首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
NK cells express Fc gamma RIII (CD16), which is responsible for IgG-dependent cell cytotoxicity and for production of several cytokines and chemokines. Whereas Fc gamma RIII on NK cells is composed of both Fc gamma RIII alpha and FcR gamma chains, that on mast cells is distinct from NK cells and made of Fc gamma RIII alpha, FcR beta, and FcR gamma. Mast cells show degranulation and release several mediators, which cause anaphylactic responses upon cross-linking of Fc gamma RIII as well as Fc epsilon RI with aggregated IgE. In this paper, we examined whether IgE activates NK cells through Fc gamma RIII on their cell surface. We found that NK cells produce several cytokines and chemokines related to an allergic reaction upon IgE stimulation. Furthermore, NK cells exhibited cytotoxicity against IgE-coated target cells in an Fc gamma RIII-dependent manner. These effects of IgE through Fc gamma RIII were not observed in NK cells from FcR gamma-deficient mice lacking Fc gamma RIII expression. Collectively, these results demonstrate that NK cells can be activated with IgE through Fc gamma RIII and exhibit both cytokine/chemokine production and Ab-dependent cell cytotoxicity. These data imply that not only mast cells but also NK cells may contribute to IgE-mediated allergic responses.  相似文献   

3.
The low affinity IgG receptor, CD16 (Fc gamma RIII), is expressed on almost all peripheral blood natural killer (NK) cells. A small subset of CD3- CD16- CD56+ NK cells, representing less than 1% of peripheral blood lymphocytes, expands during in vivo IL-2 treatment. To analyze this CD16- NK cell subset in more detail, NK clones have been generated. One of them (TNK2) has been used to study the function of these cells in more detail. It is demonstrated that TNK2 exerts normal NK activity and displays large granular lymphocyte morphology. Since this clone lacks CD16 expression, antibody-dependent cellular cytotoxicity cannot be exerted. CD16 monoclonal antibodies fail to induce cytotoxic activity against NK-resistant target cells. These studies reveal that the lack of CD16 detection is not due to the modulation or the stage of activation of these NK cells. TNK2 is representative of this small subset of peripheral blood NK cells, expanded during IL-2 treatment, which does not express Fc gamma RIII and therefore cannot perform antibody-dependent cellular cytotoxicity.  相似文献   

4.
Activation of cloned human natural killer cells via Fc gamma RIII   总被引:5,自引:0,他引:5  
The Fc gamma RIII (CD16) Ag on human NK cells involved in antibody-dependent cellular cytotoxicity has been demonstrated to be an important activation structure. The present studies were carried out to further characterize the functional role of the CD16 Ag and the mechanisms whereby cytotoxicity is activated by using human NK clones. In phenotypic studies Fc gamma RIII was found to be expressed heterogeneously on various human cloned NK cells. Expression on CD3- and CD3+ clones varied with the donor and mAb used for detection. Functional data demonstrated that cytotoxicity against NK-resistant target cells can be induced in CD3-CD16+ NK clones and CD3+CD16+ clones with NK activity when various CD16 mAb were used. CD16 antibodies but not reactive isotype control antibodies induced cytotoxicity. In contrast to complete CD16 antibodies F(ab')2 fragments were not able to activate the cytotoxic mechanism. Both an antibody against FcR on the target cell (Fc gamma RII) and a CD11a antibody blocked induction of cytotoxicity. These results suggest that three steps are critical for activation of CD16+ cells via Fc gamma RIII: 1) specific binding of CD16 antibodies to Fc gamma RIII on effector cells irrespective of the epitope recognized; 2) cross-linking of effector cell CD16 Ag through binding of the Fc site of CD16 antibodies via corresponding FcR on the target cell membrane; and 3) interaction of CD11a/18 molecules with the target cell membrane.  相似文献   

