首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract A highly hydrophilic compound with siderophore activity has been isolated from the supernatant of Staphylococcus hyicus DSM 20459 grown under iron-restricted conditions. The metabolite, named staphyloferrin B, is strictly iron-regulated and produced by a large variety of staphylococci strains. In vivo iron transport measurements and the growth-promoting activity in a bioassay establish staphyloferrin B as the second siderophore for staphylococci besides the previously described staphyloferrin A. The structure elucidation revealed 2,3-diaminopropionic acid, citrate, ethylenediamine and 2-ketoglutaric acid as structural components of the compound. Thus, staphyloferrin B is a structurally new siderophore of the complexone type.  相似文献   

2.
This paper describes the chemical characterization of staphyloferrin B, a new complexone type siderophore isolated from low iron cultures of Staphylococcus hyicus DSM 20459. Purification of the very hydrophilic metabolite was achieved by anion exchange high performance liquid chromatography HPLC. Mass spectrometry showed a molecular mass of 448 amu. Hydrolysis with 8 mHCl revealed the presence of l-2,3-diaminopropionic acid, citrate, ethylenediamine and succinic semialdehyde. The connections between the four building blocks were determined by two-dimensional nuclear magnetic resonance measurements. UV/Vis and circular dichroism spectra are consistent with the proposed structure, which could also be confirmed by precursor feeding. The siderophore activity of staphyloferrin B was demonstrated by iron transport measurements.  相似文献   

3.
Iron is critical for virtually all forms of life. The production of high-affinity iron chelators, siderophores, and the subsequent uptake of iron–siderophore complexes are a common strategy employed by microorganisms to acquire iron. Staphylococcus aureus produces siderophores but genetic information underlying their synthesis and transport is limited. Previous work implicated the sbn operon in siderophore synthesis and the sirABC operon in uptake. Here we characterize a second siderophore biosynthetic locus in S. aureus ; the locus consists of four genes (in strain Newman these open reading frames are designated NWMN_2079–2082) which, together, are responsible for the synthesis and export of staphyloferrin A, a polycarboxylate siderophore. While deletion of the NWMN_2079–2082 locus did not affect iron-restricted growth of S. aureus , strains bearing combined sbn and NWMN_2079–2082 locus deletions produced no detectable siderophore and demonstrated severely attenuated iron-restricted growth. Adjacent to NWMN_2079–2082 resides the htsABC operon, encoding an ABC transporter previously implicated in haem acquisition. We provide evidence here that HtsABC, along with the FhuC ATPase, is required for the uptake of staphyloferrin A. The crystal structure of apo-HtsA was determined and identified a large positively charged region in the substrate-binding pocket, in agreement with a role in binding of anionic staphyloferrin A.  相似文献   

4.
Staphyloferrin A: a structurally new siderophore from staphylococci   总被引:8,自引:0,他引:8  
Two ferric ion-binding compounds, designated staphyloferrin A and B, were detected in the culture filtrates of staphylococci grown under iron-deficient conditions. Staphyloferrin A was isolated from cultures of Staphylococcus hyicus DSM 20459. The structural elucidation of this highly hydrophilic, acid-labile compound revealed a novel siderophore, N2,N5-di-(1-oxo-3-hydroxy-3,4-dicarboxybutyl)-D-ornithine, which consists of one ornithine and two citric acid residues linked by two amide bonds. The two citric acid components of staphyloferrin A provide two tridentate pendant ligands, comprising of a beta-hydroxy, beta-carboxy-substituted carboxylic acid derivative, for octahedral metal chelation. The CD spectrum of the staphyloferrin A ferric complex indicates a predominant A configuration about the ferric ion center. The uptake of ferric staphyloferrin A by S. hyicus obeys Michaelis-Menten kinetics (Km = 0.246 microM; vmax = 82 pmol.mg-1.min-1), indicating active transport of this siderophore. The staphyloferrin A transport system is different from that of the ferrioxamines as shown by an antagonism test. Production of staphyloferrin A is strongly iron-dependent and is stimulated by supplementation of the medium with either D- or L-ornithine. DL-[5-14C]ornithine was incorporated into staphyloferrin A, demonstrating that ornithine is an intermediate in staphyloferrin A biosynthesis.  相似文献   

