首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. In riverine ecosystems, streamflow determines the physical template upon which the life history strategies of biota are forged. Human freshwater needs and activities have resulted in widespread alteration of the variability, predictability and timing of streamflow, and anticipating the biotic consequences of anthropogenic streamflow alteration is critical for successful environmental flow management. In this study, we examined relationships between dam characteristics, metrics of flow alteration and fish functional community composition according to life history strategies by coupling stream flow records and fish survey data in paired flow‐regulated and free‐flowing rivers across the conterminous United States. 2. Dam operations have generally reduced flow variability and increased flow constancy based on a comparison of pre‐ and post‐dam flow records (respective mean record lengths 26.2 and 43.1 years). In agreement with ecological theory, fish assemblages downstream of dams were characterised by a lower proportion of opportunistic species (a strategy favoured in environmental settings dominated by unpredictable environmental change) and a higher proportion of equilibrium species (a strategy favoured in more stable, predictable environments) compared to free‐flowing, neighbouring locations. 3. Multiple linear regression models provided modest support for links between alteration of specific flow attributes and differential life history representation below dams, and they provided strong support for life history associations with dam attributes (age and release type). We also found support for a relationship of both reduced flow variability and dam age with higher representation of non‐native species below dams. 4. Our study demonstrated that river regulation by large dams has significant hydrological and biological consequences across the United States. We showed that on ecological time scales (i.e. the order of years to decades), dams are effectively changing the functional composition of communities that have established over millennia. Furthermore, the changes are directional and indicate a filtering by dams for some life histories (equilibrium strategists) and against other life histories (opportunists). Finally, our study highlights that dependence upon long‐term flow records and availability of biotic surveys extracted from national survey efforts limit our ability to guide environmental flow standards particularly in data‐poor regions.  相似文献   

2.
There has been a growing appreciation over the last decade that chemotaxis plays an important role in cancer migration, invasion and metastasis. Research into the field of cancer cell chemotaxis is still in its infancy and traditional investigative tools have been developed with other cell types and purposes in mind. Direct visualisation chambers are considered the gold standard for investigating the behaviour of cells migrating in a chemotactic gradient. We therefore drew up a list of key attributes that a chemotaxis chamber should have for investigating cancer cell chemotaxis. These include (1) compatibility with thin cover slips for optimal optical properties and to allow use of high numerical aperture (NA) oil immersion objectives; (2) gradients that are relatively stable for at least 24 hours due to the slow migration of cancer cells; (3) gradients of different steepnesses in a single experiment, with defined, consistent directions to avoid the need for complicated analysis; and (4) simple handling and disposability for use with medical samples. Here we describe and characterise the Insall chamber, a novel direct visualisation chamber. We use it to show GFP-lifeact transfected MV3 melanoma cells chemotaxing using a 60x high NA oil immersion objective, which cannot usually be done with other chemotaxis chambers. Linear gradients gave very efficient chemotaxis, contradicting earlier results suggesting that only polynomial gradients were effective. In conclusion, the chamber satisfies our design criteria, most importantly allowing high NA oil immersion microscopy to track chemotaxing cancer cells in detail over 24 hours.  相似文献   

3.
In this paper, the modeling of several complex chemotaxis behaviors of C. elegans is explored, which include food attraction, toxin avoidance, and locomotion speed regulation. We first model the chemotaxis behaviors of food attraction and toxin avoidance separately. Then, an integrated chemotaxis behavioral model is proposed, which performs the two chemotaxis behaviors simultaneously. The novelty and the uniqueness of the proposed chemotaxis behavioral models are characterized by several attributes. First, all the chemotaxis behavioral model sare on biological basis, namely, the proposed chemotaxis behavior models are constructed by extracting the neural wire diagram from sensory neurons to motor neurons, where sensory neurons are specific for chemotaxis behaviors. Second, the chemotaxis behavioral models are able to perform turning and speed regulation. Third, chemotaxis behaviors are characterized by a set of switching logic functions that decide the orientation and speed. All models are implemented using dynamic neural networks (DNN) and trained using the real time recurrent learning (RTRL) algorithm. By incorporating a speed regulation mechanism, C. elegans can stop spontaneously when approaching food source or leaving away from toxin. The testing results and the comparison with experiment results verify that the proposed chemotaxis behavioral models can well mimic the chemotaxis behaviors of C. elegans in different environments.  相似文献   

