首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
中脑导水管周围灰质内神经降压素在电针镇痛中的作用   总被引:10,自引:0,他引:10  
本工作以钾离子透入法引起大鼠甩尾反应的电流强度为痛反应指标,测定动物痛阈,观察到大鼠中脑导水管周围灰质(PAG)内注入神经降压素(NT)后,大鼠痛阈和电针镇痛效应明显升高;注入抗神经降压素血清后,痛阈和电针镇痛效应明显降低。注入纳洛酮后,可明显减弱NT镇痛和电针镇痛的效应。提示,PAG内NT参与电针镇痛的病理生理过程,且至少部分效应是通过内源性阿片肽系统中介的  相似文献   

2.
Abstract Biting fly attack induces a variety of stress and anxiety related changes in the physiology and behaviour of the target animals. Significant reductions in pain, or more appropriately, nociceptive sensitivity (latency of a foot-lifting response to an aversive thermal stimulus), are evident in laboratory mice after a 1 h exposure to stable flies, Stomoxys calcitrans. The role of the various components of biting fly attack in the development of this stress-induced reduction in pain sensitivity (analgesia) is, however, unclear. This study demonstrates that fly-naive mice do not exhibit a stress-induced analgesia when exposed to stable flies whose biting mouthparts have been removed. In contrast, mice that have been previously exposed to intact stable flies exhibit significant analgesia when exposed to flies that are incapable of biting. However, the level of analgesia induced is lower than that elicited by exposure to intact stable flies. Exposure to non-biting house flies, Musca domestica , has no effect on nociceptive sensitivity. It appears that the actual bite of the stable fly is necessary for the induction of analgesia and probably other stress and anxiety associated responses in fly naive mice. However, mice rapidly learn to recognize biting flies and exhibit significant, possibly anticipatory analgesic responses to the mere presence of biting flies.  相似文献   

3.
M Kavaliers  D Innes 《Peptides》1992,13(3):603-607
There is evidence suggesting that the endogenous mammalian octapeptide FLFQPQRFamide (F8Fa or neuropeptide FF, NPFF) has modulatory effects on opioid-mediated analgesia in rodents. There is also substantial evidence for sex differences in opioid analgesia, whereby male rats and mice display greater levels of opioid-mediated analgesia than females. In the present study, determinations were made of the effects of NPFF and IgG from antiserum against NPFF on morphine- and restraint stress-induced opioid analgesia in male and female deer mice. Intracerebroventricular (ICV) administrations of NPFF (0.10-10 micrograms) reduced in a dose-dependent manner morphine- and stress-induced analgesia in both male and female mice, with NPFF having markedly greater antagonistic effects in the male than female mice. Additionally, ICV administrations of NPFF-IgG increased the levels of morphine- and stress-induced analgesia and significantly reduced basal nociceptive sensitivity in male mice, whereas, in female mice, NPFF-IgG had no significant effects on either opioid-mediated analgesia or nociceptive sensitivity. These results indicate that there are sex differences in the modulatory effects of NPFF on opioid-mediated analgesia.  相似文献   

4.
The influence of forced swimming on the development of stress-induced analgesia was studied in 35 SHR mice, 65 NMRI mice, and 23 white outbred male rats. Mice were subjected to swimming conditions (at a temperature of 11 degrees C) for a period of 4 minutes and rats for 6 minutes. Pain thresholds were measured by a footshock. It was shown that behavioral response to acute stress is associated with a change in the pain tolerance threshold: activity of an animal under test conditions positively correlated with stress-induced analgesia. The response to stress and parameters of stress-induced analgesia depend on the genetic factor and age, however, the correlation between the activity during exposure to stress and the extent of stress-induced analgesia conserves in all cases.  相似文献   

5.
There is evidence suggesting that the endogenous tetrapeptide, Tyr-MIF-1 (Tyr-Prol-Leu-Gly-amide), has antagonistic or modulatory effects on opioid-mediated analgesia. There is also substantial evidence for sex differences in opioid effects, whereby male rodents display greater levels of opioid-mediated analgesia than females. In the present study, determinations were made of the effects of Tyr-MIF-1 on morphine- and restraint stress-induced opioid analgesia in adult male and female deer mice, Peromyscus maniculatus. Intraperitoneal treatment with Tyr-MIF-1 (0.10–10 mg/kg) reduced morphine- and stress-induced analgesia in both male and female mice, with Tyr-MIF-1 having markedly greater antagonistic effects in male than female mice. These results indicate that there are sex differences in the modulatory (antiopiate) effects of Tyr-MIF-1 on opioid-mediated analgesia.  相似文献   