5.
《Journal of molecular biology》2019,431(24):4868-4881
Staphyloferrin B is a hydroxycarboxylate siderophore that is crucial for the invasion and virulence of Staphylococcus aureus in mammalian hosts where free iron ions are scarce. The assembly of staphyloferrin B involves four enzymatic steps, in which SbnH, a pyridoxal 5′-phosphate (PLP)-dependent decarboxylase, catalyzes the second step. Here, we report the X-ray crystal structures of S. aureus SbnH (SaSbnH) in complex with PLP, citrate, and the decarboxylation product citryl-diaminoethane (citryl-Dae). The overall structure of SaSbnH resembles those of the previously reported PLP-dependent amino acid decarboxylases, but the active site of SaSbnH showed unique structural features. Structural and mutagenesis analysis revealed that the citryl moiety of the substrate citryl-l-2,3-diaminopropionic acid (citryl-l-Dap) inserts into a narrow groove at the dimer interface of SaSbnH and forms hydrogen bonding interactions with both subunits. In the active site, a conserved lysine residue forms an aldimine linkage with the cofactor PLP, and a phenylalanine residue is essential for accommodating the l-configuration Dap of the substrate. Interestingly, the freestanding citrate molecule was found to bind to SaSbnH in a conformation inverse to that of the citryl group of citryl-Dae and efficiently inhibit SaSbnH. As an intermediate in the tricarboxylic acid (TCA) cycle, citrate is highly abundant in bacterial cells until iron depletion; thus, its inhibition of SaSbnH may serve as an iron-dependent regulatory mechanism in staphyloferrin B biosynthesis.  相似文献   

6.
Staphyloferrin A, the iron-transporting siderophore of Staphylococci, contains two citric acid residues linked to a D-ornithine backbone, having thus three chiral centers. While the chirality of the backbone can be determined after hydrolysis, the chirality of the two citryl residues can only be determined from the intact staphyloferrin A molecule by circular dichroism spectra. The chirality of the quarternary carbon atoms of citryl residues in fungal rhizoferrin and bacterial enantio-rhizoferrin have been determined previously to be R,R and S,S respectively. The present investigation shows that of the three chiral centers in staphyloferrin A, the citryl residues can be assigned an S,S-configuration by comparison with synthetic analogs, confirming a common chirality among the bacterial enantio-rhizoferrin and staphyloferrin A. This suggests that the bacterial carboxylates originate from a common biosynthetic pathway leading to an S,S-configuration, while the fungal rhizoferrin possessing an R,R-configuration must have a different biosynthetic origin. Growth promotion tests with staphylococci revealed that the S,S-configuration of staphyloferrin A and enantio-rhizoferrin enabled iron uptake, while the fungal rhizoferrin with R,R-configuration was not utilized. Published online December 2004  相似文献   

7.
In response to iron deprivation, Staphylococcus aureus produces staphyloferrin B, a citrate-containing siderophore that delivers iron back to the cell. This bacterium also possesses a second citrate synthase, SbnG, that is necessary for supplying citrate to the staphyloferrin B biosynthetic pathway. We present the structure of SbnG bound to the inhibitor calcium and an active site variant in complex with oxaloacetate. The overall fold of SbnG is structurally distinct from TCA cycle citrate synthases yet similar to metal-dependent class II aldolases. Phylogenetic analyses revealed that SbnG forms a separate clade with homologs from other siderophore biosynthetic gene clusters and is representative of a metal-independent subgroup in the phosphoenolpyruvate/pyruvate domain superfamily. A structural superposition of the SbnG active site to TCA cycle citrate synthases and site-directed mutagenesis suggests a case for convergent evolution toward a conserved catalytic mechanism for citrate production.  相似文献   

