首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lens fiber formation and morphogenesis requires a precise orchestration of cell– extracellular matrix (ECM) and cell–cell adhesive changes in order for a lens epithelial cell to adopt a lens fiber fate, morphology, and migratory ability. The cell–ECM interactions that mediate these processes are largely unknown, and here we demonstrate that fibronectin1 (Fn1), an ECM component, and integrin α5, its cellular binding partner, are required in the zebrafish lens for fiber morphogenesis. Mutations compromising either of these proteins lead to cataracts, characterized by defects in fiber adhesion, elongation, and packing. Loss of integrin α5/Fn1 does not affect the fate or viability of lens epithelial cells, nor does it affect the expression of differentiation markers expressed in lens fibers, although nucleus degradation is compromised. Analysis of the intracellular mediators of integrin α5/Fn1 activity focal adhesion kinase (FAK) and integrin-linked kinase (ILK) reveals that FAK, but not ILK, is also required for lens fiber morphogenesis. These results support a model in which lens fiber cells use integrin α5 to migrate along a Fn-containing substrate on the apical side of the lens epithelium and on the posterior lens capsule, likely activating an intracellular signaling cascade mediated by FAK in order to orchestrate the cytoskeletal changes in lens fibers that facilitate elongation, migration, and compaction.  相似文献   

2.
The specification and morphogenesis of slow and fast twitch muscle fibers are crucial for muscle development. In zebrafish, Hedgehog is required for slow muscle fiber specification. However, less is known about signals that promote development of fast muscle fibers, which constitute the majority of somitic cells. We show that when Hedgehog signaling is blocked, fast muscle cell elongation is disrupted. Using genetic mosaics, we show that Hedgehog signal perception is required by slow muscle cells but not by fast muscle cells for fast muscle cell elongation. Furthermore, we show that slow muscle cells are sufficient to pattern the medial to lateral wave of fast muscle fiber morphogenesis even when fast muscle cells cannot perceive the Hedgehog signal. Thus, the medial to lateral migration of slow muscle fibers through the somite creates a morphogenetic signal that patterns fast muscle fiber elongation in its wake.  相似文献   

3.
Actomyosin stress fibers, one of the main components of the cell’s cytoskeleton, provide mechanical stability to adherent cells by applying and transmitting tensile forces onto the extracellular matrix (ECM) at the sites of cell–ECM adhesion. While it is widely accepted that changes in spatial and temporal distribution of stress fibers affect the cell’s mechanical properties, there is no quantitative knowledge on how stress fiber amount and organization directly modulate cell stiffness. We address this key open question by combining atomic force microscopy with simultaneous fluorescence imaging of living cells, and combine for the first time reliable quantitative parameters obtained from both techniques. We show that the amount of myosin and (to a lesser extent) actin assembled in stress fibers directly modulates cell stiffness in adherent mouse fibroblasts (NIH3T3). In addition, the spatial distribution of stress fibers has a second-order modulatory effect. In particular, the presence of either fibers located in the cell periphery, aligned fibers or thicker fibers gives rise to reinforced cell stiffness. Our results provide basic and significant information that will help design optimal protocols to regulate the mechanical properties of adherent cells via pharmacological interventions that alter stress fiber assembly or via micropatterning techniques that restrict stress fiber spatial organization.  相似文献   

4.
Hexagonal packing geometry is a hallmark of close-packed epithelial cells in metazoans. Here, we used fiber cells of the vertebrate eye lens as a model system to determine how the membrane skeleton controls hexagonal packing of post-mitotic cells. The membrane skeleton consists of spectrin tetramers linked to actin filaments (F-actin), which are capped by tropomodulin1 (Tmod1) and stabilized by tropomyosin (TM). In mouse lenses lacking Tmod1, initial fiber cell morphogenesis is normal, but fiber cell hexagonal shapes and packing geometry are not maintained as fiber cells mature. Absence of Tmod1 leads to decreased γTM levels, loss of F-actin from membranes, and disrupted distribution of β2-spectrin along fiber cell membranes. Regular interlocking membrane protrusions on fiber cells are replaced by irregularly spaced and misshapen protrusions. We conclude that Tmod1 and γTM regulation of F-actin stability on fiber cell membranes is critical for the long-range connectivity of the spectrin–actin network, which functions to maintain regular fiber cell hexagonal morphology and packing geometry.  相似文献   

