首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oncoprotein18/stathmin (Op18) is a regulator of microtubule (MT) dynamics that binds tubulin heterodimers and destabilizes MTs by promoting catastrophes (i.e., transitions from growing to shrinking MTs). Here, we have performed a deletion analysis to mechanistically dissect Op18 with respect to (a) modulation of tubulin GTP hydrolysis and exchange, (b) tubulin binding in vitro, and (c) tubulin association and MT-regulating activities in intact cells. The data reveal distinct types of region-specific Op18 modulation of tubulin GTP metabolism, namely inhibition of nucleotide exchange and stimulation or inhibition of GTP hydrolysis. These regulatory activities are mediated via two-site cooperative binding to tubulin by multiple nonessential physically separated regions of Op18. In vitro analysis revealed that NH(2)- and COOH-terminal truncations of Op18 have opposite effects on the rates of tubulin GTP hydrolysis. Transfection of human leukemia cells with these two types of mutants result in similar decrease of MT content, which in both cases appeared independent of a simple tubulin sequestering mechanism. However, the NH(2)- and COOH-terminal-truncated Op18 mutants regulate MTs by distinct mechanisms as evidenced by morphological analysis of microinjected newt lung cells. Hence, mutant analysis shows that Op18 has the potential to regulate tubulin/MTs by more than one specific mechanism.  相似文献   

2.
Model for stathmin/OP18 binding to tubulin   总被引:8,自引:0,他引:8       下载免费PDF全文
Stathmin/OP18 is a regulatory phosphoprotein that controls microtubule (MT) dynamics. The protein does not have a defined three-dimensional structure, although it contains three distinct regions (an unstructured N-terminus, N: 1-44; a region with high helix propensity, H 1: 44-89; and a region with low helix propensity, H 2: 90-142). The full protein and a combination of H 1 and H 2 inhibits tubulin polymerization, while the combination of H 1 and the N-terminus is less efficient. None of the individual three regions alone are functional in this respect. However, all of them cross-link to alpha-tubulin, but only full-length stathmin produces high-molecular-weight products. Mass spectrometry analysis of alpha-tubulin-stathmin/OP18 and its truncation products shows that full-length stathmin/OP18 binds to the region around helix 10 of alpha-tubulin, a region that is involved in longitudinal interactions in the MT, sequestering the dimer and possibly linking two tubulin heterodimers. In the absence of the N-terminus, stathmin/OP18 binds to only one molecule of alpha-tubulin, at the top of the free tubulin heterodimer, preventing polymerization.  相似文献   

3.
The oncoprotein 18/stathmin family of microtubule destabilizers.   总被引:19,自引:0,他引:19  
The past several years have seen major advances in our understanding of the mechanisms of microtubule destabilization by oncoprotein18/stathmin (Op18/stathmin) and related proteins. New structural information has clearly shown how members of the Op18/stathmin protein family bind tubulin dimers and suggests models for how these proteins stimulate catastrophe, the transition from microtubule growth to shortening. Regulation of Op18/stathmin by phosphorylation continues to capture much attention. Studies suggest that phosphorylation occurs in a localized fashion, resulting in decreased microtubule destabilizing activity near chromatin or microtubule polymer. A spatial gradient of inactive Op18/stathmin associated with chromatin or microtubules could contribute significantly to mitotic spindle assembly.  相似文献   

4.
Oncoprotein 18/stathmin (Op18), a regulator of microtubule dynamics, was recombinantly expressed and its structure and function analysed. We report that Op18 by itself can fold into a flexible and extended alpha-helix, which is in equilibrium with a less ordered structure. In complex with tubulin, however, all except the last seven C-terminal residues of Op18 are tightly bound to tubulin. Digital image analysis of Op18:tubulin electron micrographs revealed that the complex consists of two longitudinally aligned alpha/beta-tubulin heterodimers. The appearance of the complex was that of a kinked protofilament-like structure with a flat and a ribbed side. Deletion mapping of Op18 further demonstrated that (i) the function of the N-terminal part of the molecule is to 'cap' tubulin subunits to ensure the specificity of the complex and (ii) the complete C-terminal alpha-helical domain of Op18 is necessary and sufficient for stable Op18:tubulin complex formation. Together, our results suggest that besides sequestering tubulin, the structural features of Op18 enable the protein specifically to recognize microtubule ends to trigger catastrophes.  相似文献   

