and penetrated through the basal lamina and resulted in the formation of contact zones. Following degradation of the basal lamina, the mesenchymal cell processes penetrated into clefts within the preameloblast cells and formed cell contacts. By a combination of tannic acid and uranium acetate staining we observed that the tannic acid stain penetrated through intercellular spaces formed between the apposing mesenchymal and epithelial plasma membrane surfaces. We speculate that direct heterotypic cell contacts, which occur prior to the cessation of preameloblast cell division and precede the secretion of enamel proteins, may be instructive in the induction of enamel protein biosynthesis.  相似文献   

10.
Immunohistochemical localization of calcium-activated neutral protease (CANP) in rabbit organs was determined using a monoclonal antibody against CANP. In most organs, epithelial tissues reacted intensely: these tissues include great alveolar and squamous alveolar cells in lung; interlobular artery, vein, and bile duct in liver; small vessels in skeletal muscle; glomeruli, juxtanglomerular cells, distal and collecting tubules in kidney; mucous epithelium in gallbladder; interstitial cells in testis; and cuboidal epithelial cells in brain choroid plexus. On the other hand, hepatocytes, epithelial cells which have ill defined basal lamina, were stained very faintly. These observations suggest that the physiological function of CANP is involved with transport systems in epithelial tissues through basal lamina.  相似文献   

11.
The initiation of bone formation in the avian mandible requires that neural crest-derived cells undergo an inductive interaction with mandibular epithelium. To examine the role of the epithelial basal lamina in that interaction, mandibles were separated into their epithelial and mesenchymal components following exposure to the chelating agent, EDTA. Transmission and scanning electron microscopy was used to show that the basal lamina was retained as a continuous layer over the mesenchyme. Osteogenesis was initiated when such EDTA-isolated mesenchyme was grafted to the chorioallantoic membranes of host embryos. In contrast, mesenchyme isolated using trypsin and pancreatin failed to form bone. It is concluded that the property of mandibular epithelium which permits osteogenesis resides within the basal lamina.  相似文献   

12.
When mouse mammary epithelial cells are cultured on a plastic substratum, no basal lamina forms. When cultured on a type I collagen gel, the rate of glycosaminoglycan (GAG) synthesis is unchanged, but the rate of GAG degradation is markedly reduced and a GAG-rich, basal lamina-like structure accumulates. This effect of collagen was investigated by comparing the culture distribution, nature, and metabolic stability of the 35S-GAG-containing molecules produced by cells on plastic and collagen. During 48 h of labeling with 35SO4, cultures on collagen accumulate 1.4-fold more 35S-GAG per microgram of DNA. In these cultures, most of the extracellular 35S-GAG is immobilized with the lamina and collagen gel, whereas in cultures on plastic all extracellular 35S-GAG is soluble. On both substrata, the cells produce several heparan sulfate-rich 35S-proteoglycan fractions that are distinct by Sepharose CL-4B chromatography. The culture types contain similar amounts of each fraction, except that collagen cultures contain nearly four times more of a fraction that is found largely bound to the lamina and collagen gel. During a chase this proteoglycan fraction is stable in cultures on collagen, but is extensively degraded in cultures on plastic. Thus, collagen-induced formation of a basal lamina correlates with reduced degradation and enhanced accumulation of a specific heparan sulfate-rich proteoglycan fraction. Immobilization and stabilization of basal laminar proteoglycan(s) by interstitial collagen may be a physiological mechanism of basal lamina maintenance and assembly.  相似文献   

13.
Summary The developing avian limb bud is a classic example of an epithelial-mesenchymal interaction. Numerous attempts at maintenance of the epithelia in culture have been predominantly unsuccessful. The fate of the isolated epithelial sheet of the limb bud [including the apical ectodermal ridge (AER)] in culture may depend at least in part on the integrity of its basal lamina following isolation. In this study the distal epithelium of the stage 23 limb bud was isolated utilizing trypsin and Dispase II in a variety of procedures. The integrity of the basal lamina of limb epithelium immediately upon isolation and after 2 h in culture was determined by immunofluorescent staining for laminin, and electron microscopy. In epithelial sheets isolated with Dispase II a direct relationship was observed between maintenance of the extracellular matrix at isolation and the preservation of the tissue structure and cytoarchitecture following 2 h in culture. In contrast, there was an accelerated deterioration during incubation of the tissue isolated with trypsin, independent of isolation conditions and integrity of basal lamina after isolation. Short-term maintenance of limb bud epithelial structure and cytoarchitecture after enzymatic isolation seems correlative to the maintenance of extracellular matrix at the epithelial basal surface.  相似文献   