5.
Type III receptors for the Fc portion of IgG (Fc gamma RIII), initially characterized on macrophages and NK cells, are also expressed on several pre-B cell lines. Surface expression of Fc gamma RIII requires the association of the ligand binding alpha-chain with homodimeric gamma-chains. Type II Fc gamma R is homologous to Fc gamma RIII alpha-chain in the extracellular portion and differs in the transmembrane and cytoplasmic domains. The role of Fc gamma R in cell activation was investigated by expressing Fc gamma RIII and the lymphocyte-specific b1 isoform of Fc gamma RII (Fc gamma RIIb1) in an Fc gamma R-negative, sIgG-positive B-cell line. We found that, in contrast to Fc gamma RIIb1, Fc gamma RIII triggers the same events of cell activation as sIG i.e. Ca2+ mobilization, tyrosine phosphorylation and IL-2 secretion. By expressing cytoplasmic domain-lacking Fc gamma RIII alpha-chain in the absence or in the presence of gamma-chains, we demonstrated that cell activation via Fc gamma RIII requires the co-expression of gamma-chains, and is independent of the cytoplasmic portion of the alpha-chain. Furthermore, the cytoplasmic portion of the gamma-chain, fused to the extracellular and transmembrane domains of Fc gamma RII confers on the chimeric receptor the ability to trigger cell activation. Mutation of one tyrosine residue in the cytoplasmic domain of the gamma-chain prevented triggering of cytoplasmic signals. We therefore demonstrate that a tyrosine-containing motif, present in the cytoplasmic domain of the associated gamma-chain, is necessary and sufficient to trigger cell activation via Fc gamma RIII.  相似文献   

6.
7.
Human Fc gamma RIII (CD16), a low-affinity receptor expressed on several different cell types, has a polymorphism on polymorphonuclear cells (Fc gamma RIIIPMN) identified by the NA1 and NA2 markers. Inasmuch as this polymorphism has functional consequences, an understanding of the structural biology of Fc gamma RIII may provide important insight into receptor function. We analyzed Fc gamma RIIIPMN by SDS-PAGE and found that receptor from individuals allotyped for either NA1 or NA2 contained only one protein after removal of N-linked glycosylations (19 and 21 kDa respectively) whereas receptor from NA1/2 individuals contained both bands. Because some reports indicate that digestion of Fc gamma RIII on NK cells (Fc gamma RIIINK) with N-glycanase also results in two bands on SDS-PAGE, we investigated Fc gamma RIIINK to explore the possibility of a corresponding allelic polymorphism in this receptor. Contrary to expectation, Fc gamma RIIINK from all donors irrespective of their NA allotype contained two bands (20 and 24 kDa) on SDS-PAGE after deglycosylation. In addition, those distinct epitopes on the extracellular domain of Fc gamma RIIIPMN found with mAb B73.1 and CLB gran 11 in association with the NA allotypic differences are expressed (or not expressed) on Fc gamma RIIINK independent of donor NA allotype. Fc gamma RIIIPMN and Fc gamma RIIINK differ at the protein level as they have different m.w. (glycosylated and deglycosylated), different epitopes in the extracellular domain (not attributable to tissue-specific glycosylation), and differential expression of the NA allelic protein polymorphism. Although the membrane anchor of Fc gamma RIIIPMN is a phosphatidylinositol-specific phospholipase C sensitive glycosyl-phosphatidylinositol linkage, Fc gamma RIIINK is insensitive to phosphatidylinositol-specific phospholipase C. However, a form of Fc gamma RIIINK is released from NK cells upon incubation at 37 degrees C. Thus, the basis for the two bands in Fc gamma RIIINK after N-linked deglycosylation is neither coexpression of two molecular isoforms with different membrane anchors nor an identifiable allelic polymorphism in m.w. restricted to Fc gamma RIIINK (p less than 10(-6)). The differences between the two receptors indicate that, independent of cell anchor type, PMN and mononuclear cells must have different molecular isoforms. The allelic variants, different isoforms, alternative anchor mechanisms and release processes provide for an extensive genetic and regulatory diversity in Fc gamma RIII function.  相似文献   

