首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Methanosarcina mazei Gö1 couples the methyl transfer from methyl-tetrahydromethanopterin to 2-mercaptoethanesulfonate (coenzyme M) with the generation of an electrochemical sodium ion gradient (delta mu Na+) and the reduction of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreoninephosphate with the generation of an electrochemical proton gradient (delta muH+). Experiments with washed inverted vesicles were performed to investigate whether both ion gradients are used directly for the synthesis of ATP. delta mu Na+ and delta mu H+ were both able to drive the synthesis of ATP in the vesicular system. ATP synthesis driven by heterodisulfide reduction (delta mu H+) or an artificial delta pH was inhibited by the protonophore SF6847 but not by the sodium ionophore ETH157, whereas ETH157 but not SF6847 inhibited ATP synthesis driven by a chemical sodium ion gradient (delta pNa) as well as the methyl transfer reaction (delta mu Na+). Inhibition of the Na+/H+ antiporter led to a stimulation of ATP synthesis driven by the methyl transfer reaction (delta mu Na+), as well as by delta pNa. These experiments indicate that delta mu Na+ and delta mu H+ drive the synthesis of ATP via an Na(+)- and an H(+)-translocating ATP synthase, respectively. Inhibitor studies were performed to elucidate the nature of the ATP synthase(s) involved. delta pH-driven ATP synthesis was specifically inhibited by bafilomycin A1, whereas delta pNa-driven ATP synthesis was exclusively inhibited by 7-chloro-4-nitro-2-oxa-1,3-diazole, azide, and venturicidin. These results are evidence for the presence of an F(1)F(0)-ATP synthase in addition to the A(1)A(0)-ATP synthase in membranes of M. Mazei Gö1 and suggest that the F(1)F(0)-type enzyme is an Na+-translocating ATP synthase, whereas the A(1)A(0)-ATP synthase uses H+ as the coupling ion.  相似文献   

2.
Growth of Acetobacterium woodii on fructose was stimulated by Na+; this stimulation was paralleled by a shift of the acetate-fructose ratio from 2.1 to 2.7. Growth on H2-CO2 or on methanol plus CO2 was strictly dependent on the presence of sodium ions in the medium. Acetate formation from formaldehyde plus H2-CO by resting cells required Na+, but from methanol plus H2-CO did not. This is analogous to H2-CO2 reduction to methane by Methanosarcina barkeri, which involves a sodium pump (V. Müller, C. Winner, and G. Gottschalk, Eur. J. Biochem. 178:519-525, 1988). This suggests that the reduction of methylenetetrahydrofolate to methyltetrahydrofolate is the Na+-requiring reaction. A sodium gradient (Na+ out/Na+ in = 32, delta pNa = -91 mV) was built up when resting cells of A. woodii were incubated under H2-CO2. Acetogenesis was inhibited when the delta pNa was dissipated by monensin.  相似文献   

3.
Cell suspensions of Acetobacterium woodii prepared from cultures grown on fructose plus caffeate catalyzed caffeate reduction with electrons derived from molecular hydrogen. Hydrogen-dependent caffeate reduction was strictly Na(+) dependent with a K(m) for Na(+) of 0.38 mM; Li(+) could substitute for Na(+). The sodium ionophore ETH2120, but not protonophores, stimulated hydrogen-dependent caffeate reduction by 280%, indicating that caffeate reduction is coupled to the buildup of a membrane potential generated by primary Na(+) extrusion. Caffeate reduction was coupled to the synthesis of ATP, and again, ATP synthesis coupled to hydrogen-dependent caffeate reduction was strictly Na(+) dependent and abolished by ETH2120, but not by protonophores, indicating the involvement of a transmembrane Na(+) gradient in ATP synthesis. The ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD) abolished ATP synthesis, and at the same time, hydrogen-dependent caffeate reduction was inhibited. This inhibition could be relieved by ETH2120. These experiments are fully compatible with a chemiosmotic mechanism of ATP synthesis with Na(+) as the coupling ion during hydrogen-dependent caffeate reduction by A. woodii.  相似文献   