5.
Development of the cardiovascular system is critically dependent on the ability of endothelial cells (ECs) to reorganize their intracellular actin architecture to facilitate migration, adhesion, and morphogenesis. Nck family cytoskeletal adaptors function as key mediators of actin dynamics in numerous cell types, though their role in EC biology remains largely unexplored. Here, we demonstrate an essential requirement for Nck within ECs. Mouse embryos lacking endothelial Nck1/2 expression develop extensive angiogenic defects that result in lethality at about embryonic day 10. Mutant embryos show immature vascular networks, with decreased vessel branching, aberrant perivascular cell recruitment, and reduced cardiac trabeculation. Strikingly, embryos deficient in endothelial Nck also fail to undergo the endothelial-to-mesenchymal transition (EnMT) required for cardiac valve morphogenesis, with loss of Nck disrupting expression of major EnMT markers, as well as suppressing mesenchymal outgrowth. Furthermore, we show that Nck-null ECs are unable to migrate downstream of vascular endothelial growth factor and angiopoietin-1, and they exhibit profound perturbations in cytoskeletal patterning, with disorganized cellular projections, impaired focal adhesion turnover, and disrupted actin-based signaling. Our collective findings thereby reveal a crucial role for Nck as a master regulator within the endothelium to control actin cytoskeleton organization, vascular network remodeling, and EnMT during cardiovascular development.  相似文献   

6.
Duodenal morphogenesis in the chick embryo has been studied to see if changes in organization of extracellular fibers are associated with villus formation. Three major processes occur during morphogenesis; longitudinal ridges form, then these ridges become zigzag in shape, and finally a double row of villi form from each zigzag ridge. Tissues of different developmental stages were progressively trypsinized to remove cellular material and were prepared for scanning microscopy to show the organization of extracellular fibers. Results show that fiber systems of increasing complexity form as the dudoenum develops, and suggest that some cellular events such as initial ridge formation precede these changes. Tissues with longitudinal ridges contain only randomly organized fibers. In tissues with zigzag ridges, oriented fibers appear along the ridges and some extend laterally from flexures of each zigzag ridge, but interridge fibers are still randomly organized. When villi form, fibers in the body of the villus are random but fibers at the base of villi and between villi are highly oriented. Transmission microscopy and collagenase treatment of partially trypsinized tissue indicate that most, if not all extracellular fibers viewed by scanning microscopy are collagenous. Therefore, since collagen fiber organization is so closely related to morphogenetic changes, we presume it plays an important role.  相似文献   

7.
《Journal of molecular biology》2018,430(21):4142-4155
Fibrillin microfibrils are evolutionarily ancient, structurally complex extracellular polymers found in mammalian elastic tissues where they endow elastic properties, sequester growth factors and mediate cell signalling; thus, knowledge of their structure and organization is essential for a more complete understanding of cell function and tissue morphogenesis. By combining multiple imaging techniques, we visualize three levels of hierarchical organization of fibrillin structure ranging from micro-scale fiber bundles in the ciliary zonule to nano-scale individual microfibrils. Serial block-face scanning electron microscopy imaging suggests that bundles of zonule fibers are bound together by circumferential wrapping fibers, which is mirrored on a shorter-length scale where individual zonule fibers are interwoven by smaller fibers. Electron tomography shows that microfibril directionality varies from highly aligned and parallel, connecting to the basement membrane, to a meshwork at the zonule fiber periphery, and microfibrils within the zonule are connected by short cross-bridges, potentially formed by fibrillin-binding proteins. Three-dimensional reconstructions of negative-stain electron microscopy images of purified microfibrils confirm that fibrillin microfibrils have hollow tubular structures with defined bead and interbead regions, similar to tissue microfibrils imaged in our tomograms. These microfibrils are highly symmetrical, with an outer ring and interwoven core in the bead and four linear prongs, each accommodating a fibrillin dimer, in the interbead region. Together these data show how a single molecular building block is organized into different levels of hierarchy from microfibrils to tissue structures spanning nano- to macro-length scales. Furthermore, the application of these combined imaging approaches has wide applicability to other tissue systems.  相似文献   