5.
It is has been previously suggested that the protein Op18/stathmin may interact with tubulin via the alpha-tubulin subunit [Larsson, N., Marklund, U., Melander Gradin, H., Brattsand, G. & Gullberg, M. (1997) Mol. Cell. Biol. 17, 5530-5539]. In this study we have used limited proteolysis and cross-linking analysis to localize further the stathmin-binding site on alpha-tubulin. Our results indicate that such a binding site is in a region close to the C-terminus of the molecule comprising residues 307 to the subtilisin-cleavage site on the alpha-tubulin subunit. Based on a recent model of the structure of tubulin [Nogales, E., Wolf, S.G. & Dowing, D.H. (1998) Nature (London) 391, 199-203], we found that this region contained the same areas that may be involved in longitudinal contacts of alpha-tubulin subunits within the microtubule. We also observed that the binding of stathmin to tubulin can modulate the binding of GTP to tubulin, as a consequence of a conformational change in the beta-tubulin subunit that occurs upon interaction of stathmin with tubulin.  相似文献   

6.
Protein phosphorylation represents a ubiquitous control mechanism in living cells. The structural prerequisites and consequences of this important post-translational modification, however, are poorly understood. Oncoprotein 18/stathmin (Op18) is a globally disordered phosphoprotein that is involved in the regulation of the microtubule (MT) filament system. Here we document that phosphorylation of Ser63, which is located within a helix initiation site in Op18, disrupts the transiently formed amphipathic helix. The phosphoryl group reduces tubulin binding 10-fold and suppresses the MT polymerization inhibition activity of Op18’s C-terminal domain. Op18 represents an example where phosphorylation occurs within a regular secondary structural element. Together, our findings have implications for the prediction of phosphorylation sites and give insights into the molecular behavior of a globally disordered protein.  相似文献   

7.
The ubiquitous Op18 and the neural RB3 and SCG10 proteins are members of the oncoprotein18/stathmin family of microtubule regulators. These proteins bind two tubulin heterodimers via two imperfect helical repeats to form a complex of heterodimers aligned head-to-tail. Here we have analyzed GTP exchange and GTP hydrolysis at the exchangeable GTP-binding site (E-site) of tubulin heterodimers in complex with Op18, RB3, or SCG10. These proteins stimulate a low and indistinguishable rate of GTP hydrolysis, and our results show that GTP exchange is blocked at both E-sites of the ternary complex, whereas GTP hydrolysis only occurs at one of the two E-sites. Results from mutational analysis of clusters of hydrophobic residues within the first helical repeat of Op18 suggest that GTP is hydrolyzed at the E-site that is interfaced between the head-to-tail arranged heterodimers, which is consistent with predicted GTPase productive interactions between the two tubulin heterodimers. Our mutational analysis has also indicated that Op18/stathmin family members actively restrain the otherwise potent GTPase productive interactions that are generated by longitudinal interactions within protofilaments. We conclude that tubulin heterodimers in complex with Op18/stathmin family members are subject to allosteric effects that prevent futile cycles of GTP hydrolysis.  相似文献   

8.
Op18/stathmin是一种小分子磷蛋白,通过整合体内外不同信号影响微管动力学变化,从而影响细胞周期,与细胞生长、增殖、分化等密切相关;对肿瘤细胞恶性表型的维持、转移与侵犯等也都至关重要.是一个有望在肿瘤治疗上取得突破的.非常重要的潜在靶标.  相似文献   