14.
The induction, growth, and differentiation of epithelial lung buds are regulated by the interaction of signals between the lung epithelium and its surrounding mesenchyme. Fibroblast growth factor-10 (FGF-10), which is expressed in the mesenchyme near the distal tips, and bone morphogenetic protein 4 (BMP4), which is expressed in the most distal regions of the epithelium, are important molecules in lung morphogenesis. In the present study, we used two in vitro systems to examine the induction, growth, and differentiation of lung epithelium. Transfilter cultures were used to determine the effect of diffusible factors from the distal lung mesenchyme (LgM) on epithelial branching, and FGF-10 bead cultures were used to ascertain the effect of a high local concentration of a single diffusible molecule on the epithelium. Embryonic tracheal epithelium (TrE) was induced to grow in both culture systems and to express the distal epithelial marker surfactant protein C at the tips nearest the diffusible protein source. TrE cultured on the opposite side of a filter to LgM branched in a pattern resembling intact lungs, whereas TrE cultured in apposition to an FGF-10 bead resembled a single elongating epithelial bud. Examination of the role of BMP4 on lung bud morphogenesis revealed that BMP4 signaling suppressed expression of the proximal epithelial genes Ccsp and Foxj1 in both types of culture and upregulated the expression of Sprouty 2 in TrE cultured with an FGF-10 bead. Antagonizing BMP signaling with Noggin, however, increased expression of both Ccsp and Foxj1.  相似文献   

15.
Branching morphogenesis of mouse salivary gland has been studied with organ-culture system. We developed a novel transfilter culture system for analyzing branching morphogenesis of the salivary epithelium. The submandibular salivary epithelium from early 13-day mouse fetus, clotted with Matrigel and separated from the mesenchyme by membrane filter, showed extensive growth and branching morphogenesis, morphological differentiation of lobules and stalks, and a typical cleft shape. The epithelium showed little growth and no branching without Matrigel clot or without the mesenchyme. This branching morphogenesis was induced even when the pore size of the filter was reduced to 0.05 microns. Use of type I collagen gel instead of Matrigel mostly induced incomplete morphogenesis with various histological abnormalities. These results suggest that the salivary epithelium can undergo branching morphogenesis in the absence of the mechanical action of mesenchymal cells although it needs an appropriate extracellular matrix and some mesenchymal factors transmitted through the filter.  相似文献   

16.
Mouse submandibular epithelium shows branching morphogenesis in mesenchyme-free conditions when covered with a basement membrane matrix (Matrigel) in medium supplemented with epidermal growth factor. In the present study, the role of laminin-1 (LN1), a major glycoprotein of Matrigel, in this culture system was defined. When the epithelium was cultured in a LN1-nidogen gel, the epithelium showed much branching, comparable to that observed with Matrigel. By electron microscopy, only a felt-like matrix was formed on the epithelial surface in the LN1-nidogen gel cultures, while an organized basal lamina structure was formed on the epithelial surface in direct or transfilter recombination cultures with mesenchyme. Next, the epithelium covered with Matrigel was cultured in medium containing either biologically active peptides from LN1, IKVAV-including peptide (2097-2108), AG10 (2183-2194), AG32 (2370-2381) or AG73 (2719-2730) from the alpha1 chain, or YIGSR-including peptide (926-933) from the beta1 chain. Only AG73 (RKRLQVQLSIRT from the alpha1 chain carboxyl-terminal globular domain) inhibited the epithelial branching in Matrigel. These results suggest that LN1-nidogen can support the branching morphogenesis of submandibular epithelium even if LN1-nidogen is not assembled into an intact basal lamina, and that the AG73 sequence is an important site on LN1, which interacts with submandibular epithelial cells.  相似文献   

17.
An interstitial collagenase was purified from the explant medium of bovine dental pulp and was shown to degrade collagens I and III but not IV and V. The enzyme halted cleft initiation in the epithelium of 12-day mouse embryonic submandibular glands in vitro, indicating the active involvement of interstitial collagens in the branching morphogenesis. Transmission electron microscopic observation of the intact 12-day gland without any clefts showed the scattered localization of a few collagen fibrils at the epithelial-mesenchymal interface of the bulb and also revealed the presence of numerous microfibrils around the stalk. Collagen bundles were regularly seen close to the wavy basal lamina at the bottom of clefts of the intact 13-day gland and 12-day gland cultured for 17 h under normal conditions. Mesenchymal cells were found in the clefts together with the frequent localization of peripheral nerve fibres and capillary endothelial cells. The collagen bundles were more often observed in the 12-day gland cultured in the presence of bovine dental pulp collagenase inhibitor, which had been shown to enhance cleft formation. In contrast, collagen fibrils were rarely found at the epithelial-mesenchymal interface of the 12-day gland cultured in the presence of Clostridial or bovine dental pulp collagenase. The findings indicated that the formation of interstitial collagen bundles is essential to form clefts in the epithelium both in vivo and in vitro.  相似文献   