6.
V G Erwin  B C Jones 《Peptides》1989,10(2):435-440
Neurotensin (NT), injected centrally, markedly enhances sensitivity to ethanol-induced anesthesia in SS but not in LS mice (4). Since LS and SS mice were bred selectively for differential sensitivity to ethanol, these findings suggest that neurotensinergic neuronal processes mediate some of ethanol's actions and that LS and SS mice might differ genetically in neurotensinergic systems. Indeed, in biochemical studies it was shown that LS and SS mice differ in NT-like immunoreactivity in specific brain regions, i.e., hypothalamus, and in NT receptor densities (Bmax) in frontal cortex and striatum. In other experiments LS and SS mice differed in behavioral responses to centrally administered NT. Intracerebroventricular (ICV) administration of NT produced dose-dependent changes in motor activity, hypothermia, and analgesia in both LS and SS mice. SS mice appeared to be more sensitive than LS to NT-induced analgesia but not hypothermia. Neurotensin increased or decreased locomotor activity in both SS and LS mice following intraventral tegmental area or ICV administration, respectively. The results indicate that LS and SS mice, which were selectively bred for differences in ethanol sensitivity, differ genetically in NT concentrations, receptor densities in specific brain regions, and in some receptor-mediated behavioral responses to NT.  相似文献   

7.
The effects of anxiogenic (pentylentetrazole) and anxiolytic (diazepam) agents on and cold swim stress-induced analgesia were investigated in SHR and NMRI male mice. It was shown that behavioral response to acute stress was associated with a change in the pain tolerance threshold. Diazepam increased immobility time and attenuated stress-induced analgesia (SIA). NMRI mice were more responsive to anxiolytic than the SHR mice, but the lattes manifested more dramatic changes when anxiety was pharmacologically enhanced (immobility time was significantly reduced and the SIA exaggerated). Our findings suggest that the main parameters change in reciprocal manner following a pharmacologically altered anxiety, and reveal that differences between two strains of mice are determined by differences in their sensitivity to stress.  相似文献   

8.
Physiological stress is known to produce analgesia and memory disruption. Brain renin angiotensin system (RAS) has been reported to participate in stress response and plays a role in the processing of sensory information. Angiotensin receptors (AT), particularly AT1 subtypes have been reported to be distributed in brain areas that are intimately associated with stress response. The purpose of present study was to examine the modulation of AT1 receptor in the immobilization stress and angiotensin II (AngII)-induced analgesia and impaired retention, and to determine whether resultant behavioral changes involve common sensory signals. Result of present experiments showed that immobilization stress in mice and rats, and intracerebroventricular (ICV) administration of AngII (10 and 20 ng) in rats produced an increase in tail-flick latency. Similarly, post training administration of AngII or immobilization stress produced impairment of retention tested on plus-maze learning and on passive avoidance step-down task. Both these responses were sensitive to reversal by prior treatment with losartan (10 and 20 mg/kg), an AT1 AngII receptor antagonist. On the other hand, naloxone, an opiate antagonist preferentially attenuated the stress and AngII-induced analgesia and retention deficit induced by immobilization stress, but failed to reverse the AngII induced retention deficit. These results suggest immobilization stress-induced analgesia and impaired retention involves the participation of brain RAS. Further, failure of naloxone to reverse AngII-induced retention impairment shows. AngII-induced behavioral changes are under control of different sensory inputs.  相似文献   

9.
Effects of supraspinal orphanin FQ/nociceptin   总被引:3,自引:0,他引:3  
Grisel JE  Mogil JS 《Peptides》2000,21(7):1037-1045
The first reported behavioral action of the endogenous ligand for the "orphan" opioid receptor was a seemingly paradoxical increased sensitivity to nociception (i.e. hyperalgesia) after supraspinal injection into the cerebral ventricles of mice. In the continuing absence of an appropriate in vivo receptor antagonist, studies attempting to define the role of orphanin FQ/nociceptin (OFQ/N) in pain modulation and other behaviors have also featured central injection of peptide. This article reviews the findings of such studies. There appears to be concordance around the observation of anti-opioid actions of supraspinally injected OFQ/N, whereas the observations of hyperalgesia and/or analgesia are much less clear. A portion of the discrepant data may be explained in terms of methodological issues, stress-induced analgesia accompanying experimental protocols, and genotypic variation among subjects. Clarification of OFQ/N's role in nociception, as with other putative biologic functions, will probably depend upon the availability of a selective receptor antagonist.  相似文献   