8.
9.
Cells can sense and respond to mechanical signals over relatively long distances across fibrous extracellular matrices. Recently proposed models suggest that long-range force transmission can be attributed to the nonlinear elasticity or fibrous nature of collagen matrices, yet the mechanism whereby fibers align remains unknown. Moreover, cell shape and anisotropy of cellular contraction are not considered in existing models, although recent experiments have shown that they play crucial roles. Here, we explore all of the key factors that influence long-range force transmission in cell-populated collagen matrices: alignment of collagen fibers, responses to applied force, strain stiffening properties of the aligned fibers, aspect ratios of the cells, and the polarization of cellular contraction. A constitutive law accounting for mechanically driven collagen fiber reorientation is proposed. We systematically investigate the range of collagen-fiber alignment using both finite-element simulations and analytical calculations. Our results show that tension-driven collagen-fiber alignment plays a crucial role in force transmission. Small critical stretch for fiber alignment, large fiber stiffness and fiber strain-hardening behavior enable long-range interaction. Furthermore, the range of collagen-fiber alignment for elliptical cells with polarized contraction is much larger than that for spherical cells with diagonal contraction. A phase diagram showing the range of force transmission as a function of cell shape and polarization and matrix properties is presented. Our results are in good agreement with recent experiments, and highlight the factors that influence long-range force transmission, in particular tension-driven alignment of fibers. Our work has important relevance to biological processes including development, cancer metastasis, and wound healing, suggesting conditions whereby cells communicate over long distances.  相似文献   

10.
Vertebrate muscle morphogenesis is a complex developmental process, which remains quite yet unexplored at cellular and molecular level. In this work, we have found that sculpturing programmed cell death is a key morphogenetic process responsible for the formation of individual foot muscles in the developing avian limb. Muscle fibers are produced in excess in the precursor dorsal and ventral muscle masses of the limb bud and myofibers lacking junctions with digital tendons are eliminated via apoptosis. Microsurgical experiments to isolate the developing muscles from their specific tendons are consistent with a role for tendons in regulating survival of myogenic cells. Analysis of the expression of Raldh2 and local treatments with retinoic acid indicate that this signaling pathway mediates apoptosis in myogenic cells, appearing also involved in tendon maturation. Retinoic acid inhibition experiments led to defects in muscle belly segmentation and myotendinous junction formation. It is proposed that heterogeneous local distribution of retinoids controlled through Raldh2 and Cyp26A1 is responsible for matching the fleshy and the tendinous components of each muscle belly.  相似文献   

11.
哺乳动物细胞的有丝分裂过程与细胞的增殖、分化以及生物体发育、组织器官形成、损伤组织的修复和疾病的发生有关.广泛存在的力学刺激能否对细胞有丝分裂方向产生影响,以及其影响有丝分裂定向的途径尚未完全阐明.采用小鼠成纤维细胞作为模型,研究周期性单轴拉伸力学刺激对细胞应力纤维排布和有丝分裂方向的影响.结果表明,周期性单轴拉伸诱导细胞有丝分裂与应力纤维垂直于拉伸方向排布.而阻断应力纤维的两种基本组成成分(微丝和肌球蛋白Ⅱ),会造成在周期性单轴拉伸条件下的应力纤维和有丝分裂方向重排.特别是,Y27632 (10 μmol/L) 和低浓度的ML7 (50 μmol/L)、Blebbistatin (50 μmol/L)可以诱导细胞有丝分裂与应力纤维平行于拉伸方向排布.统计结果表明,在不同实验条件下,应力纤维排布和有丝分裂方向均具有高度相关性.Western blot实验表明,肌球蛋白轻链磷酸化水平与周期性单轴拉伸刺激下的应力纤维排 布和有丝分裂方向密切相关.上述结果提示:周期性单轴拉伸力学刺激通过诱导应力纤维的排布,决定了细胞的有丝分裂方向.  相似文献   