8.
IL-4 induces loss of B lymphocyte Fc gamma R II ligand binding capacity   总被引:2,自引:0,他引:2  
Murine B lymphocytes cultured for 24 h with rIL-4 lost (mean reduction of 88%, range 81 to 96%) the capacity to bind Ag-IgG antibody complexes to B lymphocytes as assessed by flow microfluorometry. This effect was specific in that it was not seen with IL-1, IL-2, or IFN-gamma; IL-4 did not have a similar effect on other B lymphocyte membrane molecules; and the effect was completely prevented by anti-IL-4 (mAb 11B11). More than 60% inhibition of the binding of complexes was seen with as little as 1 U/ml of IL-4 although maximal inhibition was seen with greater than or equal to 30 U/ml. IL-4-induced inhibition of the binding of complexes was time dependent (the effect was first seen after 8 h and was not maximal until 24 h), temperature dependent (it did not occur at 4 degrees C), and reversible (B lymphocytes that had lost the ability to bind complexes due to IL-4 regained this capacity when re-cultured for 24 h in the absence of IL-4). The effect could be partially prevented by IFN-gamma. The inability to bind complexes appeared to be mainly due to an alteration of Fc gamma R (Fc Receptors) II rather than down-regulation of receptor expression because IL-4 induced only a moderate reduction in the binding of two Fc gamma R II specific mAb (20% for 2.4G2 and 32% for K9.361). The IL-4-induced loss of binding of complexes to B lymphocyte Fc gamma R II appears to be a novel form of receptor regulation (function rather than expression), and likely plays a role in the up-regulation of B lymphocytes by IL-4 by preventing Fc gamma R II-mediated inhibition of B lymphocyte responses.  相似文献   

9.
Human polymorphonuclear neutrophils (PMN) normally express two distinct types of IgG Fc gamma R, the 40-kDa Fc gamma R referred to as Fc gamma RII and the low affinity 50- to 70-kDa Fc gamma R designated Fc gamma RIII. A third type of Fc gamma R, the 72-kDa high affinity receptor known as Fc gamma RI, is also detectable on PMN that have been activated by IFN-gamma. Using mAb that discriminate among the three known types of Fc gamma R, we examined the effects of IFN-gamma and glucocorticoids on human PMN Fc gamma R expression. We also studied effects of IFN-gamma and the synthetic glucocorticoid dexamethasone (DEX) on antibody-dependent cytotoxicity (ADCC) of chicken erythrocytes and phagocytosis of IgG-coated ox RBC by human PMN. In 20 donors studied, we found that treatment of PMN with 400 U/ml IFN-gamma induced a 9- to 20-fold increase in the number of Fc gamma RI sites per cell, and DEX inhibited this induction of Fc gamma RI by 39 to 73%. Similarly, DEX significantly reduced the IFN-gamma stimulation of ADCC and phagocytosis. IFN-gamma had no effect on expression of Fc gamma RII or Fc gamma RIII. Fc gamma RI and Fc gamma RII expression was unaltered by 24 h of treatment with DEX alone, but Fc gamma RIII expression was sometimes increased by about 20% on PMN cultured with DEX. Nevertheless, we found a small but significant inhibition of ADCC and phagocytosis by 200 nM DEX. Our results indicate that Fc gamma RI plays a major but not exclusive role in the regulation of ADCC and phagocytosis by IFN-gamma and DEX.  相似文献   