10.
Corticotropin-releasing hormone (Crh) plays an important role in modulating physiological and behavioral responses to stress. Its actions are mediated through two receptors, Crhr1 and Crhr2. Urocortin (Ucn), a Crh-related neuropeptide and the postulated endogenous ligand for Crhr2, is a potential mediator of stress responses. We generated Ucn-deficient mice using embryonic stem cell technology to determine its role in stress-induced behavioral and autonomic responses. Unlike Crhr1- or Crhr2-deficient mice, Ucn-deficient mice exhibit normal anxiety-like behavior as well as autonomic regulation in response to stress. However, the mutant mice display an impaired acoustic startle response that is not due to an obvious hearing defect. Thus, our results suggest that Ucn does not play an essential role in stress-induced behavioral and autonomic responses. Ucn may modulate the acoustic startle response through the Ucn-expressing neuron projections from the region of the Edinger-Westphal nucleus.  相似文献   

11.
Many aspects of drug abuse and addiction share neurobiological substrates with the modulatory processes underlying the response and adaptation to acute stress. In particular, the ascending noradrenergic system has been implicated in facilitating the response to stress, and in stress-induced reinstatement of drug seeking behavior. Thus, to better understand the link between stress and addictive behaviors, it would be informative to understand better the modulatory function of the ascending noradrenergic system, and its interaction with other neurotransmitters with which it is closely associated or co-localized, such as the neuropeptide galanin. In this paper, we review a series of studies investigating the functional interactions of norepinephrine and galanin in modulating the behavioral response to acute stress in two components of the extended amygdala, the central nucleus of the amygdala and the lateral bed nucleus of the stria terminalis. We showed that norepinephrine facilitates behavioral reactivity to stress on the elevated plus-maze and social interaction tests. However, when stress-induced activation of the noradrenergic system was enhanced by blocking inhibitory adrenergic autoreceptors, galanin release was recruited in the central amygdala, acting to attenuate the behavioral response to stress. By contrast, stress-induced galanin release in the lateral bed nucleus appeared to be independent of enhanced noradrenergic activation, and unlike the central amygdala, both galanin and norepinephrine facilitated behavioral stress reactivity in the bed nucleus. The different modes of interaction and differential region- and response-specificity of galanin and norepinephrine suggest that a complex neural circuit interconnecting these two regions is involved in the modulatory effects of norepinephrine and galanin on the behavioral response to stress. Such complexity may allow for flexibility and plasticity in stress adaptation, and may also contribute to behavioral changes induced by chronic drug administration. Thus, the interaction of galanin and norepinephrine may be a viable target for the future development of novel therapeutic strategies for treating behavioral disorders related to stress or drug abuse.  相似文献   

12.
Different types of stress play important roles in the onset and modulation of irritable bowel syndrome (IBS) symptoms. The physiological effects of psychological and physical stressors on gut function and brain-gut interactions are mediated by outputs of the emotional motor system in terms of autonomic, neuroendocrine, attentional, and pain modulatory responses. IBS patients show an enhanced responsiveness of this system manifesting in altered modulation of gastrointestinal motility and secretion and in alterations in the perception of visceral events. Functional brain imaging techniques are beginning to identify brain circuits involved in the perceptual alterations. Animal models have recently been proposed that mimic key features of the human syndrome.  相似文献   

13.
This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).  相似文献   

14.
Effects of several environmental situations on pain threshold were studied in CFW male mice. Immobilization induced significant and naloxone reversible analgesia. Isolation produced analgesia which was partially reversed by naloxone. One minute swimming in + 4 degrees C or + 42 degrees C water increased naloxone reversible analgesia. Isolation produced analgesia which was partially reversed by naloxone. One minute swimming in 4 degrees C or + 42 degrees C water increased naloxone irreversible pain threshold. Other situations: drinking 2% NaCl solution, disturbance of light-dark cycle or social aggregation did not produce analgesia. The role of these situations as stress-inducers, as well as the role of endogenous opioid peptides in stress-induced analgesia, were discussed.  相似文献   

