首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blind docking was introduced for the detection of possible binding sites and modes of peptide ligands by scanning the entire surface of protein targets. In the present study, the method is tested on a group of drug-sized compounds and proteins with up to a thousand amino acid residues. Both proteins from complex structures and ligand-free proteins were used as targets. Robustness, limitations and future perspectives of the method are discussed. It is concluded that blind docking can be used for unbiased mapping of the binding patterns of drug candidates.  相似文献   

2.
Based on the anti-mycobacterial activity of various acid hydrazides, a series of substituted 3-hydrazinyl-3-oxo-propanamides has been designed. The target compounds have been synthesized from diethylmalonate using substituted amines and hydrazine hydrate in ethanol. Computational studies and anti-tubercular activity screenings were undertaken to test their inhibitory effect on protein kinase PknB from Mycobacterium tuberculosis. Binding poses of the compounds were energetically favorable and showed good interactions with active site residues. Designed molecules obey the Lipinski’s rule of 5 and gave moderate to good drug likeness score. Among the sixteen compounds (116) taken for in silico and in vitro studies, 3 compounds (11, 12 and 15) have shown good binding energies along with exhibiting good anti-tubercular activity and thus may be considered as a good inhibitors of PknB.  相似文献   

3.
Three-dimensional models of the five human muscarinic receptors were obtained from their known sequences. Homology modelling based on the crystallographic structure of bovine rhodopsin yielded models compatible with known results from site-directed mutagenesis studies. The only exceptions were the cytoplasmic loop 3 (CL3) in the five receptors, and the large C-terminal domain in M(1). Here, homology modelling with other closely related proteins allowed to solve these gaps. A detailed comparative discussion of the five models is given. The second part of the work involved docking experiments with the physiological ligand acetylcholine, again yielding results entirely compatible with results from mutagenesis experiments. The study revealed analogies and differences between the five receptors in the residues, and interactions leading to the recognition and binding of acetylcholine.  相似文献   

4.
The prostaglandins (PG) a group of physiologically active lipid compounds having diverse hormone like effects are important mediators of the body’s response to pain and inflammation, and are formed from essential fatty acids found in cell membranes. This reaction is catalyzed by cyclooxygenase, a membrane associated enzyme occurring in two isoforms, COX-1 and COX-2. Nonsteroidal anti-inflammatory drugs (NSAIDs) act by inhibiting the activity of COX. In view of this, a series of novel benzophenones conjugated with oxadiazole sulphur bridge pyrazole moiety 8a-l were designed, synthesized, characterized and subsequently evaluated for anti-inflammatory and analgesic property. The investigation of novel analogues 8a-l for potential anti-inflammatory activity showed high levels of COX-1 and COX-2 inhibitory activity. Among the series, compound 8i with electron withdrawing fluoro group at the para position of the benzoyl ring of benzophenone was characterized by highest IC50 values for both COX-1 and COX-2 inhibition, which is comparable to the standard drug. Further, molecular docking studies have been performed for the potent compound.  相似文献   

5.
Influenza is a yearly seasonal threat and major cause of mortality, particularly in children and the elderly. Although neuraminidase inhibitors and M2 protein blockers are used for medication, drug resistance has gradually emerged. Thus, the development of effective anti-influenza drugs targeting different constituent proteins of the virus is urgently desired. In this light, we carried out molecular docking to predict the binding modes of anti-influenza diketo acid inhibitors in the active site of the PAN subunit of the metalloenzyme RNA polymerase of influenza virus. The calculations suggested that the dianionic forms of the diketo acids should chelate the dinuclear manganese center as dinucleating ligands and sequester it. They also indicated that the diketo acid derivatives with larger hydrophobic substituents should block a hydrophobic cavity in the active site more tightly. These assumptions could adequately explain the enzyme inhibition by these compounds. Furthermore, we designed potential inhibitors by lead optimization of a diketo acid inhibitor from the thermodynamic points of view. Molecular docking results showed that the newly designed diketo acid derivatives might inhibit the metalloenzyme RNA polymerase more strongly than the lead inhibitor.  相似文献   

6.
The interaction of anticancer drug cytarabine with calf thymus DNA (CT-DNA) was investigated in vitro under simulated physiological conditions by multispectroscopic techniques and molecular modeling study. The fluorescence spectroscopy and UV absorption spectroscopy indicated drug interacted with CT-DNA in a groove-binding mode, while the binding constant of UV-vis and the number of binding sites were 4.0 ± 0.2 × 104 L mol?1 and 1.39, respectively. The fluorimetric studies showed that the reaction between the drugs with CT-DNA is exothermic. Circular dichroism spectroscopy was employed to measure the conformational change of DNA in the presence of cytarabine. Furthermore, the drug induces detectable changes in its viscosity for DNA interaction. The molecular modeling results illustrated that cytarabine strongly binds to groove of DNA by relative binding energy of docked structure ?20.61 KJ mol?1. This combination of multiple spectroscopic techniques and molecular modeling methods can be widely used in the investigation on the interaction of small molecular pollutants and drugs with biomacromolecules for clarifying the molecular mechanism of toxicity or side effect in vivo.  相似文献   