9.
Stathmin is a phosphorylation-regulated tubulin-binding protein. In vitro and in vivo studies using nonphosphorylatable and pseudophosphorylated mutants of stathmin have questioned the view that stathmin might act only as a tubulin-sequestering factor. Stathmin was proposed to effectively regulate microtubule dynamic instability by increasing the frequency of catastrophe (the transition from steady growth to rapid depolymerization), without interacting with tubulin. We have used a noninvasive method to measure the equilibrium dissociation constants of the T(2)S complexes of tubulin with stathmin, pseudophosphorylated (4E)-stathmin, and diphosphostathmin. At both pH 6.8 and pH 7.4, the relative sequestering efficiency of the different stathmin variants depends on the concentration of free tubulin, i.e. on the dynamic state of microtubules. This control is exerted in a narrow range of tubulin concentration due to the highly cooperative binding of tubulin to stathmin. Changes in pH affect the stability of tubulin-stathmin complexes but do not change stathmin function. The 4E-stathmin mutant mimics inactive phosphorylated stathmin at low tubulin concentration and sequesters tubulin almost as efficiently as stathmin at higher tubulin concentration. We propose that stathmin acts solely by sequestering tubulin, without affecting microtubule dynamics, and that the effect of stathmin phosphorylation on microtubule assembly depends on tubulin critical concentration.  相似文献   

10.
The structure of the unique bacterial tubulin BtubA/B from Prosthecobacter is very similar to eukaryotic αβ-tubulin but, strikingly, BtubA/B fold without eukaryotic chaperones. Our sequence comparisons indicate that BtubA and BtubB do not really correspond to either α- or β-tubulin but have mosaic sequences with intertwining features from both. Their nucleotide-binding loops are more conserved, and their more divergent sequences correspond to discrete surface zones of tubulin involved in microtubule assembly and binding to eukaryotic cytosolic chaperonin, which is absent from the Prosthecobacter dejongeii draft genome. BtubA/B cooperatively assembles over a wider range of conditions than αβ-tubulin, forming pairs of protofilaments that coalesce into bundles instead of microtubules, and it lacks the ability to differentially interact with divalent cations and bind typical tubulin drugs. Assembled BtubA/B contain close to one bound GTP and GDP. Both BtubA and BtubB subunits hydrolyze GTP, leading to disassembly. The mutant BtubA/B-S144G in the tubulin signature motif GGG(T/S)G(S/T)G has strongly inhibited GTPase, but BtubA-T147G/B does not, suggesting that BtubB is a more active GTPase, like β-tubulin. BtubA/B chimera bearing the β-tubulin loops M, H1-S2, and S9-S10 in BtubB fold, assemble, and have reduced GTPase activity. However, introduction of the α-tubulin loop S9-S10 with its unique eight-residue insertion impaired folding. From the sequence analyses, its primitive assembly features, and the properties of the chimeras, we propose that BtubA/B were acquired shortly after duplication of a spontaneously folding α- and β-tubulin ancestor, possibly by horizontal gene transfer from a primitive eukaryotic cell, followed by divergent evolution.  相似文献   

11.
12.
13.
In the leading edge of migrating cells, a subset of microtubules exhibits net growth in a Rac1- and p21-activated kinase-dependent manner. Here, we explore the possibility of whether phosphorylation and inactivation of the microtubule-destabilizing protein Op18/stathmin could be a mechanism regulating microtubule dynamics downstream of Rac1 and p21-activated kinases. We find that, in vitro, Pak1 phosphorylates Op18/stathmin specifically at serine 16 and inactivates its catastrophe promoting activity in biochemical and time lapse microscopy microtubule assembly assays. Furthermore, phosphorylation of either serine 16 or 63 is sufficient to inhibit Op18/stathmin in vitro. In cells, the microtubule-destabilizing effect of an excess of Op18/stathmin can be partially overcome by expression of constitutively active Rac1(Q61L), which is dependent on Pak activity, suggesting that the microtubule cytoskeleton can be regulated through inactivation of Op18/stathmin downstream of Rac1 and Pak in vivo. However, in vivo, Pak1 activity alone is not sufficient to phosphorylate Op18, indicating that additional pathways downstream of Rac1 are required for Op18 regulation.  相似文献   

