首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microbial community structure of hydrothermal vent chimneys was evaluated by the combined use of enrichment cultures and whole-cell hybridizations with fluorescently labeled 16S rRNA-based oligonucleotide probes. Chimneys were collected during the Microsmoke cruise on the Mid-Atlantic Ridge and were subsampled on board and stored under reduced conditions or fixed. For estimation of culturable thermophiles, selective media were inoculated by dilution series of the samples and incubated at 65, 80, and 95(deg)C. To analyze the microbial diversity of the samples, cells were extracted from the fixed chimney structure samples and hybridized with domain- and kingdom-specific probes. Quantification of the extracted cells was assessed by whole-cell hybridization on membrane filters. By both methods, the largest amounts of microorganisms were found in the upper and outer parts of the chimneys, although even the inner parts contained culturable and detectable amounts of cells. Different morphotypes of thermophilic and hyperthermophilic microorganisms were enriched and detected in samples. Our data clearly indicate that the morphological diversity observed by using whole-cell hybridization is much larger than that assessed by use of culture-based enrichments. This new approach, including culture-independent and -dependent methods to study hydrothermal vent chimneys, showed an uneven distribution of a diverse microbial community. Application of lower-level specific probes for known families and genera within each domain by our approach will be useful to reveal the real extent and nature of the chimney microbial diversity and to support cultivation attempts.  相似文献   

2.
Several members of the order Thermotogales in the domain Bacteria, viz., Thermotoga neapolitana, Thermotoga maritima, Thermosipho africanus, Fervidobacterium islandicum, and Thermotoga strain SEBR 2665, an isolate from an oil well, reduced thiosulfate to sulfide. This reductive process enhanced cellular yields and growth rates of all the members but was more significant with the two hyperthermophiles T. neapolitana and T. maritima. This is the first report of such an occurrence in this group of thermophilic and hyperthermophilic anaerobic bacteria. The results suggest that thiosulfate reduction is important in the geochemical cycling of sulfur in anaerobic thermal environments such as the slightly acidic and neutral-pH volcanic hot springs and oil reservoirs.  相似文献   

3.
Based on comparative analysis of 16S rRNA sequences and the recently established phylogeny of the genus Desulfotomaculum , a set of phylogenetically nested hybridization probes was developed and characterized. A genus-specific probe targets all known Desulfotomaculum species (with the exception of Desulfotomaculum acetoxidans ), and five specific probes target subclusters within the Desulfotomaculum genus. The dissociation temperature of each probe was determined experimentally. Probe specificities were verified through hybridizations with pure culture rRNA isolated from a wide variety of target and non-target organisms and through an evaluation of probe 'nesting' using samples obtained from four different environments. Fixation and hybridization conditions for fluorescence in situ hybridizations were also optimized. The probes were used in quantitative membrane hybridizations to determine the abundance of Desulfotomaculum species in thermophilic anaerobic digesters, in soil, in human faeces and in pig colon samples. Desulfotomaculum rRNA accounted for 0.3–2.1% of the total rRNA in the digesters, 2.6–6.6% in soil, 1.5–3.3% in human faeces and 2.5–6.2% in pig colon samples.  相似文献   

4.
Activity measurements by radioisotopic methods and cultural and molecular approaches were used in parallel to investigate the microbial biodiversity and its physiological potential in formation waters of the Samotlor high-temperature oil reservoir (Western Siberia, Russia). Sulfate reduction with rates not exceeding 20 nmol of H(2)S liter(-1) day(-1) occurred at 60 and 80 degrees C. In upper horizons (AB, A, and B), methanogenesis (lithotrophic and/or acetoclastic) was detected only in wells in which sulfate reduction did not occur. In some of the wells from deeper (J) horizons, high-temperature sulfate reduction and methanogenesis occurred simultaneously, the rate of lithotrophic methanogenesis exceeding 80 nmol of CH(4) liter(-1) day(-1). Enrichment cultures indicated the presence of diverse physiological groups representing aerobic and anaerobic thermophiles and hyperthermophiles; fermentative organotrophs were predominant. Phylogenetic analyses of 15 isolates identified representatives of the genera Thermotoga, Thermoanaerobacter, Geobacillus, Petrotoga, Thermosipho, and Thermococcus, the latter four being represented by new species. Except for Thermosipho, the isolates were members of genera recovered earlier from similar habitats. DNA obtained from three samples was hybridized with a set of oligonucleotide probes targeting selected microbial groups encompassing key genera of thermophilic bacteria and archaea. Oligonucleotide microchip analyses confirmed the cultural data but also revealed the presence of several groups of microorganisms that escaped cultivation, among them representatives of the Aquificales/Desulfurobacterium-Thermovibrio cluster and of the genera Desulfurococcus and Thermus, up to now unknown in this habitat. The unexpected presence of these organisms suggests that their distribution may be much wider than suspected.  相似文献   