4.
The anaerobic acetogenic bacterium Acetobacterium woodii employs a novel type of Na(+)-motive anaerobic respiration, caffeate respiration. However, this respiration is at the thermodynamic limit of energy conservation, and even worse, in the first step, caffeate is activated by caffeyl-CoA synthetase, which hydrolyzes ATP to AMP and pyrophosphate. Here, we have addressed whether or not the energy stored in the anhydride bond of pyrophosphate is conserved by A. woodii. Inverted membrane vesicles of A. woodii have a membrane-bound pyrophosphatase that catalyzes pyrophosphate hydrolysis at a rate of 70-120 milliunits/mg of protein. Pyrophosphatase activity was dependent on the divalent cation Mg(2+). In addition, activity was strictly dependent on Na(+) with a K(m) of 1.1 mM. Hydrolysis of pyrophosphate was accompanied by (22)Na(+) transport into the lumen of the inverted membrane vesicles. Inhibitor studies revealed that (22)Na(+) transport was primary and electrogenic. Next to the Na(+)-motive ferredoxin:NAD(+) oxidoreductase (Fno or Rnf), the Na(+)-pyrophosphatase is the second primary Na(+)-translocating enzyme in A. woodii.  相似文献   

5.
The bacterium Vitreoscilla generates an electrical potential gradient due to sodium ion (delta psi Na+) across its membrane via respiratory-driven primary Na+ pump(s). The role of the delta psi Na+ as a driving force for ATP synthesis was, therefore, investigated. In respiring starved cells pulsed with 100 mM external Na+ [( Na+]o) there was a 167% net increase in cellular ATP concentration over basal levels compared with 0, 56, 78, and 78% for no addition, choline, Li+, and K+ controls, respectively. Doubling the [Na+]o to 200 mM boosted the net increase to 244% but a similar doubling of the choline caused only an increase to 78%. When the initial condition was intracellular Na+ ([Na+]i) = [Na+]o = 100 mM, there was a 94% net increase in cellular ATP compared with only 18 and 11% for Li+ and K+ controls, respectively, indicating that Nai+ may be the only cation tested that the cells extruded to generate the electrochemical gradient required to drive ATP synthesis. The Na(+)-dependent ATP synthesis was inhibited completely by monensin (12 microM), but only transiently by the protonophore 3,5-di-tert-butyl-4-hydroxybenzaldehyde (100 microM), further evidence that the Na+ gradient and not a H+ gradient was driving the ATP synthesis. ATP synthesis in response to an artificially imposed H+ gradient (delta pH approximately 3) in the absence of an added cation, or in the presence of Li+, K+, or choline, yielded similar delta ATP/delta pH ratios of 0.98-1.22. In the presence of Na+, however, this ratio dropped to 0.23, indicating that Na+ inhibited H(+)-coupling to ATP synthesis and possibly that H+ and Na+ coupling to ATP synthesis share a common catalyst. The above evidence adds to previous findings that under normal growth conditions Na+ is probably the main coupling cation for ATP synthesis in Vitreoscilla.  相似文献   

6.
Inverted membrane vesicles of the homoacetogenic bacterium Acetobacterium woodii catalyzed the hydrolysis of ATP with a rate of 100-150 nmol.min-1.mg protein-1. The ATPase was stimulated 1.4-1.6-fold by NaCl and inhibited by N,N'-dicyclohexylcarbodiimide tributyltin or azide. The degree of inhibition caused by F0-directed but not F1-directed inhibitors was affected by the Na+ concentration in the medium. These experiments indicated the presence of a sodium-translocating ATPase. This was verified by transport studies. Upon addition of ATP to inverted vesicles, 22Na+ was actively transported into the intravesicular space up to a 24-fold accumulation. Na+ transport was inhibited by the sodium ionophore N,N,N',N',-tetracyclohexyl-1,2-phenyl-enedioxydiacetamide but stimulated by valinomycin with potassium whereas the protonophore 3,5,-di-tert-butyl-4-hydroxybenzylidenemalonitrile was without effect. N,N'-dicyclohexylcarbodiimide and tributyltin inhibited 22Na+ transport. These experiments are in accordance with a primary electrogenic Na+ transport as catalyzed by a F1F0-ATPase.  相似文献   