8.
A comparative assay of nitrogen metabolism enzymes in the Yarrowia lipolytica mutant N1 grown under conditions promoting the overproduction of either -ketoglutaric acid (KGA) or citric acid showed that the overproduction of KGA correlates with an increase in the activities of the NAD- and NADP-linked glutamate dehydrogenase, glutamic–pyruvic transaminase, and glutamic–oxaloacetic transaminase reactions. These reactions are likely to be responsible for the overproduction of KGA by this mutant. In contrast, the overproduction of citric acid correlated with a decline in the activities of the NAD- and NADP-linked glutamate dehydrogenases and with an increase in the activities of glutamine synthetase and glutamate synthase.  相似文献   

9.
A comparative study of the enzymes of tricarboxylic acid (TCA) and glyoxylate cycles in the mutant Yarrowia lipolytica strain N1 capable of producing -ketoglutaric acid (KGA) and citric acid showed that almost all enzymes of the TCA cycle are more active under conditions promoting the production of KGA. The only exception was citrate synthase, whose activity was higher in yeast cells producing citric acid. The production of both acids was accompanied by suppression of the glyoxylate cycle enzymes. The activities of malate dehydrogenase, aconitase, NADP-dependent isocitrate dehydrogenase, and fumarase were higher in cells producing KGA than in cells producing citric acid.  相似文献   

10.
11.
Summary The streptomycetes studied released into the medium the following organic acids: pyruvic, α-ketoglutaric, lactic, malic (or citric), succinic and oxalic. Soil streptomycetes produced more α-ketoglutaric-, lactic- and succinic acid than the root zone microorganisms. Mean indices of the total production of organic acids were in the following order: soil>rhizosphere>mycorrhizosphere. Amounts of pyruvic acid excreted by the soil streptomycetes were inversely proportional to their biomass, whereas those of α-ketoglutaric acid were directly proportional to dry weight. Small repeatability of the results of α-keto acids determinations in these organisms was stated.  相似文献   

12.
13.
Iron is required for microbial growth and proliferation. To survive in low-iron environments, some microorganisms secrete ferric iron chelators called siderophores. Siderophore biosynthesis occurs via two pathways: the non-ribosomal peptide synthetase (NRPS) pathway and the NRPS-independent siderophore (NIS) synthetase pathway. NIS enzymes function by adenylating a carboxylic acid substrate, typically citrate, or a derivative, followed by nucleophilic capture of an amine or alcohol and displacement of a citryl intermediate. In this review, we summarize recent advances in NIS biochemistry with a particular focus on structural biology and confirm the classification of NIS enzymes into Types A, A’, B, and C based on substrate specificity. Based on a phylogenetic analysis, we also propose a new subclass of NIS enzymes, Type C’, responsible for dimerization and macrocyclization of complex and substituted amine or amide intermediates. Finally, we describe the role of NIS enzymes in virulence of pathogenic microbes and discuss NIS inhibitors as potential anti-microbial agents.  相似文献   

14.
A HPLC technique for the analysis of organic acids in the production of α-ketoglutaric acid was developed. The method was applied and optimized for the quantitative determination of citric acid, pyruvic acid, isocitric acid and α-ketoglutaric acid in fermentation solutions. As microorganism the yeast Yarrowia lipolytica and as substrates glucose or paraffins were used. The chromatographic separations were carried out by means of 50 and 100 × 8 mm i.d. glass columns packed with an anion-exchange resin based on an 8% cross-linked polystyrene-divinylbenzene copolymer. The relative errors ranged from 2.1% (α-ketoglutaric acid) to 5.2% (isocitric acid). The percent recovery values varied between 94.4% (isocitric acid) and 107.7% (pyruvic acid). The contents of organic acids in fermentation solutions after the microbial synthesis based on paraffins or glucose were compared.  相似文献   