14.
Stathmin/Op18 destabilizes microtubules in vitro and regulates microtubule polymerization in vivo. Both a microtubule catastrophe-promoting activity and a tubulin sequestering activity were demonstrated for stathmin in vitro, and both could contribute to microtubule depolymerization in vivo. Stathmin activity can be turned down by extensive phosphorylation on its four phosphorylatable serines, and down-regulation of stathmin activity by phosphorylation is necessary for cells to proceed through mitosis. We show here that microinjection of a nonphosphorylatable Ser to Ala (4A) quadruple mutant in Xenopus two-cell stage embryos results in cell cleavage arrest in the injected blastomeres and aborted development, whereas injection of a pseudo-phosphorylated Ser to Glu quadruple mutant (4E) does not prevent normal development. Addition of these mutants to mitotic cytostatic factor-arrested extracts in which spindle assembly was induced led to a dramatic reduction of spindle size with 4A stathmin, and to a moderate increase with 4E stathmin, but both localized to spindle poles. Interestingly, the microtubule assembly-dependent phosphorylation of endogenous stathmin was abolished in the presence of 4A stathmin, but not of 4E stathmin. Altogether, this shows that the phosphorylation-mediated regulation of stathmin activity during the cell cycle is essential for early Xenopus embryonic development.  相似文献   

15.
Thyroid carcinomas that harbor RET/PTC oncogenes are well differentiated, relatively benign neoplasms compared with those expressing oncogenic RAS or BRAF mutations despite signaling through shared transforming pathways. A distinction, however, is that RET/PTCs induce immunostimulatory programs, suggesting that, in the case of this tumor type, the additional pro-inflammatory pathway reduces aggressiveness. Here, we demonstrate that pro-inflammatory programs are selectively activated by TRAF2 and TRAF6 association with RET/PTC oncoproteins. Eliminating this mechanism reduces pro-inflammatory cytokine production without decreasing transformation efficiency. Conversely, ablating MEK/ERK or PI3K/AKT signaling eliminates transformation but not pro-inflammatory cytokine secretion. Functional uncoupling of the two pathways demonstrates that intrinsic pro-inflammatory pathways are not required for cellular transformation and suggests a need for further investigation into the role inflammation plays in thyroid tumor progression.  相似文献   

16.
Acetolactate synthase small subunit encoding ilvN genes from the parental Streptomyces cinnamonensis strain and mutants resistant either to valine analogues or to 2-ketobutyrate were cloned and sequenced. The wild-type IlvN from S. cinnamonensis is composed of 175 amino acid residues and shows a high degree of similarity with the small subunits of other valine-sensitive bacterial acetolactate synthases. Changes in the sequence of ilvN conferring the insensitivity to valine in mutant strains were found in two distinct regions. Certain point mutations were located in the conserved domain near the N terminus, while others resulting in the same phenotype shortened the protein at V(104) or V(107). To confirm whether the described mutations were responsible for the changed biochemical properties of the native enzyme, the wild-type large subunit and the wild-type and mutant forms of the small one were expressed separately in E. coli and combined in vitro to reconstitute the active enzyme.  相似文献   

17.
Thermodynamics of reversible monomer-dimer association of tubulin   总被引:1,自引:0,他引:1  
D L Sackett  R E Lippoldt 《Biochemistry》1991,30(14):3511-3517
The equilibrium between the rat brain tubulin alpha beta dimer and the dissociated alpha and beta monomers has been studied by analytical ultracentrifugation with use of a new method employing short solution columns, allowing rapid equilibration and hence short runs, minimizing tubulin decay. Simultaneous analysis of the equilibrium concentration distributions of three different initial concentrations of tubulin provides clear evidence of a single equilibrium characterized by an association constant, Ka, of 4.9 X 10(6) M-1 (Kd = 2 X 10(-7) M) at 5 degrees, corresponding to a standard free energy change on association delta G degrees = -8.5 kcal mol-1. Colchicine and GDP both stabilize the dimer against dissociation, increasing the Ka values (at 4.5 degrees C) to 20 X 10(6) and 16 X 10(6) M-1, respectively. Temperature dependence of association was examined with multiple three-concentration runs at temperatures from 2 to 30 degrees C. The van't Hoff plot was linear, yielding positive values for the enthalpy and entropy changes on association, delta S degrees = 38.1 +/- 2.4 cal deg-1 mol-1 and delta H degrees = 2.1 +/- 0.7 kcal mol-1, and a small or zero value for the heat capacity change on association, delta C p degrees. The entropically driven association of tubulin monomers is discussed in terms of the suggested importance of hydrophobic interactions to the stability of the monomer association and is compared to the thermodynamics of dimer polymerization.  相似文献   