7.
We describe here purification and biochemical characterization of the F(1)F(o)-ATP synthase from the thermoalkaliphilic organism Bacillus sp. strain TA2.A1. The purified enzyme produced the typical subunit pattern of an F(1)F(o)-ATP synthase on a sodium dodecyl sulfate-polyacrylamide gel, with F(1) subunits alpha, beta, gamma, delta, and epsilon and F(o) subunits a, b, and c. The subunits were identified by N-terminal protein sequencing and mass spectroscopy. A notable feature of the ATP synthase from strain TA2.A1 was its specific blockage in ATP hydrolysis activity. ATPase activity was unmasked by using the detergent lauryldimethylamine oxide (LDAO), which activated ATP hydrolysis >15-fold. This activation was the same for either the F(1)F(o) holoenzyme or the isolated F(1) moiety, and therefore latent ATP hydrolysis activity is an intrinsic property of F(1). After reconstitution into proteoliposomes, the enzyme catalyzed ATP synthesis driven by an artificially induced transmembrane electrical potential (Deltapsi). A transmembrane proton gradient or sodium ion gradient in the absence of Deltapsi was not sufficient to drive ATP synthesis. ATP synthesis was eliminated by the electrogenic protonophore carbonyl cyanide m-chlorophenylhydrazone, while the electroneutral Na(+)/H(+) antiporter monensin had no effect. Neither ATP synthesis nor ATP hydrolysis was stimulated by Na(+) ions, suggesting that protons are the coupling ions of the ATP synthase from strain TA2.A1, as documented previously for mesophilic alkaliphilic Bacillus species. The ATP synthase was specifically modified at its c subunits by N,N'-dicyclohexylcarbodiimide, and this modification inhibited ATP synthesis.  相似文献   

8.
This paper reports on the kinetic and thermodynamic parameters describing the interaction of selected digitalis derivatives with hog and guinea-pig cardiac (Na+ + K+)-ATPase (Na+/K+-transporting ATPase EC 3.6.1.37). 32 digitalis derivatives were characterized as to the values of the delta G0', delta G----not equal to, and delta G----not equal to quantities in their interaction with (Na+ + K+)-ATPase from hog cardiac muscle in the presence of ATP, Mg2+, Na+ and K+. Nine derivatives were additionally characterized as to the values of the delta H0', delta S0', delta H----not equal to, delta S----not equal to, delta H not equal to, and delta S not equal to quantities in their interaction with the hog enzyme promoted by ATP, Mg2+ and Na+ in the presence or absence of K+. The formation of the inhibitory complexes is in any case an endothermic, entropically driven process. The Gibbs energy barriers in the formation and dissociation of the complexes, delta G----not equal to and delta G----not equal to, are imposed by large, unfavourable delta H not equal to values. K+ decreases the delta G0' value by increasing the delta G----not equal to value more than the delta G----not equal to value. In comparison with hog (Na+ + K+)-ATPase, the interaction of three derivatives with guinea-pig cardiac enzyme in the presence of ATP, Mg2+, Na+ and K+ is characterized by lower delta G0' values caused by lower favourable delta S0' values, and is accompanied by lower delta G----not equal to values. The magnitude of the kinetic parameters and the characteristic of the thermodynamic quantities describing the interaction between various digitalis derivatives and (Na+ + K+)-ATPase, indicate the induction of substantial conformational changes in the enzyme protein. A large entropy gain in the enzyme protein, observed irrespective of enzyme origin and ligation, appears to be the common denominator of the inhibitory action of all digitalis derivatives studied, suggesting that the digitalis-elicited relaxation of high conformational energy (negentropy strain) of the enzyme protein is the thermodynamic essence of the reversible inactivation of (Na+ + K+)-ATPase.  相似文献   