4.
Osteochondral defects (OCDs) are conditions affecting both cartilage and the underlying bone. Since cartilage is not spontaneously regenerated, our group has recently developed a strategy of injecting bioactive alginate hydrogel into the defect for promoting endogenous regeneration of cartilage via presentation of affinity‐bound transforming growth factor β1 (TGF‐β1). As in vivo model systems often provide only limited insights as for the mechanism behind regeneration processes, here we describe a novel flow bioreactor for the in vitro modeling of the OCD microenvironment, designed to promote cell recruitment from the simulated bone marrow compartment into the hydrogel, under physiological flow conditions. Computational fluid dynamics modeling confirmed that the bioreactor operates in a relevant slow‐flowing regime. Using a chemotaxis assay, it was shown that TGF‐β1 does not affect human mesenchymal stem cell (hMSC) chemotaxis in 2D culture. Accessible through live imaging, the bioreactor enabled monitoring and discrimination between erosion rates and profiles of different alginate hydrogel compositions, using green fluorescent protein‐expressing cells. Mathematical modeling of the erosion front progress kinetics predicted the erosion rate in the bioreactor up to 7 days postoperation. Using quantitative real‐time polymerase chain reaction of early chondrogenic markers, the onset of chondrogenic differentiation in hMSCs was detected after 7 days in the bioreactor. In conclusion, the designed bioreactor presents multiple attributes, making it an optimal device for mechanistical studies, serving as an investigational tool for the screening of other biomaterial‐based, tissue engineering strategies.  相似文献   

5.
Sperm of marine invertebrates have to find eggs cells in the ocean. Turbulent flows mix sperm and egg cells up to the millimeter scale; below this, active swimming and chemotaxis become important. Previous work addressed either turbulent mixing or chemotaxis in still water. Here, we present a general theory of sperm chemotaxis inside the smallest eddies of turbulent flow, where signaling molecules released by egg cells are spread into thin concentration filaments. Sperm cells ‘surf’ along these filaments towards the egg. External flows make filaments longer, but also thinner. These opposing effects set an optimal flow strength. The optimum predicted by our theory matches flow measurements in shallow coastal waters. Our theory quantitatively agrees with two previous fertilization experiments in Taylor-Couette chambers and provides a mechanistic understanding of these early experiments. ‘Surfing along concentration filaments’ could be a paradigm for navigation in complex environments in the presence of turbulent flow.  相似文献   

6.

Background

Mental health conditions are among the leading non-fatal diseases in middle-aged and older adults in Australia. Proximal and distal social environmental factors and physical environmental factors have been associated with mental health, but the underlying mechanisms explaining these associations remain unclear. The study objective was to examine the contribution of different types of physical activity in mediating the relationship of social and physical environmental factors with mental health-related quality of life in middle-aged and older adults.

Methods

Baseline data from the Wellbeing, Eating and Exercise for a Long Life (WELL) study were used. WELL is a prospective cohort study, conducted in Victoria, Australia. Baseline data collection took place in 2010. In total, 3,965 middle-aged and older adults (55–65 years, 47.4% males) completed the SF-36 Health Survey, the International Physical Activity Questionnaire, and a questionnaire on socio-demographic, social and physical environmental attributes. Mediation analyses were conducted using the MacKinnon product-of-coefficients test.

Results

Personal safety, the neighbourhood physical activity environment, social support for physical activity from family or friends, and neighbourhood social cohesion were positively associated with mental health-related quality of life. Active transportation and leisure-time physical activity mediated 32.9% of the association between social support for physical activity from family or friends and mental health-related quality of life. These physical activity behaviours also mediated 11.0%, 3.4% and 2.3% respectively, of the relationship between the neighbourhood physical activity environment, personal safety and neighbourhood social cohesion and mental health-related quality of life.