5.
New oligonucleotide probes were designed and evaluated for application in fluorescence in situ hybridization (FISH) studies on (hyper)thermophilic microbial communities—Arglo32, Tcoc164, and Aqui1197 target the 16S rRNA of Archaeoglobales, Thermococcales, and Aquificales, respectively. Both sequence information and experimental evaluation showed high coverage and specificity of all three probes. The signal intensity of Aqui1197 was improved by addition of a newly designed, unlabeled helper oligonucleotide, hAqui1045. It was shown that in addition to its function as a probe for Aquificales, Aqui1197 is suitable as a supplementary probe to extend the coverage of the domain-specific bacterial probe EUB338. In sediments from two hydrothermal seeps on Vulcano Island, Italy, the microbial community structure was analyzed by FISH with both established and the new oligonucleotide probes, showing the applicability of Arglo32, Tcoc164, and Aqui1197/hAqui1045 to natural samples. At both sites, all major groups of (hyper)thermophiles, except for methanogens, were detected: Crenarchaeota (19%, 16%), Thermococcales (14%, 22%), Archaeoglobales (14%, 12%), Aquificales (5%, 8%), Thermotoga/Thermosipho spp. (12%, 9%), Thermus sp. (12%, none), and thermophilic Bacillus sp. (12%, 8%).  相似文献   

6.
The bacterial and archaeal communities of three deep-sea hydrothermal vent systems located on the Mid-Atlantic Ridge (MAR; Rainbow, Logatchev and Broken Spur) were investigated using an integrated culture-dependent and independent approach. Comparative molecular phylogenetic analyses, using the 16S rRNA gene and the deduced amino acid sequences of the alpha and beta subunits of the ATP citrate lyase encoding genes were carried out on natural microbial communities, on an enrichment culture obtained from the Broken Spur chimney, and on novel chemolithoautotrophic bacteria and reference strains originally isolated from several different deep-sea vents. Our data showed that the three MAR hydrothermal vent chimneys investigated in this study host very different microbial assemblages. The microbial community of the Rainbow chimney was dominated by thermophilic, autotrophic, hydrogen-oxidizing, sulfur- and nitrate-reducing Epsilonproteobacteria related to the genus Caminibacter. The detection of sequences related to sulfur-reducing bacteria and archaea (Archaeoglobus) indicated that thermophilic sulfate reduction might also be occurring at this site. The Logatchev bacterial community included several sequences related to mesophilic sulfur-oxidizing bacteria, while the archaeal component of this chimney was dominated by sequences related to the ANME-2 lineage, suggesting that anaerobic oxidation of methane may be occurring at this site. Comparative analyses of the ATP citrate lyase encoding genes from natural microbial communities suggested that Epsilonproteobacteria were the dominant primary producers using the reverse TCA cycle (rTCA) at Rainbow, while Aquificales of the genera Desulfurobacterium and Persephonella were prevalent in the Broken Spur chimney.  相似文献   