9.
At the optimal pH for growth (pH 10.5), alkalophilic Bacillus firmus RAB, an obligate aerobe, exhibits normal rates of oxidative phosphorylation despite the low transmembrane proton electrochemical gradient, about -60 mV (delta psi = -180 mV and delta pH = +120 mV). This bioenergetic problem might be resolved by use of an Na+ coupled ATP synthase; otherwise an F1F0-ATPase must be able to utilize low driving forces in this organism. The ATPase activity was extracted from everted membrane vesicles by low ionic strength treatment and purified to homogeneity by hydrophobic interaction chromatography and sucrose density gradient centrifugation. The ATPase preparation had the characteristic F1-ATPase subunit structure, with Mr values of 51,500 (alpha), 48,900 (beta), 34,400 (gamma), 23,300 (delta), and 14,500 (epsilon); the identity of the alpha and beta subunits was confirmed by immunoblotting with anti-beta of Escherichia coli and anti-B. firmus RAB F1. Methanol and octyl glucoside, agents that stimulated the low basal membrane ATPase activity 10- to 12-fold, dramatically elevated the MgATPase activity of the purified F1, more than 150-fold, to 50 mumol min-1 mg protein-1. Anti-F1 inhibited membrane ATPase activity greater than or equal to 80%. The membranes exhibited no Na+-stimulated or vanadate-sensitive ATPase activity when prepared in the absence or presence of Na+ or ATP. These findings, which are consistent with previous studies, establish that in alkalophilic bacteria, ATP hydrolysis, and presumably ATP synthesis is catalyzed by an F1F0-ATPase rather than a Na+ ATPase.  相似文献   

10.
The role of Na+ in Vibrio alginolyticus oxidative phosphorylation has been studied. It has been found that the addition of a respiratory substrate, lactate, to bacterial cells exhausted in endogenous pools of substrates and ATP has a strong stimulating effect on oxygen consumption and ATP synthesis. Phosphorylation is found to be sensitive to anaerobiosis as well as to HQNO, an agent inhibiting the Na+-motive respiratory chain of V. alginolyticus. Na+ loaded cells incubated in a K+ or Li+ medium fail to synthesize ATP in response to lactate addition. The addition of Na+ at a concentration comparable to that inside the cell is shown to abolish the inhibiting effect of the high intracellular Na+ level. Neither lactate oxidation nor delta psi generation coupled with this oxidation is increased by external Na+ in the Na+-loaded cells. It is concluded that oxidative ATP synthesis in V. alginolyticus cells is inhibited by the artificially imposed reverse delta pNa, i.e., [Na+]in greater than [Na+]out. Oxidative phosphorylation is resistant to a protonophorous uncoupler (0.1 mM CCCP) in the K+-loaded cells incubated in a high Na+ medium, i.e., when delta pNa of the proper direction [( Na+]in less than [Na+]out) is present. The addition of monensin in the presence of CCCP completely arrests the ATP synthesis. Monensin without CCCP is ineffective. Oxidative phosphorylation in the same cells incubated in a high K+ medium (delta pNa is low) is decreased by CCCP even without monensin. Artificial formation of delta pNa by adding 0.25 M NaCl to the K+-loaded cells (Na+ pulse) results in a temporary increase in the ATP level which spontaneously decreases again within a few minutes. Na+ pulse-induced ATP synthesis is completely abolished by monensin and is resistant to CCCP, valinomycin and HQNO. 0.05 M NaCl increases the ATP level only slightly. Thus, V. alginolyticus cells at alkaline pH represent the first example of an oxidative phosphorylation system which uses Na+ instead of H+ as the coupling ion.  相似文献   

11.
G Kaim  P Dimroth 《The EMBO journal》1998,17(20):5887-5895
The mechanism by which ion-flux through the membrane-bound motor module (F0) induces rotational torque, driving the rotation of the gamma subunit, was probed with a Na+-translocating hybrid ATP synthase. The ATP-dependent occlusion of 1 (22)Na+ per ATP synthase persisted after modification of the c subunit ring with dicyclohexylcarbodiimide (DCCD), when 22Na+ was added first and ATP second, but not if the order of addition was reversed. These results support the model of ATP-driven rotation of the c subunit oligomer (rotor) versus subunit a (stator) that stops when either a 22Na+-loaded or a DCCD-modified rotor subunit reaches the Na+-impermeable stator. The ATP synthase with a Na+-permeable stator catalyzed 22Na+out/Na+in-exchange after reconstitution into proteoliposomes, which was not significantly affected by DCCD modification of the c subunit oligomer, but was abolished by the additional presence of ATP or by a membrane potential (DeltaPsi) of 90 mV. We propose that in the idling mode of the motor, Na+ ions are shuttled across the membrane by limited back and forth movements of the rotor against the stator. This motional flexibility is arrested if either ATP or DeltaPsi induces the switch from idling into a directed rotation. The Propionigenium modestum ATP synthase catalyzed ATP formation with DeltaPsi of 60-125 mV but not with DeltapNa+ of 195 mV. These results demonstrate that electric forces are essential for ATP synthesis and lead to a new concept of rotary-torque generation in the ATP synthase motor.  相似文献   