10.
Fc gamma RIII is a family of protein isoforms encoded by at least two distinct, yet highly homologous, genes. Fc gamma RIII on neutrophils is a glycosylphosphatidylinositol-linked protein with an allelic polymorphism (NA1/NA2) while Fc gamma RIII on NK cells (Fc gamma RIIINK) is an exclusively transmembrane protein without the NA polymorphism. The relationship of the isoform of Fc gamma RIII expressed on cultured monocytes (Fc gamma RIIIM phi) to these two forms, however, is unclear because some evidence suggests lowered expression of Fc gamma RIIIM phi in paroxysmal nocturnal hemoglobinuria (unlike Fc gamma RIIINK) and a unique deglycosylated m.w. for Fc gamma RIIIM phi. In this study we demonstrate that, as with Fc gamma RIIINK, Fc gamma RIIIM phi is resistant to the action of phosphatidylinositol-specific phospholipase C and is expressed at normal levels on affected (glycosylphosphatidylinositol-anchor negative) cultured monocytes from patients with paroxysmal nocturnal hemoglobinuria. Fc gamma RIIIM phi is also shed from the cell surface upon incubation at 37 degrees C. However, Fc gamma RIIIM phi and Fc gamma RIIINK have different m.w. as glycosylated proteins despite the same deglycosylated m.w. Thus, each cell type appears to express distinct glycoforms. These differences in glycosylation may influence the functional properties of the receptor.  相似文献   

11.
It is believed that mouse Fc gamma RIII arose by an evolutionarily recent recombination, which brought together the extracellular domains from Fc gamma RII with the transmembrane/cytoplasmic region from the ancestor Fc gamma RIII. Here, we report identification of a mouse gene encoding a transmembrane receptor that may be regarded as the true ortholog of nonrodent CD16/Fc gamma RIII. Designated CD16-2, the novel protein is highly similar to human Fc gamma RIIIA in the signal peptide (60% identical residues), and in the extracellular domains (65%). Although the similarity between the two proteins is less conspicuous in the transmembrane/cytoplasmic region (54%), it is higher than between human Fc gamma RIIIA and mouse Fc gamma RIII (44%). However, the conserved transmembrane motif LFAVDTGL shared by rodent and human Fc gamma RIII and Fc epsilon RI has two replacements in CD16-2. The CD16-2 gene is tightly linked to the Fc gamma RIII and Fc gamma RII genes and consists of five exons. Northern blot analysis revealed that CD16-2 is expressed in peripheral blood leukocytes, as well as in spleen, thymus, colon and intestine. RT-PCR showed prominent expression in macrophage cell line J774. Based on sequence comparisons, it is suggested that the modern repertoire of the mammalian low affinity Fc receptors has resulted from repetitive duplications and/or recombinations of three ancestral genes.  相似文献   

12.
The FcR for IgG on the plasma membrane of cells of the mononuclear phagocyte system mediate a number of different biologic responses such as phagocytosis, pinocytosis, superoxide generation, and antibody-dependent cytotoxicity. In the interest of understanding the pathophysiology of these processes we have begun to characterize the FcR for IgG on two readily available sources of macrophages--the lung and the peritoneum--using antireceptor mAb. We find that all three of the distinct classes of FcR for IgG which have been described in man are present on both pulmonary and peritoneal macrophages. Most monocytes, we suggest, bear low numbers of Fc gamma RIII whereas a small subpopulation of monocytes expresses substantial numbers of Fc gamma RIII. Furthermore, we find that two different forms of Fc gamma RIII differ in their capacity to bind anti-Fc gamma RIII mab 3G8 in the presence of human IgG. Human IgG does not block the binding of mAb 3G8 to neutrophils, but it does block 3G8 binding to macrophages and large granular lymphocytes; this finding correlates with the expression of the two Fc gamma RIII genes, I and II, in man. Studies aimed at illuminating the molecular mechanisms of Fc gamma R-mediated processes in macrophages will require consideration of the receptors of all three classes.  相似文献   