7.
Hyperthermophilic community diversity was assessed in hot-spring streamers along gradients of temperature, pH and sulphide in northern Thailand. A hierarchical sampling design was employed to obtain biomass for culture-independent estimates of 16S rRNA gene-defined prokaryotic diversity. All springs supported several archaeal and bacterial phylotypes, including novel phylotypes that expand the known phylogenetic diversity of terrestrial hyperthermophiles. Diversity appeared significantly greater than that observed for several other geographic locations. Phylotypes belonging to the Aquificales were ubiquitous, further supporting the hypothesis that these chemolithoautotrophs are key members of all hyperthermophilic communities. The chemoorganotrophic genus Thermus was also represented by phylotypes in all springs. Other bacterial taxa represented by environmental sequences included Bacillus, Thermotoga and various unidentified Alphaproteobacteria and Betaproteobacteria. Archaeal phylotypes included the Crenarchaea Desulfurococcus, Pyrobaculum, plus several unidentified hyperthermophilic lineages. A Methanothermococcus-like Euryarchaeon was also identified, with this genus not previously known from streamer communities. A multivariate approach to the analysis of biotic and abiotic data revealed that diversity patterns were best explained by a combination of temperature and sulphide rather than by any other abiotic variable either individually or in combination.  相似文献   

8.
Filamentous bacteria, identified as members of the genus Beggiatoa by gliding motility and internal globules of elemental sulfur, occur in massive aggregations at the deep-sea hydrothermal vents of the Guaymas Basin, Gulf of California. Cell aggregates covering the surface of sulfide-emanating sediments and rock chimneys were collected by DS R/V Alvin and subjected to shipboard and laboratory experiments. Each sample collected contained one to three discrete width classes of this organism usually accompanied by a small number of "flexibacteria" (width, 1.5 to 4 mum). The average widths of the Beggiatoa classes were 24 to 32, 40 to 42, and 116 to 122 mum. As indicated by electron microscopy and cell volume/protein ratios, the dominant bacteria are hollow cells, i.e., a thin layer of cytoplasm surrounding a large central liquid vacuole. Activities of Calvin-cycle enzymes indicated that at least two of the classes collected possess autotrophic potential. Judging from temperature dependence of enzyme activities and whole-cell CO(2) incorporation, the widest cells were mesophiles. The narrowest Beggiatoa sp. was either moderately thermophilic or mesophilic with unusually thermotolerant enzymes. This was consistent with its occurrence on the flanks of hot smoker chimneys with highly variable exit temperatures. In situ CO(2) fixation rates, sulfide stimulation of incorporation, and autoradiographic studies suggest that these Beggiatoa spp. contribute significantly as lithoautrophic primary producers to the Guaymas Basin vent ecosystems.  相似文献   

9.
A novel barophilic, extremely thermophilic bacterium was isolated from a deep-sea hydrothermal vent chimney at the Iheya Basin, in the Okinawa area, Japan. The cells were found to be rod shaped and surrounded by a sheath-like outer structure; the organism did not possess flagella and was not motile. Growth was observed between 45° and 80°C (optimum, 72°C, 45 min doubling time), pH 5.3 and 9.3 (optimum, pH 7.2–7.6), 6.6 and 79 g/l sea salts (optimum, 40 g/l), and 0.1 and 60 MPa (optimum, 20 MPa). Strain IHB1 was found to be a strictly anaerobic chemoorganotroph capable of utilizing yeast extract and proteinaceous substrates such as peptone and tryptone. Elemental sulfur or thiosulfate acted as electron acceptors improving growth. The isolate was able to utilize casein as a sole carbon and energy source in the presence of thiosulfate. The G + C content of the genomic DNA was 31.4 mol%. Phylogenetic analysis based on 16S rDNA sequences and DNA–DNA hybridization analysis indicated that the isolate is closely related to Thermosipho africanus; however, it represents a species distinct from the previously described members of the genus Thermosipho. On the basis of the physiological and molecular properties, we propose that the new isolate represents a new species, which we name Thermosipho japonicus sp. nov. (type strain: IHB1; JCM10495). Received: May 26, 1999 / Accepted: August 7, 1999  相似文献   