12.
The homoacetogenic bacterium Acetobacterium woodii relies on a sodium ion current across its cytoplasmic membrane for energy-dependent reactions. The sodium ion potential is established by a yet to be identified primary, electrogenic pump connected to the Wood-Ljungdahl pathway. Reactions possibly involved in Na(+) export are discussed. The electrochemical sodium ion potential generated is used to drive endergonic reactions such as flagellar rotation and ATP synthesis. Biochemical and molecular data identified the Na(+)-ATPase of A. woodii as a typical member of the F(1)F(0) class of ATPases. Its catalytic properties and the hypothetical sodium ion binding site in subunit c are discussed. The encoding genes were cloned and, surprisingly, the atp operon was shown to contain multiple copies of genes encoding subunit c. Two copies encode identical 8 kDa proteolipids, and a third copy arose by duplication and subsequent fusion of two genes. Furthermore, the duplicated subunit c does not contain the ion binding site in hair pin two. Biochemical and molecular data revealed that all three copies of subunit c constitute a mixed oligomer. The evolution of the structure and function of subunit c in ATPases from eucarya, bacteria, and archaea is discussed.  相似文献   

13.
Eight genes (atpI, atpB, atpE(1), atpE(2), atpE(3), atpF, atpH, and atpA) upstream of and contiguous with the previously described genes atpG, atpD, and atpC were cloned from chromosomal DNA of Acetobacterium woodii. Northern blot analysis revealed that the eleven atp genes are transcribed as a polycistronic message. The atp operon encodes the Na(+)-F(1)F(0)-ATPase of A. woodii, as evident from a comparison of the biochemically derived N termini of the subunits with the amino acid sequences deduced from the DNA sequences. The molecular analysis revealed that all of the F(1)F(0)-encoding genes from Escherichia coli have homologs in the Na(+)-F(1)F(0)-ATPase operon from A. woodii, despite the fact that only six subunits were found in previous preparations of the enzyme from A. woodii. These results unequivocally prove that the Na(+)-ATPase from A. woodii is an enzyme of the F(1)F(0) class. Most interestingly, the gene encoding the proteolipid underwent quadruplication. Two gene copies (atpE(2) and atpE(3)) encode identical 8-kDa proteolipids. Two additional gene copies were fused to form the atpE(1) gene. Heterologous expression experiments as well as immunolabeling studies with native membranes revealed that atpE(1) encodes a duplicated 18-kDa proteolipid. This is the first demonstration of multiplication and fusion of proteolipid-encoding genes in F(1)F(0)-ATPase operons. Furthermore, AtpE(1) is the first duplicated proteolipid ever found to be encoded by an F(1)F(0)-ATPase operon.  相似文献   

14.
A carbodiimide with a photoactivatable diazirine substituent was synthesized and incubated with the Na(+)-translocating F(1)F(0) ATP synthase from both Propionigenium modestum and Ilyobacter tartaricus. This caused severe inhibition of ATP hydrolysis activity in the absence of Na(+) ions but not in its presence, indicating the specific reaction with the Na(+) binding c-Glu(65) residue. Photocross-linking was investigated with the substituted ATP synthase from both bacteria in reconstituted 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC)-containing proteoliposomes. A subunit c/POPC conjugate was found in the illuminated samples but no a-c cross-links were observed, not even after ATP-induced rotation of the c-ring. Our substituted diazirine moiety on c-Glu(65) was therefore in close contact with phospholipid but does not contact subunit a. Na(+)in/(22)Na(+)out exchange activity of the ATP synthase was not affected by modifying the c-Glu(65) sites with the carbodiimide, but upon photoinduced cross-linking, this activity was abolished. Cross-linking the rotor to lipids apparently arrested rotational mobility required for moving Na(+) ions back and forth across the membrane. The site of cross-linking was analyzed by digestions of the substituted POPC using phospholipases C and A(2) and by mass spectroscopy. The substitutions were found exclusively at the fatty acid side chains, which indicates that c-Glu(65) is located within the core of the membrane.  相似文献   