Conclusions

If these results are replicated in future longitudinal studies, tailored interventions to improve mental health-related quality of life in middle-aged and older adults should use a combined strategy, focusing on increasing physical activity as well as social and physical environmental attributes.  相似文献   

7.
Swimming bacteria sense and respond to chemical signals in their environment. Chemotaxis is the directed migration of a bacterial population toward increasing concentrations of a chemical that they perceive to be beneficial to their survival. Bacteria that are indigenous to groundwater environments exhibit chemotaxis toward chemical contaminants such as hydrocarbons, which they are also able to degrade. This phenomenon may facilitate bioremediation processes by bringing bacteria into closer proximity to these contaminants. A microfluidic device was assembled to study chemotaxis transverse to advective flow. Using a T-shaped channel design (T-sensor), two fluid streams were brought into contact by impinging flow. They then flowed adjacent to each other along a transparent channel. An advantage to this design is that it allows real-time visualization of bacterial distributions within the channel. Under laminar flow conditions a chemotactic driving force was created perpendicular to the direction of flow by diffusion of the chemical attractant from one input stream to the other. A comparison of the chemotactic band behavior in the absence and presence of flow showed that fluid velocity did not significantly impede chemotactic migration in the transverse direction.  相似文献   

8.
Zaval'skii  L. Yu.  Voloshin  A. G. 《Microbiology》2003,72(3):369-372
The motion of chemotactically different Escherichia coli C600, cheB287, and AW405 cells was studied using a column packed with silica gel. The model chemotaxis of bacteria in porous media seems to be adequate for natural bacterial chemotaxis in soils. The porous structure of silica gel prevents interfering convective flows. Silica gel columns make it possible to separate bacterial cells differing in motility and chemotaxis. Relevant physical phenomena are discussed. The concept of fast and slow chemotaxis is considered.  相似文献   

9.
Advancing the field of fish ecology requires a shift in focus from describing patterns in species occurrences to understanding the mechanisms that regulate distributions and abundances across broad scales. For stream fish ecology, this includes understanding environmental mechanisms that regulate stream fish demographic properties at the scale of stream networks or riverscapes. Despite the fact that Banded Sculpin Cottus carolinae occupy a diversity of habitats and stream sizes across the southeastern United States, relatively little is known about the demography of this species. We assessed annual demographic properties (reproduction, growth, and survival) of C. carolinae collected monthly from four sites distributed longitudinally along the Roaring River riverscape in Tennessee to simultaneously describe life history attributes of the species and address riverscape-scale variation in population dynamics. Cottus carolinae lived for a maximum of four years, local populations were dominated by age-0 and age-1 individuals, reproduction began after one year, spawning occurred during December and January, and mean ova number was 398. A life history tradeoff between growth (robustness) and survival was evident at one site where water temperature and flow were least variable, otherwise life history attributes were consistent across the riverscape despite longitudinal changes in abiotic variables. Our work illustrates the potential for muted population responses to a strong hydrologic gradient in stream size and highlights the stability inherent with fish life history adaptations to natural environmental regimes across broad spatial scales.  相似文献   

10.
Bacterial chemotactic responses are initiated when certain small molecules (i.e., carbohydrates, amino acids) interact with bacterial chemoreceptors. Although bacterial chemotaxis has been the subject of intense investigations, few have explored the influence of attractant structure on signal generation and chemotaxis. Previously, we found that polymers bearing multiple copies of galactose interact with the chemoreceptor Trg via the periplasmic binding protein glucose/galactose binding protein (GGBP). These synthetic multivalent ligands were potent agonists of Escherichia coli chemotaxis. Here, we report on the development of a second generation of multivalent attractants that possess increased chemotactic activities. Strikingly, the new ligands can alter bacterial behavior at concentrations 10-fold lower than those required with the original displays; thus, they are some of the most potent synthetic chemoattractants known. The potency depends on the number of galactose moieties attached to the oligomer backbone and the length of the linker tethering these carbohydrates. Our investigations reveal the plasticity of GGBP; it can bind and mediate responses to several carbohydrates and carbohydrate derivatives. These attributes of GGBP may underlie the ability of bacteria to sense a variety of ligands with relatively few receptors. Our results provide insight into the design and development of compounds that can modulate bacterial chemotaxis and pathogenicity.  相似文献   