10.
The phylogenetic diversity was determined for a microbial community obtained from an in situ growth chamber placed on a deep-sea hydrothermal vent on the Mid-Atlantic Ridge (23 degrees 22' N, 44 degrees 57' W). The chamber was deployed for 5 days, and the temperature within the chamber gradually decreased from 70 to 20 degrees C. Upon retrieval of the chamber, the DNA was extracted and the small-subunit rRNA genes (16S rDNA) were amplified by PCR using primers specific for the Archaea or Bacteria domain and cloned. Unique rDNA sequences were identified by restriction fragment length polymorphisms, and 38 different archaeal and bacterial phylotypes were identified from the 85 clones screened. The majority of the archaeal sequences were affiliated with the Thermococcales (71%) and Archaeoglobales (22%) orders. A sequence belonging to the Thermoplasmales confirms that thermoacidophiles may have escaped enrichment culturing attempts of deep-sea hydrothermal vent samples. Additional sequences that represented deeply rooted lineages in the low-temperature eurarchaeal (marine group II) and crenarchaeal clades were obtained. The majority of the bacterial sequences obtained were restricted to the Aquificales (18%), the epsilon subclass of the Proteobacteria (epsilon-Proteobacteria) (40%), and the genus Desulfurobacterium (25%). Most of the clones (28%) were confined to a monophyletic clade within the epsilon-Proteobacteria with no known close relatives. The prevalence of clones related to thermophilic microbes that use hydrogen as an electron donor and sulfur compounds (S(0), SO(4), thiosulfate) indicates the importance of hydrogen oxidation and sulfur metabolism at deep-sea hydrothermal vents. The presence of sequences that are related to sequences from hyperthermophiles, moderate thermophiles, and mesophiles suggests that the diversity obtained from this analysis may reflect the microbial succession that occurred in response to the shift in temperature and possible associated changes in the chemistry of the hydrothermal fluid.  相似文献   

11.
The prokaryotic diversity of culturable thermophilic communities of deep-sea hydrothermal chimneys was analysed using a continuous enrichment culture performed in a gas-lift bioreactor, and compared to classical batch enrichment cultures in vials. Cultures were conducted at 60 degrees C and pH 6.5 using a complex medium containing carbohydrates, peptides and sulphur, and inoculated with a sample of a hydrothermal black chimney collected at the Rainbow field, Mid-Atlantic Ridge, at 2,275 m depth. To assess the relevance of both culture methods, bacterial and archaeal diversity was studied using cloning and sequencing, DGGE, and whole-cell hybridisation of 16S rRNA genes. Sequences of heterotrophic microorganisms belonging to the genera Marinitoga, Thermosipho, Caminicella (Bacteria) and Thermococcus (Archaea) were obtained from both batch and continuous enrichment cultures while sequences of the autotrophic bacterial genera Deferribacter and Thermodesulfatator were only detected in the continuous bioreactor culture. It is presumed that over time constant metabolite exchanges will have occurred in the continuous enrichment culture enabling the development of a more diverse prokaryotic community. In particular, CO(2) and H(2) produced by the heterotrophic population would support the growth of autotrophic populations. Therefore, continuous enrichment culture is a useful technique to grow over time environmentally representative microbial communities and obtain insights into prokaryotic species interactions that play a crucial role in deep hydrothermal environments.  相似文献   

12.
Genetic diversity of archaea in deep-sea hydrothermal vent environments.   总被引:33,自引:0,他引:33  
K Takai  K Horikoshi 《Genetics》1999,152(4):1285-1297
Molecular phylogenetic analysis of naturally occurring archaeal communities in deep-sea hydrothermal vent environments was carried out by PCR-mediated small subunit rRNA gene (SSU rDNA) sequencing. As determined through partial sequencing of rDNA clones amplified with archaea-specific primers, the archaeal populations in deep-sea hydrothermal vent environments showed a great genetic diversity, and most members of these populations appeared to be uncultivated and unidentified organisms. In the phylogenetic analysis, a number of rDNA sequences obtained from deep-sea hydrothermal vents were placed in deep lineages of the crenarchaeotic phylum prior to the divergence of cultivated thermophilic members of the crenarchaeota or between thermophilic members of the euryarchaeota and members of the methanogen-halophile clade. Whole cell in situ hybridization analysis suggested that some microorganisms of novel phylotypes predicted by molecular phylogenetic analysis were likely present in deep-sea hydrothermal vent environments. These findings expand our view of the genetic diversity of archaea in deep-sea hydrothermal vent environments and of the phylogenetic organization of archaea.  相似文献   