15.
The most prominent residue of subunit a of the F(1)F(o) ATP synthase is a universally conserved arginine (aR227 in Propionigenium modestum), which was reported to permit no substitution with retention of ATP synthesis or H(+)-coupled ATP hydrolysis activity. We show here that ATP synthases with R227K or R227H mutations in the P.modestum a subunit catalyse ATP-driven Na(+) transport above or below pH 8.0, respectively. Reconstituted F(o) with either mutation catalysed 22Na(+)(out)/Na(+)(in) exchange with similar pH profiles as found in ATP-driven Na(+) transport. ATP synthase with an aR227A substitution catalysed Na(+)-dependent ATP hydrolysis, which was completely inhibited by dicyclohexylcarbodiimide, but not coupled to Na(+) transport. This suggests that in the mutant the dissociation of Na(+) becomes more difficult and that the alkali ions remain therefore permanently bound to the c subunit sites. The reconstituted mutant enzyme was also able to synthesise ATP in the presence of a membrane potential, which stopped at elevated external Na(+) concentrations. These observations reinforce the importance of aR227 to facilitate the dissociation of Na(+) from approaching rotor sites. This task of aR227 was corroborated by other results with the aR227A mutant: (i) after reconstitution into liposomes, F(o) with the aR227A mutation did not catalyse 22Na(+)(out)/Na(+)(in) exchange at high internal sodium concentrations, and (ii) at a constant (Delta)pNa(+), 22Na(+) uptake was inhibited at elevated internal Na(+) concentrations. Hence, in mutant aR227A, sodium ions can only dissociate from their rotor sites into a reservoir of low sodium ion concentration, whereas in the wild-type the positively charged aR227 allows the dissociation of Na(+) even into compartments of high Na(+) concentration.  相似文献   

16.
Pisa KY  Huber H  Thomm M  Müller V 《The FEBS journal》2007,274(15):3928-3938
The rotor subunit c of the A(1)A(O) ATP synthase of the hyperthermophilic archaeon Pyrococcus furiosus contains a conserved Na(+)-binding motif, indicating that Na(+) is a coupling ion. To experimentally address the nature of the coupling ion, we isolated the enzyme by detergent solubilization from native membranes followed by chromatographic separation techniques. The entire membrane-embedded motor domain was present in the preparation. The rotor subunit c was found to form an SDS-resistant oligomer. Under the conditions tested, the enzyme had maximal activity at 100 degrees C, had a rather broad pH optimum between pH 5.5 and 8.0, and was inhibited by diethystilbestrol and derivatives thereof. ATP hydrolysis was strictly dependent on Na(+), with a K(m) of 0.6 mM. Li(+), but not K(+), could substitute for Na(+). The Na(+) dependence was less pronounced at higher proton concentrations, indicating competition between Na(+) and H(+) for a common binding site. Moreover, inhibition of the ATPase by N',N'-dicyclohexylcarbodiimide could be relieved by Na(+). Taken together, these data demonstrate the use of Na(+) as coupling ion for the A(1)A(O) ATP synthase of Pyrococcus furiosus, the first Na(+) A(1)A(O) ATP synthase described.  相似文献   