15.
Acute environmental heat (40±2°C) and other physiological stressful situations increased the pain threshold to radiant heat in rats and mice. Naloxone pretreatment or chronic exposure to stress antagonised this response. After pretreatment with catecholamine depleters, α-methyl-p-tyrosine, reserpine or with adrenoceptor blockers, haloperidol and chlorpromazine, the stress-induced analgesic effect was abolished. Cyproheptadine, a serotonin antagonist, also blocked this response. The results suggest the role of brain monoamines in stress-mediated analgesia.  相似文献   

16.
Previous studies have shown that exposure to altered magnetic fields alters analgesic responses in a variety of species, including humans. Here we examined whether deprivation of the normally occurring geomagnetic field also affects stress-induced analgesia, by measuring the nociceptive responses of C57 male mice that were restraint-stressed in a hypogeomagnetic environment (inside a mu-metal box). Stress-induced analgesia was significantly suppressed in a manner comparable to that observed in mice that were either exposed to altered oscillating magnetic fields or treated with the prototypic opiate antagonist naloxone. These results represent the first piece of evidence that a period in a hypogeomagnetic environment inhibits stress-induced analgesia.  相似文献   

17.
Central administration of the neuropeptide neurotensin (NT) was shown to induce antinociceptive responses both spinally and supraspinally. Although NTS2 receptors play an important role in modulating the activity of spinal neurons, we have recently implicated NTS1 receptors in NT's analgesic effects in acute spinal pain paradigms. The current experiments were thus designed to examine the antinociceptive effects of intrathecal administration of NTS1 agonists in formalin-induced tonic pain in rats. We first established, using immunoblotting and immunohistochemical approaches, that NTS1 receptors were present in small- and medium-sized dorsal root ganglion cells and localized in the superficial layers of the dorsal horn of the spinal cord. We then examined the effects of intrathecal injection of NT (1–15 μg/kg) or NTS1 preferring agonists on the nocifensive response to intraplantar formalin. Both NTS1-agonists, PD149163 (10–120 μg/kg) and NT69L (1–100 μg/kg), dose-dependently attenuated the formalin-induced behaviors. Accordingly, NTS1 agonists markedly suppressed pain-evoked c- fos expression in the superficial, nucleus proprius and neck regions of the spinal dorsal horn. The concomitant administration of PD149163 with the NTS1 antagonist SR48692 (3 μg/kg) significantly reversed PD149163-induced antinociception, confirming the implication of NTS1 in tonic pain. In contrast, NT69L's analgesic effects were partly abolished by co-administration of SR48692, indicating that NT69L-induced effects may also be exerted through interaction with NTS2. These results demonstrate that NTS1 receptors play a key role in the mediation of the analgesic effects of NT in persistent pain and suggest that NTS1-selective agonists may represent a new line of analgesic compounds.  相似文献   

18.
Brain mechanisms of pain affect and pain modulation   总被引:19,自引:0,他引:19  
Recent animal studies reveal ascending nociceptive and descending modulatory pathways that may contribute to the affective-motivational aspects of pain and play a critical role in the modulation of pain. In humans, a reliable pattern of cerebral activity occurs during the subjective experience of pain. Activity within the anterior cingulate cortex and possibly in other classical limbic structures, appears to be closely related to the subjective experience of pain unpleasantness and may reflect the regulation of endogenous mechanisms of pain modulation.  相似文献   

19.
Placebo analgesia and reward processing share several features. For instance, expectations have a strong influence on the subsequent emotional experience of both. Recent imaging data indicate similarities in the underlying neuronal network. We hypothesized that placebo analgesia is a special case of reward processing and that placebo treatment could modulate emotional perception in the same way as does pain perception. The behavioral part of this study indicates that placebo treatment has an effect on how subjects perceive unpleasant pictures. Furthermore, event-related fMRI demonstrated that the same modulatory network, including the rostral anterior cingulate cortex and the lateral orbitofrontal cortex, is involved in both emotional placebo and placebo analgesia. These effects were correlated with the reported placebo effect and were predicted by the amount of treatment expectation induced on a previous day. Thus, the placebo effect may be considered to be a general process of modulation induced by the subjects' expectations.  相似文献   

20.
The role of genetic and seasonal factors in stress-induced changes of pain sensitivity, evaluated by latency in hot plate test was studied. Significant interstrain differences in restriction effect on pain sensitivity was established. Analgesia, hyperalgesia or lack of influence on pain sensitivity in mice of different strains was observed in response to emotional stress. Interstrain differences in seasonal variance of stress-induced changes in pain sensitivity were shown. It is suggested that changes in pain sensitivity of mice after restriction are season-dependent and controlled by hereditary mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号