13.
Fc receptors and immunoglobulin binding factors   总被引:5,自引:0,他引:5  
W H Fridman 《FASEB journal》1991,5(12):2684-2690
Receptors for the Fc portion of Ig (Fc receptors, FcR) are found on all cell types of the immune system. Three types of FcR react with IgG: Fc gamma RI is a high-affinity receptor binding IgG monomers whereas Fc gamma RII and Fc gamma RIII are low-affinity receptors binding IgG immune complexes; the three types of Fc gamma R are members of the Ig superfamily. Two FcR react with IgE:Fc epsilon RI is a multichain receptor binding IgE with high affinity; it is composed of an IgE-binding alpha chain, homologous to Fc gamma RIII, and of gamma and beta chains that are necessary for receptor expression and signal transduction. The low-affinity Fc epsilon RII is the only FcR described so far that is not a member of the Ig superfamily but resembles animal lectins; it is composed of a transmembrane chain with an intracytoplasmic NH2 terminus. Fc alpha R has homology with Fc gamma R and is a member of the Ig superfamily. Receptors for IgM and IgD are not characterized yet. Finally, Ig transport is made by FcR-like molecules such as the poly-Ig receptor or an MHC-like receptor found on neonatal intestine. A remarkable property of most FcR is the fact that they are released in cell supernatants and circulate in biological fluids as immunoglobulin binding factors (IBF) generated either by cleavage at the cell membrane or by splicing of FcR transmembrane exon. Immunoglobulin binding factors may interfere with Ig-mediated functions and have direct immunoregulatory activities. Involvement of FcR or IBF has been postulated in several diseases, and monoclonal antibodies to FcR are beginning to be used in therapeutics, particularly to target cytotoxic effector lymphocytes and monocytes to tumor cells.  相似文献   

14.
This study demonstrates that GTP-binding proteins regulate Fc gamma RIII-mediated signal transduction and inositol phosphate (IPn) generation in human NK cells. In addition the cross-linking of CD16 by mAb, guanosine 5'-o-3-thiophosphate induced 1,4,5 inositol trisphosphate (IP3) release in permeabilized NK cells and their membranes. By contrast, guanosine 5'-o-2-thiophosphate, almost completely inhibited IP3 generation induced by cross-linking with anti-CD16 mAb. Pretreatment of NK cells with 10 to 100 ng/ml Vibrio cholerae toxin (Ctx) almost completely inhibited the generation of IP3 and of other Ipn as well as Fc gamma RIII-operated cell functions such as antibody-dependent cell-mediated cytotoxicity against antibody-coated P815 mastocytoma cells. Isolated B subunit of Ctx was inactive. Bordetella pertussis toxin (0.1 to 1 microgram/ml) only marginally affected IP3 release and antibody-dependent cell-mediated cytotoxicity. Ctx increased cAMP levels in NK cells. However, inhibition of IP3 release preceded the rise of cAMP. Moreover, cAMP analogues (8-chlor-cAMP, 8-bromo-cAMP, dibutiryl-cAMP), as well as intracellular cAMP-enhancing agents (PGE1, PGE2, and forskolin) did not mimicked the effects of Ctx on IP3 generation, suggesting that the adenylate cyclase pathway is not responsible for the early effects of Ctx on Fc gamma RIII-mediated signalling. Overall these results demonstrate that signal transduction via Fc gamma RIII is mediated by Ctx-sensitive cellular membrane GTP-binding protein.  相似文献   

15.
Murine Fc gamma RII and Fc gamma RIII have highly homologous extracellular domains, but unrelated transmembrane and intracytoplasmic (IC) domains. Murine Fc gamma RIIb1 and b2 are two isoforms of single-chain receptors which differ only by 47 aa in their IC domain. Murine Fc gamma RIII are composed of an IgG-binding alpha-chain, the intracellular portion of which is unrelated to that of Fc gamma RII, and of a homodimeric gamma-chain which also associates with Fc epsilon RI. Murine mast cells express Fc gamma RII, Fc gamma RIII, and Fc epsilon RI. They can be induced to degranulate by murine IgG immune complexes or by F(ab')2 fragments of the rat anti-murine Fc gamma RII/III mAb 2.4G2, complexed to mouse anti-rat (MAR) F(ab')2. In order to determine which murine Fc gamma R can activate mast cells, cDNA encoding murine Fc gamma RIIb1, Fc gamma RIIb2 or Fc gamma RIII alpha were stably transfected into RBL-2H3 cells. Murine Fc gamma RIII but not Fc gamma RIIb1 or Fc gamma RIIb2 induced serotonin release when aggregated by (2.4G2-MAR) F(ab')2 complexes. The respective roles of the IC domains of murine Fc gamma RIII subunits in signal transduction were investigated by stably transfecting cDNA encoding IC-deleted or chimeric murine Fc gamma R into RBL-2H3 cells. The substitution of the IC domain of murine Fc gamma RII for that of murine Fc gamma RIII gamma, but not that of murine Fc gamma RIII alpha, conferred the ability to trigger serotonin release. The deletion of IC sequences of the alpha subunit did not alter the ability of murine Fc gamma RIII to trigger serotonin release. It follows that 1) murine Fc gamma RIII, but not Fc gamma RII, can induce RBL cells to release serotonin, 2) the aggregation of the IC domain of the murine Fc gamma RIII gamma subunit is sufficient, but 3) the IC domain of the murine Fc gamma RIII alpha subunit is neither sufficient nor necessary for triggering serotonin release.  相似文献   