15.
Petrobactin, a mixed catechol-carboxylate siderophore, is required for full virulence of Bacillus anthracis, the causative agent of anthrax. The asbABCDEF operon encodes the biosynthetic machinery for this secondary metabolite. Here, we show that the function of five gene products encoded by the asb operon is necessary and sufficient for conversion of endogenous precursors to petrobactin using an in vitro system. In this pathway, the siderophore synthetase AsbB catalyzes formation of amide bonds crucial for petrobactin assembly through use of biosynthetic intermediates, as opposed to primary metabolites, as carboxylate donors. In solving the crystal structure of the B. anthracis siderophore biosynthesis protein B (AsbB), we disclose a three-dimensional model of a nonribosomal peptide synthetase-independent siderophore (NIS) synthetase. Structural characteristics provide new insight into how this bifunctional condensing enzyme can bind and adenylate multiple citrate-containing substrates followed by incorporation of both natural and unnatural polyamine nucleophiles. This activity enables formation of multiple end-stage products leading to final assembly of petrobactin. Subsequent enzymatic assays with the nonribosomal peptide synthetase-like AsbC, AsbD, and AsbE polypeptides show that the alternative products of AsbB are further converted to petrobactin, verifying previously proposed convergent routes to formation of this siderophore. These studies identify potential therapeutic targets to halt deadly infections caused by B. anthracis and other pathogenic bacteria and suggest new avenues for the chemoenzymatic synthesis of novel compounds.  相似文献   

16.
放线菌中铁载体生物合成机制研究进展   总被引:2,自引:1,他引:2  
铁载体是由微生物产生,对铁元素具有高亲和性的小分子化合物。这类天然产物所展现的结构多样性引起人们对其生物合成机制的极大兴趣。目前已有研究报道的铁载体生物合成途径主要有2种,一是直接由非核糖体肽合成酶(Nonribosomal peptide synthetases,NRPSs)家族的多酶复合体负责合成,另一种是以不依赖于NRPS(NRPS-independent,NIS)的方式,由一类特殊合成酶家族参与合成。在过去的十多年中,铁载体生物合成成为天然产物生物合成研究领域的热点之一,其中几种依赖于NRPS途径合成的铁载体生物合成机制已得到充分阐明,而对NIS方式合成的铁载体研究也获得了诸多进展。作为放线菌的一类重要次级代谢产物,通过遗传学、化学等手段对放线菌所产生铁载体生物合成途径的遗传学和生物化学研究,能够为发展新的抗菌药物提供契机,同时也能加深我们对这一类生物活性物质形成机制的认识。综述近期该研究方向的进展。  相似文献   

17.
Profiles of metabolic α-keto acids were determined by a high-performance liquid chromatographic method and applied to characterization of oral black-pigmented Bacteroides . Each bacterial strain was incubated with amino acids in a chemically defined medium. After production α-keto acids were purified by hydrazide gel column treatment and converted to u.v.-absorbing derivatives. They were analysed by reversed-phase ion-pair chromatography. Black-pigmented Bacteroides species were differentiated into two groups according to production of aromatic α-keto acids. Bacteroides gingivalis, B. endodontalis and B. loescheii produced both ρ-hydroxyphenylpyruvic and phenylpyruvic acids. However, no such α-keto acids were produced by B. levii, B. intermedius and B. denticola . In addition, production profiles of several aliphatic α-keto acids (α-ketoglutaric, pyruvic, α-ketobutyric, α-ketoisovaleric, α-ketoisocaproic, and α-keto-β-methylvaleric acids) separated each individual species in such groups. The present study offers useful chemotaxonomic information on amino acid metabolic activity of oral black-pigmented Bacteroides species.  相似文献   