18.
《The Journal of cell biology》1994,126(6):1495-1507
We have characterized a group of regulatory mutations that alter the activity of the outer dynein arms. Three mutations were obtained as suppressors of the paralyzed central pair mutant pf6 (Luck, D.J.L., and G. Piperno. 1989. Cell Movement. pp. 49-60), whereas two others were obtained as suppressors of the central pair mutant pfl6. Recombination analysis and complementation tests indicate that all five mutations are alleles at the SUP-PF-1/ODA4 locus and that each allele can restore motility to radial spoke and central pair defective strains. Restriction fragment length polymorphism analysis with a genomic probe for the beta-dynein heavy chain (DHC) gene confirms that this locus is tightly linked to the beta-DHC gene. Although all five mutant sup-pf-1 alleles alter the activity of the outer dynein arm as assayed by measurements of flagellar motility, only two alleles have a discernable polypeptide defect by SDS-PAGE. We have used photolytic and proteolytic cleavage procedures to localize the polypeptide defect to an approximately 100-kD domain downstream from the last putative nucleotide binding site. This region is encoded by approximately 5 kb of genomic DNA (Mitchell, D.R., and K. Brown. 1994. J. Cell Sci. 107:653-644). PCR amplification of wild-type and mutant DNA across this region identified one PCR product that was consistently smaller in the sup-pf-1 DNA. Direct DNA sequencing of the PCR products revealed that two of the sup-pf-1 mutations are distinct, in-frame deletions. These deletions occur within a region that is predicted to encode a small alpha-helical coiled-coil domain of the beta-DHC. This domain may play a role in protein-protein interactions within the outer dynein arm. Since both the size and location of this domain have been conserved in all axonemal and cytoplasmic DHCs sequenced to date, it presumably performs a common function in all dynein isoforms.  相似文献   

19.
The polarization of a neuron generally results in the formation of one axon and multiple dendrites, allowing for the establishment of neuronal circuitry. The molecular mechanisms involved in priming one neurite to become the axon, particularly those regulating the microtubule network, remain elusive. Here we report the identification of DOCK7, a member of the DOCK180-related protein superfamily, as a Rac GTPase activator that is asymmetrically distributed in unpolarized hippocampal neurons and selectively expressed in the axon. Knockdown of DOCK7 expression prevents axon formation, whereas overexpression induces formation of multiple axons. We further demonstrate that DOCK7 and Rac activation lead to phosphorylation and inactivation of the microtubule destabilizing protein stathmin/Op18 in the nascent axon and that this event is important for axon development. Our findings unveil a pathway linking the Rac activator DOCK7 to a microtubule regulatory protein and highlight the contribution of microtubule network regulation to axon development.  相似文献   

20.
Oncoprotein 18 (Op18; also termed p19, 19K, metablastin, stathmin, and prosolin) is a conserved protein that regulates microtubule (MT) dynamics. Op18 is multisite phosphorylated on four Ser residues during mitosis; two of these Ser residues, Ser-25 and Ser-38, are targets for cyclin-dependent protein kinases (CDKs), and the other two Ser residues, Ser-16 and Ser-63, are targets for an unidentified protein kinase. Mutations of the two CDK sites have recently been shown to result in a mitotic block caused by destabilization of MTs. To understand the role of Op18 in regulation of MT dynamics during mitosis, in this study we dissected the functions of all four phosphorylation sites of Op18 by combining genetic, morphological, and biochemical analyses. The data show that all four phosphorylation sites are involved in switching off Op18 activity during mitosis, an event that appears to be essential for formation of the spindle during metaphase. However, the mechanisms by which specific sites down-regulate Op18 activity differ. Hence, dual phosphorylation on the CDK sites Ser-25 and Ser-38 appears to be required for phosphorylation of Ser-16 and Ser-63; however, by themselves, the CDK sites are of only minor importance in direct regulation of Op18 activity. Subsequent phosphorylation of either Ser-16, Ser-63, or both efficiently switches off Op18 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号