11.
The behavior of collections of oceanic bacteria is controlled by metabolic (chemotaxis) and physical (fluid motion) processes. Some sulfur-oxidizing bacteria, such as Thiovulum majus, unite these two processes via a material interface produced by the bacteria and upon which the bacteria are transiently attached. This interface, termed a bacterial veil, is formed by exo-polymeric substances (EPS) produced by the bacteria. By adhering to the veil while continuing to rotate their flagella, the bacteria are able to exert force on the fluid surroundings. This behavior induces a fluid flow that, in turn, causes the bacteria to aggregate leading to the formation of a physical pattern in the veil. These striking patterns are very similar in flavor to the classic convection instability observed when a shallow fluid is heated from below. However, the physics are very different since the flow around the veil is mediated by the bacteria and affects the bacterial densities.  相似文献   

12.
Run time variability of parallel applications continues to present significant challenges to their performance and energy efficiency in high-performance computing (HPC) systems. When run times are extended and unpredictable, application developers perceive this as a degradation of system (or subsystem) performance. Extended run times directly contribute to proportionally higher energy consumption, potentially negating efforts by applications, or the HPC system, to optimize energy consumption using low-level control techniques, such as dynamic voltage and frequency scaling (DVFS). Therefore, successful systemic management of application run time performance can result in less wasted energy, or even energy savings. We have been studying run time variability in terms of communication time, from the perspective of the application, focusing on the interconnection network. More recently, our focus has shifted to developing a more complete understanding of the effects of HPC subsystem interactions on parallel applications. In this context, the set of executing applications on the HPC system is treated as a subsystem, along with more traditional subsystems like the communication subsystem, storage subsystem, etc. To gain insight into the run time variability problem, our earlier work developed a framework to emulate parallel applications (PACE) that stresses the communication subsystem. Evaluation of run time sensitivity to network performance of real applications is performed with a tool called PARSE, which uses PACE. In this paper, we propose a model defining application-level behavioral attributes, that collectively describes how applications behave in terms of their run time performance, as functions of their process distribution on the system (spacial locality), and subsystem interactions (communication subsystem degradation). These subsystem interactions are produced when multiple applications execute concurrently on the same HPC system. We also revisit our evaluation framework and tools to demonstrate the flexibility of our application characterization techniques, and the ease with which attributes can be quantified. The validity of the model is demonstrated using our tools with several parallel benchmarks and application fragments. Results suggest that it is possible to articulate application-level behavioral attributes as a tuple of numeric values that describe course-grained performance behavior.  相似文献   

13.
The motion of chemotactically different Escherichia coli C600, cheB287, and AW405 cells was studied using a column packed with silica gel. The model chemotaxis of bacteria in porous media seems to be adequate to natural bacterial chemotaxis in soils. The porous structure of silica gel prevents interfering convective flows. Silica gel columns make it possible to separate bacterial cells differing in motility and chemotaxis. Relevant physical phenomena are discussed. The concept of fast and slow chemotaxis is considered.  相似文献   

14.
A set of chemotaxis mutants of Bacillus subtilis was complemented by using SP beta c2 transducing bacteriophage either containing cloned segments of DNA or derived from abnormal excision of SP beta c2 dl2::Tn917 inserted into the chemotaxis region. Representative mutants were characterized in capillary assays for chemotaxis toward four amino acids and mannitol and in tethered-cell experiments for addition and removal of two attractants and two repellents. Twenty complementation groups were identified, in addition to the cheR previously characterized. All were found to be defective in chemotaxis toward all chemoeffectors. They were assigned the names cheA through cheU. The large number of general chemotaxis genes in B. subtilis, in contrast to the six in Escherichia coli, suggests fundamental differences in the mechanism of chemotaxis in the two species.  相似文献   

15.
Chemotactic behavior of Chlamydomonas reinhardtii is altered during the sexual life cycle. Unlike vegetative cells and noncompetent pregametes, mature gametes did not show chemotaxis to ammonium. Loss of chemotaxis to ammonium in mating-competent cells is controlled by gamete-specific genes that are common for both mating-type gametes. Change of chemotaxis mode requires the sequential action of the two environmental signals: removal of ammonium from the medium and light. The mutants lrg1, lrg3, and lrg4 affected in the light-dependent step of sexual differentiation exhibited the loss of chemotaxis to ammonium in the absence of light. These data indicate that there are common components in the signaling pathways that control change of chemotactic behavior and forming of mating competence in gametes.  相似文献   