18.
[背景] 铁是细菌生长的基本元素,而三价铁在自然水环境中几乎无法溶解。细菌已经进化出产生各种铁载体的能力,以促进铁的吸收。对于链霉菌,其特有的铁载体是去铁胺,同时它们也可以产生其他结构的铁载体,如ceolichelin、白霉素、肠杆菌素(enterobactin)和griseobactin。[目的] 揭示链霉菌中铁载体生物合成基因簇(Biosynthetic Gene Clusters,BGCs)的分布特点和基因簇特征,并探索其所合成铁载体的化合物结构。[方法] 利用生物信息学工具系统地分析308个具有全基因组序列信息的链霉菌中的铁载体生物合成基因簇,并用色谱和波谱方法分离和表征肠杆菌素相关天然产物。[结果] 发现Streptomyces albofaciens JCM 4342和其他少数菌株同时含有一个缺少2,3-二羟基苯甲酸(2,3-DHB)生物合成基因的孤立的肠杆菌素生物合成基因簇和另外一个推测可合成griseobactin的基因簇。从S.albofaciens JCM 4342发酵液中鉴定出4个肠杆菌素衍生的天然产物,包括链状2,3-二羟基苯甲酸酯-l-丝氨酸(2,3-DHBS)的三聚体和二聚体以及它们的脱水产物。[结论] 2个基因簇间存在一种特别的协同生物合成机制。推测是griseobactin基因簇负责合成2,3-DHB,而孤立的肠杆菌素基因簇编码的生物合成酶可夺取该底物,进而完成上述4种肠杆菌素衍生天然产物的生物合成。  相似文献   

19.
Siderophores are known virulence factors, and their biosynthesis is a target for new antibacterial agents. A non-ribosomal peptide synthetase-independent siderophore biosynthetic pathway in Dickeya dadantii is responsible for production of the siderophore achromobactin. The D. dadantii achromobactin biosynthesis protein D (AcsD) enzyme has been shown to enantioselectively esterify citric acid with l-serine in the first committed step of achromobactin biosynthesis. The reaction occurs in two steps: stereospecific activation of citric acid by adenylation, followed by attack of the enzyme-bound citryl adenylate by l-serine to produce the homochiral ester. We now report a detailed characterization of the substrate profile and mechanism of the second (acyl transfer) step of AcsD enzyme. We demonstrate that the enzyme catalyzes formation of not only esters but also amides from the citryl-adenylate intermediate. We have rationalized the substrate utilization profile for the acylation reaction by determining the first X-ray crystal structure of a product complex for this enzyme class. We have identified the residues that are important for both recognition of l-serine and catalysis of ester formation. Our hypotheses were tested by biochemical analysis of various mutants, one of which shows a reversal of specificity from the wild type with respect to non-natural substrates. This change can be rationalized on the basis of our structural data. That this change in specificity is accompanied by no loss in activity suggests that AcsD and other members of the non-ribosomal peptide synthetase-independent siderophore superfamily may have biotransformation potential.  相似文献   

20.
Many organisms use sophisticated systems to acquire growth-limiting iron. Iron limitation is especially apparent in bacterial pathogens of mammalian hosts where free iron concentrations are physiologically negligible. A common strategy is to secrete low molecular weight iron chelators, termed siderophores, and express high affinity receptors for the siderophore-iron complex. Staphylococcus aureus, a widespread pathogen, produces two siderophores, staphyloferrin A (SA) and staphyloferrin B (SB). We have determined the crystal structure of the staphyloferrin B receptor, SirA, at high resolution in both the apo and Fe(III)-SB (FeSB)-bound forms. SirA, a member of the class III binding protein family of metal receptors, has N- and C-terminal domains, each composed of mainly a β-stranded core and α-helical periphery. The domains are bridged by a single α-helix and together form the FeSB binding site. SB coordinates Fe(III) through five oxygen atoms and one nitrogen atom in distorted octahedral geometry. SirA undergoes conformational change upon siderophore binding, largely securing two loops from the C-terminal domain to enclose FeSB with a low nanomolar dissociation constant. The staphyloferrin A receptor, HtsA, homologous to SirA, also encloses its cognate siderophore (FeSA); however, the largest conformational rearrangements involve a different region of the C-terminal domain. FeSB is uniquely situated in the binding pocket of SirA with few of the contacting residues being conserved with those of HtsA interacting with FeSA. Although both SirA and HtsA bind siderophores from the same α-hydroxycarboxylate class, the unique structural features of each receptor provides an explanation for their distinct specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号