13.
Meiothermus silvanus (Tenreiro et al. 1995) Nobre et al. 1996 belongs to a thermophilic genus whose members share relatively low degrees of 16S rRNA gene sequence similarity. Meiothermus constitutes an evolutionary lineage separate from members of the genus Thermus, from which they can generally be distinguished by their slightly lower temperature optima. M. silvanus is of special interest as it causes colored biofilms in the paper making industry and may thus be of economic importance as a biofouler. This is the second completed genome sequence of a member of the genus Meiothermus and only the third genome sequence to be published from a member of the family Thermaceae. The 3,721,669 bp long genome with its 3,667 protein-coding and 55 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

14.
Active deep-sea hydrothermal vents are areas of intense mixing and severe thermal and chemical gradients, fostering a biotope rich in novel hyperthermophilic microorganisms and metabolic pathways. The goal of this study was to identify the earliest archaeal colonizers of nascent hydrothermal chimneys, organisms that may be previously uncharacterized as they are quickly replaced by a more stable climax community. During expeditions in 2001 and 2002 to the hydrothermal vents of the East Pacific Rise (EPR) (9 degrees 50'N, 104 degrees 17'W), we removed actively venting chimneys and in their place deployed mineral chambers and sampling units that promoted the growth of new, natural hydrothermal chimneys and allowed their collection within hours of formation. These samples were compared with those collected from established hydrothermal chimneys from EPR and Guaymas Basin vent sites. Using molecular and phylogenetic analysis of the 16S rDNA, we show here that at high temperatures, early colonization of a natural chimney is dominated by members of the archaeal genus Ignicoccus and its symbiont, Nanoarchaeum. We have identified 19 unique sequences closely related to the nanoarchaeal group, and five archaeal sequences that group closely with Ignicoccus. These organisms were found to colonize a natural, high temperature protochimney and vent-like mineral assemblages deployed over high temperature outflows within 92 h. When compared phylogenetically, several of these colonizing organisms form a unique clade independent of those found in mature chimneys and low-temperature mineral chamber samples. As a model ecosystem, the identification of pioneering consortia in deep-sea hydrothermal vents may help advance the understanding of how early microbial life forms gained a foothold in hydrothermal systems on early Earth and potentially on other planetary bodies.  相似文献   

15.
Meiothermus ruber (Loginova et al. 1984) Nobre et al. 1996 is the type species of the genus Meiothermus. This thermophilic genus is of special interest, as its members share relatively low degrees of 16S rRNA gene sequence similarity and constitute a separate evolutionary lineage from members of the genus Thermus, from which they can generally be distinguished by their slightly lower temperature optima. The temperature related split is in accordance with the chemotaxonomic feature of the polar lipids. M. ruber is a representative of the low-temperature group. This is the first completed genome sequence of the genus Meiothermus and only the third genome sequence to be published from a member of the family Thermaceae. The 3,097,457 bp long genome with its 3,052 protein-coding and 53 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

16.
Archean microfossils provide some of the earliest physical evidence for life on Earth, yet there remains a great deal of uncertainty regarding which micro‐organisms were actually preserved. Because of the limited cellular detail remaining, interpretation of those microfossils has been based solely on size and morphology. This has led to significant controversy surrounding the presence or absence of cyanobacteria as early as 3.5 billion years. Accordingly, there has been an experimental bias towards studying their silicification. Here we report the very first findings on thermophilic bacteria–silica interactions, and investigate how Sulfurihydrogenibium azorense, a representative of the Aquificales often found as prominent members of modern hot spring vent communities, interacts with highly siliceous hydrothermal fluids. We show that adsorption of silica is limited to silica polymers and colloids, and that the magnitude of silica adsorption is dependent on its chemolithoautotrophic pathway. Intriguingly, when S. azorense is grown as a H2‐oxidizer, it responds to increasing silica concentrations by producing a protein‐rich biofilm that may afford the cells protection against cell wall silicification. Although the biofilms of Aquificales could potentially contribute to or accelerate siliceous sinter formation under certain growth conditions, the cells themselves show a low preservation potential and are unlikely to have been preserved in the ancient rock record, despite phylogenetic analyses suggesting that they represent one of the most primordial life forms.  相似文献   