12.
Stress fibers play a central role in adhesion, motility, and morphogenesis of eukaryotic cells, but the mechanism of how these and other contractile actomyosin structures are generated is not known. By analyzing stress fiber assembly pathways using live cell microscopy, we revealed that these structures are generated by two distinct mechanisms. Dorsal stress fibers, which are connected to the substrate via a focal adhesion at one end, are assembled through formin (mDia1/DRF1)-driven actin polymerization at focal adhesions. In contrast, transverse arcs, which are not directly anchored to substrate, are generated by endwise annealing of myosin bundles and Arp2/3-nucleated actin bundles at the lamella. Remarkably, dorsal stress fibers and transverse arcs can be converted to ventral stress fibers anchored to focal adhesions at both ends. Fluorescence recovery after photobleaching analysis revealed that actin filament cross-linking in stress fibers is highly dynamic, suggesting that the rapid association-dissociation kinetics of cross-linkers may be essential for the formation and contractility of stress fibers. Based on these data, we propose a general model for assembly and maintenance of contractile actin structures in cells.  相似文献   

13.
Bacillus subtilis biofilm formation relies on the assembly of a fibrous scaffold formed by the protein TasA. TasA polymerizes into highly stable fibers with biochemical and morphological features of functional amyloids. Previously, we showed that assembly of TasA fibers requires the auxiliary protein TapA. In this study, we investigated the roles of TapA sequences from the C-terminal and N-terminal ends and TapA cysteine residues in its ability to promote the assembly of TasA amyloid-like fibers. We found that the cysteine residues are not essential for the formation of TasA fibers, as their replacement by alanine residues resulted in only minor defects in biofilm formation. Mutating sequences in the C-terminal half had no effect on biofilm formation. However, we identified a sequence of 8 amino acids in the N terminus that is key for TasA fiber formation. Strains expressing TapA lacking these 8 residues were completely defective in biofilm formation. In addition, this TapA mutant protein exhibited a dominant negative effect on TasA fiber formation. Even in the presence of wild-type TapA, the mutant protein inhibited fiber assembly in vitro and delayed biofilm formation in vivo. We propose that this 8-residue sequence is crucial for the formation of amyloid-like fibers on the cell surface, perhaps by mediating the interaction between TapA or TapA and TasA molecules.  相似文献   

14.
The actin cytoskeleton is best known for its role during cellular morphogenesis. However, other evidence suggests that actin is also crucial for the organization and dynamics of membrane organelles such as endosomes and the Golgi complex. As in morphogenesis, the Rho family of small GTPases are key mediators of organelle actin-driven events, although it is unclear how these ubiquitously distributed proteins are activated to regulate actin dynamics in an organelle-specific manner. Here we show that the brain-specific Rho-binding protein Citron-N is enriched at, and associates with, the Golgi apparatus of hippocampal neurons in culture. Suppression of the whole protein or expression of a mutant form lacking the Rho-binding activity results in dispersion of the Golgi apparatus. In contrast, high intracellular levels induce localized accumulation of RhoA and filamentous actin, protecting the Golgi from the rupture normally produced by actin depolymerization. Biochemical and functional analyses indicate that Citron-N controls actin locally by assembling together the Rho effector ROCK-II and the actin-binding, neuron-specific, protein Profilin-IIa (PIIa). Together with recent data on endosomal dynamics, our results highlight the importance of organelle-specific Rho modulators for actin-dependent organelle organization and dynamics.  相似文献   

15.
Collective cell motility is crucial to many biological processes including morphogenesis, wound healing, and cancer invasion. Recently, the biology and biophysics communities have begun to use the term ‘cell jamming’ to describe the collective arrest of cell motion in tissues. Although this term is widely used, the underlying mechanisms are varied. In this review, we highlight three independent mechanisms that can potentially drive arrest of cell motion — crowding, tension-driven rigidity, and reduction of fluctuations — and propose a framework that connects all three. Because multiple mechanisms may be operating simultaneously, this emphasizes that experiments should strive to identify which mechanism dominates in a given situation. We also discuss how specific cell-scale and molecular-scale biological processes, such as cell–cell and cell-substrate interactions, control aspects of these underlying physical mechanisms.  相似文献   