16.
Cell-cell communication plays an important role in collective cell migration. However, it remains unclear how cells in a group cooperatively process external signals to determine the group’s direction of motion. Although the topology of signaling pathways is vitally important in single-cell chemotaxis, the signaling topology for collective chemotaxis has not been systematically studied. Here, we combine mathematical analysis and simulations to find minimal network topologies for multicellular signal processing in collective chemotaxis. We focus on border cell cluster chemotaxis in the Drosophila egg chamber, in which responses to several experimental perturbations of the signaling network are known. Our minimal signaling network includes only four elements: a chemoattractant, the protein Rac (indicating cell activation), cell protrusion, and a hypothesized global factor responsible for cell-cell interaction. Experimental data on cell protrusion statistics allows us to systematically narrow the number of possible topologies from more than 40,000,000 to only six minimal topologies with six interactions between the four elements. This analysis does not require a specific functional form of the interactions, and only qualitative features are needed; it is thus robust to many modeling choices. Simulations of a stochastic biochemical model of border cell chemotaxis show that the qualitative selection procedure accurately determines which topologies are consistent with the experiment. We fit our model for all six proposed topologies; each produces results that are consistent with all experimentally available data. Finally, we suggest experiments to further discriminate possible pathway topologies.  相似文献   

17.
Escherichia coli and Salmonella typhimurium are closely related species. However, E. coli cells show maltose chemotaxis but S. typhimurium cells do not. When an E. coli chemotransducer gene (tarE), the product of which is required for both aspartate and maltose chemotaxis, was introduced by using a plasmid vector into S. typhimurium cells with a defect in the corresponding gene (tarS), the transformant cells acquired the ability for both aspartate and maltose chemotaxis. In contrast, when the tars gene was introduced into tarE-deficient E. coli cells, the transformant cells acquired aspartate chemotaxis but not maltose chemotaxis. These results indicate that the absense of maltose chemotaxis in S. typhimurium is a consequence of the properties of the tars gene product.  相似文献   

18.
Maltose chemotaxis was reconstituted in delta malE cells lacking maltose-binding protein (MBP). Purified MBP was introduced into intact cells during incubation with 250 mM CaCl2 in Tris-hydrochloride buffer at 0 degrees C. After removal of extracellular CaCl2 and MBP, chemotaxis was measured with tethered bacteria in a flow chamber or with free-swimming cells in a capillary assay. About 20% of tethered cells responded to 10(-4) M maltose; the mean response times were about half those of CaCl2-treated wild-type cells (100 s as opposed to 190 s). In capillary tests, the maltose response of reconstituted cells was between 15 and 40% of the aspartate response, about the same percentage as in wild-type cells. The best reconstitution was seen with 0.5 to 1 mM MBP in the reconstitution mixture, which is similar to the periplasmic MBP concentration estimated for maltose-induced wild-type cells. Strains containing large deletions of the malB region and malT mutants lacking the positive regulator gene of the mal regulon also could be reconstituted for maltose chemotaxis, showing that no product of the mal regulon other than MBP is essential for maltose chemotaxis.  相似文献   

19.
生态功益:自然生态过程对人类的贡献   总被引:42,自引:7,他引:35  
董全 《应用生态学报》1999,10(2):233-240
大自然是维系人类社会生存和维持文明发展的生命之舟,为人们的物质和精神生活提供必不可少的资源和环境条件及生态服务。生态功益是这些由自然生物过程产生和维持的环境资源方面的条件和服务的统称。本文从自然生产,维持生物多样性,调节气象过程、气候变化和地球化学物质循环,调节水循环和减缓旱涝灾害,改善与保持土壤,净化环境,为作物与自然植物传粉播种,控制病虫害,维护改善人的身心健康和激发人的精神文化追求等方面探讨和介绍生态功益及生态功益的经济评价。迅猛的人口增长、社会变化和技术发展已使承载人类社会的生命之舟受到严重破坏和巨大威胁。减少这些破坏和威胁是整个社会,特别是生态学エ作者面临的重大挑战.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号