18.
Early development of the hind limb of Xenopus (stages 44–48) has been analyzed at the level of ultrastructure with emphasis on differentiation of extracellular matrix components and intercellular contacts. By stages 44–45, mesenchyme is separated from prospective bud epithelium by numerous adepidermal granules in a subepithelial compartment (the lamina lucida), a continuous basal lamina and several layers of collagen (the basement lamella). Tricomplex stabilization of amphoteric phospholipid demonstrates that each adepidermal granule consists of several membranelike layers (electron-lucent band 25–30 Å; electron-dense band 20–40 Å), which are usually parallel to the basal surface of adjacent epithelial cells. Collagen fibrils are interconnected by filaments (35 Å in diameter) which stain with ruthenium red. Epithelial cells possess junctional complexes at their superficial borders, numerous desmosomes at apposing cell membranes and hemidesmosomes at their basal surface. Mesenchymal cells predominantly exhibit close contacts (100–150 Å separation) with few focal tight junctions at various areas of their surface. By stages 47–48, adepidermal granules are absent beneath bud epithelium and layers of collagen in the basement lamella lose filamentous cross-linking elements. Filopodia of mesenchymal cells penetrate the disorganized matrix and abut the basal lamina. Hemidesmosomes disappear at the basal surface of the epidermis and mesenchymal cells immediately subjacent to epithelium exhibit focal tight junctions and gap junctions at their lateral borders. These structural changes may be instrumental in the epitheliomesenchymal interactions of early limb development. Degradation of oriented collagenous lamellae permits direct association of mesenchymal cell surfaces (filopodia) with surface-associated products of epithelial cells (organized into the basal lamina). Development of structural pathways for intercellular ion and metabolite transport in mesenchyme may coordinate events specific to limb morphogenesis.  相似文献   

19.
The distribution of collagens I, III, IV and V was studied by immunoperoxidase staining of early developing mouse submandibular glands. Collagen I was always present in the extracellular matrices of the mesenchyme and at the epithelial-mesenchymal interfaces of the 12-day gland with no clefts and of the 13-day gland with a few definite clefts. Collagen III was found in a similar fashion to that of collagen I in the mesenchyme, but the distribution at the epithelial-mesenchymal interfaces was very different. In the mid 12-day gland with a round lobule, collagen III was distributed at every slightly indented site of basal epithelial surfaces. At the late 12-day stage, a few initial signs of cleft appeared on the surface, at which accumulation of collagen III became evident. Intense immunoreaction of collagen III in the early 13-day gland was seen at the bottom of every narrow cleft. No specific accumulation of collagens IV and V was observed in clefts of the late 12-day and early 13-day glands. Staining of collagen III in the 12-day gland cultured for 10 h in the presence of bovine dental pulp collagenase inhibitor, which has been shown to stimulate cleft initiation, was very prominent at the bottom of every narrow cleft. These observations suggest that collagen III works as a key substance for either in vitro or in vivo cleft initiation of the mouse embryonic submandibular epithelium.  相似文献   

20.
The aim of the present study was to examine the effects of mesenchyme on the cytodifferentiation of the Dunning tumor (DT, R3327), a transplantable rat prostatic adenocarcinoma developed spontaneously from the dorsolateral prostate of a Copenhagen rat. Small pieces of DT were combined with mesenchyme of the rat urogenital sinus (18-day fetal, UGM) or seminal vesicle (0-day neonatal, SVM). Both types of combinations were grown under the kidney capsule of male athymic nude mice for 4 weeks. At harvest, the tissue recombinants were fixed and processed for electron microscopy. Grafts of parental DT were similarly processed for electron microscopy. The tumor was characterized by tubules lined by 2-3 layers of undifferentiated cells lacking secretory granules. The basal lamina was reduplicated, and epithelioid cells traversing gaps in the basal lamina were frequently observed. The stroma was composed of a mixture of fibroblastic and large epithelioid cells derived from the ductal lining epithelium through a process of micrometastasis. In UGM or SVM+DT combinations the mesenchyme influenced the differentiation and secretory activity of the DT epithelium. The induced DT epithelial cells exhibited a well-developed granular endoplasmic reticulum, a large Golgi apparatus and prominent secretory granules which were never observed in the parental DT. The basal lamina returned to normal, while the incidence of micrometastasis was decreased. The collagen content of the stroma was increased with a concurrent appearance of smooth muscle cells surrounding those tubules where secretory cytodifferentiation had occurred. While the mechanism involved in the mesenchyme-induced change in cytodifferentiation remains unknown, it is evident that the DT epithelial cells when associated with normal embryonic or neonatal mesenchyme can express a more normal cytodifferentiation and function. It is concluded (a) that the DT cells can be induced by mesenchyme to express more highly differentiated ultrastructural patterns and secretory cytodifferentiation, (b) that the induced secretory cytodifferentiation is associated with a reduction in invasiveness (micrometastasis) and a more normal-appearing basal lamina and (c) that the increased abundance of collagen fibers and the differentiation of smooth muscle in the stromal compartment are associated with secretory cytodifferentiation suggesting that reciprocal epithelial-mesenchymal interactions are involved in the regulation of the pathobiology of the DT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号