16.
Cell motility and morphogenesis are regulated by a balance between formation and disassembly of stress fibers and focal adhesions. To understand the mechanisms underlying these cellular responses in angiogenesis, we studied the Rho family protein-driven pathways in FGF-2-induced chemotaxis and capillary morphogenesis of murine brain capillary endothelial cell line, IBE cells. Cells seeded onto fibronectin-coated surface migrated toward FGF-2. Expression of dominant negative Rho A (DNRho) or kinase-dead p21-activated kinase 1 (KDPAK1), or treatment with Y27632 inhibited chemotaxis in association with the lack of FGF-2-induced decrease in focal adhesions. On Matrigel, DNRho and Y27632 induced FGF-2-independent capillary morphogenesis despite loss of stress fiber formation. KDPAK1 cells formed stress fibers and showed capillary morphogenesis in response to FGF-2. Increase in focal adhesions was closely associated with capillary morphogenesis. Our results suggest that formation or disassembly of focal adhesions seems to determine the motility or morphogenesis of endothelial cells.  相似文献   

17.
Microfilaments, intermediate filaments, and microtubules are three major cytoskeletal systems providing cells with stability to maintain proper shape. Although the word “cytoskeleton” implicates rigidity, it is quite dynamic exhibiting constant changes within cells. In addition to providing cell stability, it participates in a variety of essential and dynamic cellular processes including cell migration, cell division, intracellular transport, vesicular trafficking, and organelle morphogenesis. During the past eight years since the green fluorescent protein (GFP) was first used as a marker for the exogenous gene expression, it has been an especially booming era for live cell observations of intracellular movement of many proteins. Because of the dynamic behavior of the cytoskeleton in the cell, GFP has naturally been a vital part of the studies of the cytoskeleton and its associated proteins. In this article, we will describe the advantage of using GFP and how it has been used to study cytoskeletal proteins.  相似文献   

18.
Decisions of when and where to divide are crucial for cell survival and fate, and for tissue organization and homeostasis. The temporal coordination of mitotic events during cell division is essential to ensure that each daughter cell receives one copy of the genome. The spatial coordination of these events is also crucial because the cytokinetic furrow must be aligned with the axis of chromosome segregation and, in asymmetrically dividing cells, the polarity axis. Several recent papers describe how cell shape and polarity are coordinated with cell division in single cells and tissues and begin to unravel the underlying molecular mechanisms, revealing common principles and molecular players. Here, we discuss how cells regulate the spatial and temporal coordination of cell polarity with cell division.  相似文献   

19.
The factors governing the pattern formation process in the early morphogenesis of a marine colonial hydroid, Dynamena pumila, have been studied. Two different types of morphogenesis have been distinguished. Morphogenesis of the first type goes on via changes in cell shape and cell axis orientation, while morphogenesis of the second type is based upon the active coordinated cell movements associated with cell rearrangements. It was shown that morphogenesis of both types can be considered as cascades in which any event is a consequence of the previous one. The spatial structure of each developmental stage contains information about the direction and the initial conditions of further morphogenesis. So, an "epigenetic program" of morphogenesis gradually originates in the course of development and provides the stable reproduction of spatial structures. It is reasonable to consider the activity of epigenetic factors guiding Dynamena morphogenesis (geometry/topology of an embryo, heterogeneity of an embryo spatial structure, configuration of the field of mechanical stresses of the embryo surface) as "morphomechanical programming" of morphogenesis.  相似文献   

20.
Epithelial tissues develop planar polarity that is reflected in the global alignment of hairs and cilia with respect to the tissue axes. The planar cell polarity (PCP) proteins form asymmetric and polarized domains across epithelial junctions that are aligned locally between cells and orient these external structures. Although feedback mechanisms can polarize PCP proteins intracellularly and locally align polarity between cells, how global PCP patterns are specified is not understood. It has been proposed that the graded distribution of a biasing factor could guide long-range PCP. However, we recently identified epithelial morphogenesis as a mechanism that can reorganize global PCP patterns; in the Drosophila pupal wing, oriented cell divisions and rearrangements reorient PCP from a margin-oriented pattern to one that points distally. Here, we use quantitative image analysis to study how PCP patterns first emerge in the wing. PCP appears during larval growth and is spatially oriented through the activities of three organizer regions that control disc growth and patterning. Flattening morphogen gradients emanating from these regions does not reduce intracellular polarity but distorts growth and alters specific features of the PCP pattern. Thus, PCP may be guided by morphogenesis rather than morphogen gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号