16.
《The Journal of cell biology》1994,125(6):1407-1416
Cooperation among plasma membrane receptors in activating signal transduction cascades is not well understood. For almost 20 years, it has been clear that when a particulate foreign body is opsonized with complement as well as IgG, the efficiency of IgG effector functions is markedly enhanced. However, the molecular mechanisms involved in cooperation between IgG Fc receptors and complement receptors have not been elucidated. In this work, we show that when human neutrophils (PMN) are plated on a surface coated with both anti-CR3 and anti-Fc gamma RIII antibodies, the respiratory burst which occurs is equivalent to that stimulated by anti-Fc gamma RII. The CR3 ligand iC3b is as effective as anti-CR3 for cooperating with anti-Fc gamma RIII in generation of a respiratory burst. The synergy between CR3 and Fc gamma RIII for activating the NADPH oxidase is abolished by Fab of anti-Fc gamma RII. Nonetheless, the observed synergy is not an artifact of unintended Fc gamma RII ligation, since (a) only this combination of antibodies works to generate H2O2; (b) coating plates with either of the antibodies alone cannot activate the respiratory burst at any dose; (c) LAD (CR3 deficient) cells, which are perfectly competent to mount a respiratory burst when Fc gamma RII is engaged, are incapable of activating the respiratory burst when adherent to wells coated with anti-Fc gamma RIII and anti-CR3; (d) direct engagement of Fc gamma RII activates the respiratory burst by a pathway pharmacologically distinguishable from the synergistic respiratory burst. Fc gamma RIII/CR3 synergy is abolished by cytochalasin B and herbimicin, suggesting that both the actin cytoskeleton and tyrosine phosphorylation are necessary for activation of the synergistic respiratory burst. Further analysis shows that CR3 and Fc gamma RIII have distinct roles in activation of this Fc gamma RII-dependent assembly of the NADPH oxidase. Ligation of CR3 is sufficient to lead to Fc gamma RII association with the actin cytoskeleton on the adherent PMN surface. Coligation of Fc gamma RIII is required for tyrosine phosphorylation of Fc gamma RII. These data are consistent with a model in which phosphorylation of Fc gamma RII or a closely associated substrate initiates activation of a signal transduction pathway leading to oxidase assembly. These are the first data to demonstrate a molecular mechanism for synergy between IgG Fc and complement receptors in activation of phagocyte effector functions.  相似文献   

17.
18.
Here we investigate the activation of and a possible role for the hematopoietic Rac1 exchange factor, Vav, in the signaling mechanisms leading to NK cell-mediated cytotoxicity. Our data show that direct contact of NK cells with a panel of sensitive tumor targets leads to a rapid and transient tyrosine phosphorylation of Vav and to its association with tyrosine-phosphorylated Syk. Vav tyrosine phosphorylation is also observed following the activation of NK cells through the low-affinity Fc receptor for IgG (Fc gamma RIII). In addition, we demonstrate that both direct and Ab-mediated NK cell binding to target cells result in the activation of nucleotide exchange on endogenous Rac1. Furthermore, Vav antisense oligodeoxynucleotide treatment leads to an impairment of NK cytotoxicity, with Fc gamma RIII-mediated killing being more sensitive to the abrogation of Vav expression. These results provide new insight into the signaling pathways leading to cytotoxic effector function and define a role for Vav in the activation of NK cell-mediated killing.  相似文献   