17.
In C6 astrocytoma cells respiring with glucose, 40% of the total production of ATP was provided by glycolysis. Anaerobiosis in the presence of glucose, reduced ATP synthesis by approximately 50%, increased lactate production by 30% and caused a 3-fold decline in [creatine phosphate]/[creatine] and consequently [ATP]free[ADP]free. There was no change in [K+]i which suggests that glycolytic production of ATP provides sufficient energy to ensure normal operation of the Na+/K+ pump. In the absence of glucose, [creatine phosphate]/[creatine] declined to less than 0.1 in 15 min and there was a loss of K+ from cells. A comparison of delta GATP and delta GNa,K under aerobic conditions with and without glucose, showed the former to be larger by 1 - 2 kcal. However, under O2-limited, glucose-restricted conditions delta GATP fell below the level necessary to maintain operation of the Na+/K+ pump and led to a collapse in ionic gradients.  相似文献   

18.
The Na(+) F(1)F(0) ATP synthase operon of the anaerobic, acetogenic bacterium Acetobacterium woodii is unique because it encodes two types of c subunits, two identical 8 kDa bacterial F(0)-like c subunits (c(2) and c(3)), with two transmembrane helices, and a 18 kDa eukaryal V(0)-like (c(1)) c subunit, with four transmembrane helices but only one binding site. To determine whether both types of rotor subunits are present in the same c ring, we have isolated and studied the composition of the c ring. High-resolution atomic force microscopy of 2D crystals revealed 11 domains, each corresponding to two transmembrane helices. A projection map derived from electron micrographs, calculated to 5 A resolution, revealed that each c ring contains two concentric, slightly staggered, packed rings, each composed of 11 densities, representing 22 transmembrane helices. The inner and outer diameters of the rings, measured at the density borders, are approximately 17 and 50 A. Mass determination by laser-induced liquid beam ion desorption provided evidence that the c rings contain both types of c subunits. The stoichiometry for c(2)/c(3) : c(1) was 9 : 1. Furthermore, this stoichiometry was independent of the carbon source of the growth medium. These analyses clearly demonstrate, for the first time, an F(0)-V(0) hybrid motor in an ATP synthase.  相似文献   

19.
Growth of Acetobacterium woodii and Clostridium sporogenes was studied in the presence of water-immiscible solvents. Nitrogen purging, vacuum distillation or distillation under nitrogen were all suitable as methods to remove oxygen from the solvents, since growth rates and yields of A. woodii were unaffected in the presence of tetradecane which had been degassed by these methods. Varying the solvent volume from 20% to 80% of the culture volume had little effect on growth rate of A. woodii. A.woodii was relatively sensitive to organic solvents since growth was inhibited by alkanes with logP(octanol/water) values below 7.1. C. sporogenes was less solvent sensitive, since it grew without inhibition when the logP of the solvent was > or = 6.6. Nevertheless, both A. woodii and C. sporogenes were more sensitive to solvent polarity than aerobic bacteria.  相似文献   

20.
The Wood-Ljungdahl pathway of anaerobic CO(2) fixation with hydrogen as reductant is considered a candidate for the first life-sustaining pathway on earth because it combines carbon dioxide fixation with the synthesis of ATP via a chemiosmotic mechanism. The acetogenic bacterium Acetobacterium woodii uses an ancient version of the pathway that has only one site to generate the electrochemical ion potential used to drive ATP synthesis, the ferredoxin-fueled, sodium-motive Rnf complex. However, hydrogen-based ferredoxin reduction is endergonic, and how the steep energy barrier is overcome has been an enigma for a long time. We have purified a multimeric [FeFe]-hydrogenase from A. woodii containing four subunits (HydABCD) which is predicted to have one [H]-cluster, three [2Fe2S]-, and six [4Fe4S]-clusters consistent with the experimental determination of 32 mol of Fe and 30 mol of acid-labile sulfur. The enzyme indeed catalyzed hydrogen-based ferredoxin reduction, but required NAD(+) for this reaction. NAD(+) was also reduced but only in the presence of ferredoxin. NAD(+) and ferredoxin reduction both required flavin. Spectroscopic analyses revealed that NAD(+) and ferredoxin reduction are strictly coupled and that they are reduced in a 1:1 stoichiometry. Apparently, the multimeric hydrogenase of A. woodii is a soluble energy-converting hydrogenase that uses electron bifurcation to drive the endergonic ferredoxin reduction by coupling it to the exergonic NAD(+) reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号