17.
18.
16S rRNA-targeted in situ hybridization combined with confocal laser scanning microscopy was used to elucidate the spatial distribution of microbes within two types of methanogenic granular sludge, mesophilic (35 degrees C) and thermophilic (55 degrees C), in upflow anaerobic sludge blanket reactors fed with sucrose-, acetate-, and propionate-based artificial wastewater. The spatial organization of the microbes was visualized in thin sections of the granules by using fluorescent oligonucleotide probes specific to several phylogenetic groups of microbes. In situ hybridization with archaeal- and bacterial-domain probes within granule sections clearly showed that both mesophilic and thermophilic granules had layered structures and that the outer layer harbored mainly bacterial cells while the inner layer consisted mainly of archaeal cells. Methanosaeta-, Methanobacterium-, Methanospirillum-, and Methanosarcina-like cells were detected with oligonucleotide probes specific for the different groups of methanogens, and they were found to be localized inside the granules, in both types of which dominant methanogens were members of the genus Methanosaeta. For specific detection of bacteria which were previously detected by whole-microbial-community 16S ribosomal DNA (rDNA)-cloning analysis (Y. Sekiguchi, Y. Kamagata, K. Syutsubo, A. Ohashi, H. Harada, and K. Nakamura, Microbiology 144:2655-2665, 1998) we designed probes specific for clonal 16S rDNAs related to unidentified green nonsulfur bacteria and clones related to Syntrophobacter species. The probe designed for the cluster closely related to Syntrophobacter species hybridized with coccoid cells in the inner layer of the mesophilic granule sections. The probe for the unidentified bacteria which were clustered with the green nonsulfur bacteria detected filamentous cells in the outermost layer of the thermophilic sludge granule sections. These results revealed the spatial organizations of methanogens and uncultivated bacteria and their in situ morphologies and metabolic functions in both mesophilic and thermophilic granular sludges.  相似文献   

19.

Over the last decades, there has been growing interest about the ecological role of hydrothermal sulfide chimneys, their microbial diversity and associated biotechnological potential. Here, we performed dual-index Illumina sequencing of bacterial and archaeal communities on active and inactive sulfide chimneys collected from the Kolumbo hydrothermal field, situated on a geodynamic convergent setting. A total of 15,701 OTUs (operational taxonomic units) were assigned to 56 bacterial and 3 archaeal phyla, 133 bacterial and 16 archaeal classes. Active chimney communities were dominated by OTUs related to thermophilic members of Epsilonproteobacteria, Aquificae and Deltaproteobacteria. Inactive chimney communities were dominated by an OTU closely related to the archaeon Nitrosopumilus sp., and by members of Gammaproteobacteria, Deltaproteobacteria, Planctomycetes and Bacteroidetes. These lineages are closely related to phylotypes typically involved in iron, sulfur, nitrogen, hydrogen and methane cycling. Overall, the inactive sulfide chimneys presented highly diverse and uniform microbial communities, in contrast to the active chimney communities, which were dominated by chemolithoautotrophic and thermophilic lineages. This study represents one of the most comprehensive investigations of microbial diversity in submarine chimneys and elucidates how the dissipation of hydrothermal activity affects the structure of microbial consortia in these extreme ecological niches.

  相似文献   

20.
With the submersible JAGO and by scuba diving we discovered three remarkable geothermal cones, rising 33, 25, and 45 m from the seafloor at a depth of 65 m in Eyjafjordur, northern Iceland. The greatest geothermal activity was on the highest cone, which discharged up to 50 liters of freshwater per s at 72 degrees C and pH 10.0. The cones were built up from precipitated smectite, formed by mixing of the hot SiO2-rich geothermal fluid with the cold Mg-rich seawater. By connecting a rubber hose to one outflow, about 240 liters of pure geothermal fluids was concentrated through a 0.2-microm-pore-size filter. Among 50 thermophilic isolates, we found members of Bacillus and Thermonema and a new unidentified low-G+C gram-positive member of the Bacteria as well as one member of the Archaea, Desulfurococcus mobilis. Analysis of small-subunit rRNA genes PCR amplified and cloned directly from environmental DNA showed that 41 out of 45 Bacteria sequences belonged to members of the Aquificales, whereas all of the 10 Archaea sequences belonged to the Korarchaeota. The physiological characteristics of isolates from different parts of the cones indicate a completely freshwater habitat, supporting the possibility of subterranean transmittance of terrestrial organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号