19.
The three types of IgG FcR (Fc gamma RI, Fc gamma RII, Fc gamma RIII) on human leukocytes play an important role in elimination of antibody-coated infectious agents. To further understand the role of the different Fc gamma R in mediating this killing, we examined the ability of human myeloid and lymphoid cells to kill the protozoan Toxoplasma gondii in the presence of antitoxoplasma IgG or bispecific antibodies. Although human myeloid cells (monocytes, macrophages, neutrophils, and eosinophils) all lysed unsensitized T. gondii, killing by these cells was significantly enhanced by opsonization with antitoxoplasma rabbit IgG. Human lymphocytes, however, did not lyse T. gondii unless the parasites were coated with antibody. The role of antibody and Fc gamma R in mediating ADCC of T. gondii was then examined using bispecific antibodies made by chemically cross-linking Fab fragments of antitoxoplasma antibodies to Fab fragments of antibodies specific for human leukocyte surface Ag, including Fc gamma R. Thus, simultaneous binding of these bispecifics to parasites and effector cells allowed an evaluation of killing when T. gondii were targeted to each Ag independently. Bispecifics which targeted T. gondii to Fc gamma RI, II or III enhanced lysis by monocytes. However, similar results were obtained with bispecifics targeting T. gondii to non-Fc gamma R Ag (CD11b or beta 2-microglobulin) on monocytes. Likewise, polymorphonuclear leukocytes mediated significantly more lysis in the presence of bispecifics linking T. gondii to Fc gamma RII, Fc gamma RIII, or the two non-Fc gamma R Ag CD11b and beta 2-microglobulin. Thus, although human myeloid cells did not require antibody-Fc gamma R triggering to kill T. gondii, antibody appeared to enhance lysis by capturing and directing the parasites to the effector cell surface. Human lymphocytes, in contrast, mediated significant lysis of T. gondii only in the presence of bispecifics targeting T. gondii to Fc gamma RIII, indicating a requirement for specific triggering of Fc gamma RIII for killing by large granular lymphocytes. Consequently, using bispecifics to compare targeting to specific Ag, both non-Fc gamma R and Fc gamma R, allowed determination of the role of antibody-Fc gamma R interactions in T. gondii killing. In addition, these studies demonstrate the potential of bispecifics in determining the role of specific Ag in killing of or infection by pathogens.  相似文献   

20.
Monocytes can express three classes of FcR for IgG: Fc gamma RI, Fc gamma RII, and Fc gamma RIII (CD64, CD32, and CD16, respectively) of which the Fc gamma RIII is expressed after prolonged culture. Fc gamma R expression is regulated by IFN-gamma. Because IFN-gamma and IL-4 have antagonistic effects on the expression of the FcR for IgE on human monocytes, we studied the effect of IL-4 on Fc gamma R expression and function. We show that IL-4 down-regulates Fc gamma RI, Fc gamma RII, and Fc gamma RIII expression of cultured monocytes and inhibits IFN-gamma enhanced Fc gamma RI expression. Exposure of monocytes to IL-4 for 40 h resulted in a dose-dependent decrease of the expression of all three Fc gamma R that persisted throughout the whole culture period (7 days). Anti-IL-4 antibodies completely reversed the IL-4 effect. In addition the impaired Fc gamma R expression correlated directly with reduced Fc gamma R-mediated function because monocytes cultured in the presence of IL-4 have a reduced capacity to lyse human E opsonized with human IgG anti-D or mouse antiglycophorin A antibodies. These observations, together with the previous finding that IL-4 induces Fc epsilon RIIb expression on monocytes, indicate that IL-4 and IFN-gamma may control the Fc gamma R-mediated immune response by differentially regulating Fc gamma R expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号