7.
DNA G-quadruplex is an attractive drug target for anticancer therapy. Most G-quadruplex ligands have little selectivity, due to π-stacking interaction with common G-tetrads surface. Thanks to the varieties of G-quadruplex grooves, the groove-binding ligand is expected to create high selectivity. Therefore, developing novel molecular geometries that target G-quadruplex groove has been paid growing attention. In this work, steroid FG, a special nonplanar and nonaromatic small molecule, interacting with different conformations of G-quadruplexes has been studied by molecular docking and molecular dynamics simulations. The results showed the selectivity of the hydrophobic group of steroid FG for the wide groove of antiparallel G-quadruplex. The methyl groups on the tetracyclic ring of steroid represent the specific binding ability for the small hydrophobic cavity formed by reversed stacking of G-tetrads in antiparallel G-quadruplex groove. This work provides new insight for developing new classes of G-quadruplex groove-binding ligands.  相似文献   

8.
Interaction of procarbazine (PCZ) with calf thymus DNA was studied using biophysical and molecular docking studies. Procarbazine was to interact with DNA with a binding constant of 6.52 × 103 M−1 as calculated using ultraviolet‐visible spectroscopy. To find out the binding mode, molecular docking was performed that predicted PCZ to interact with DNA through groove binding mode with binding affinity of −6.7 kcal/mole. To confirm the groove binding nature, different experiments were performed. Dye displacement assays confirmed the non‐intercalative binding mode. Procarbazine displaced Hoechst dye from the minor groove of DNA while it was unable to displace intercalating dyes. There was no increase in the viscosity of DNA solution in presence of PCZ. Also, negligible change in the secondary structure of DNA was observed in presence of PCZ as evident by circular dichroism spectra. Procarbazine caused decrease in the melting temperature of DNA possibly because of decrease in the stability of DNA caused by groove binding interaction of PCZ with DNA.  相似文献   

9.
In view of the potential of traditional plant-based remedies (or phytomedicines) in the management of COVID-19, the present investigation was aimed at finding novel anti-SARS-CoV-2 molecules by in silico screening of bioactive phytochemicals (database) using computational methods and drug repurposing approach. A total of 160 compounds belonging to various phytochemical classes (flavonoids, limonoids, saponins, triterpenoids, steroids etc.) were selected (as initial hits) and screened against three specific therapeutic targets (Mpro/3CLpro, PLpro and RdRp) of SARS-CoV-2 by docking, molecular dynamics simulation and drug-likeness/ADMET studies. From our studies, six phytochemicals were identified as notable ant-SARS-CoV-2 agents (best hit molecules) with promising inhibitory effects effective against protease (Mpro and PLpro) and polymerase (RdRp) enzymes. These compounds are namely, ginsenoside Rg2, saikosaponin A, somniferine, betulinic acid, soyasapogenol C and azadirachtin A. On the basis of binding modes and dynamics studies of protein–ligand intercations, ginsenoside Rg2, saikosaponin A, somniferine were found to be the most potent (in silico) inhibitors potentially active against Mpro, PLpro and RdRp, respectively. The present investigation can be directed towards further experimental studies in order to confirm the anti-SARS-CoV-2 efficacy along with toxicities of identified phytomolecules.  相似文献   

10.
Urease is known to be one of the major causes of diseases induced by Helicobacter pylori, thus allow them to survive at low pH inside the stomach and thereby, play an important role in the pathogenesis of gastric and peptic ulcer, apart from cancer as well. Keeping in view the great importance of urease inhibitors, here in this study we have synthesized piperazine derivatives (115) and evaluated for their urease inhibitory activity. All analogs showed excellent inhibitory potential with IC50 values ranging between 1.1 ± 0.01 and 33.40 ± 1.50 µM when compared with the standard inhibitor thiourea (IC50 = 21.30 ± 1.10 µM). Structure activity relationship has been established for all compounds which are mainly based upon the substitution on phenyl ring. Molecular docking study was performed in order to understand the binding interaction of the compounds in the active site of enzyme.  相似文献   

11.
One of the main challenges for nowadays medicine is drugs selectivity. In COX-1 and COX-2, the active sites are composed of the same group of amino acids with the exception of the only one residue in position 523, in COX-1 is an isoleucine, while in COX-2 is a valine. Here, we presented a series of isothiazolopyridine/benzisothiazole derivatives substituted differently into an isothiazole ring, which were synthesized and investigated for their potencies to inhibit COX-1 and COX-2 enzymes by colorimetric inhibitor screening assay. All the tested compounds inhibited the activity of COX-1, the effect on COX-2 activity was differential. The mode of binding was characterized by a molecular docking study. Comparing biological activity of the investigated compounds, it was observed that compounds sharing the most similar position to flurbiprofen and meloxicam, representing the two main enzyme subdomains, achieved higher biological activity than others. It is directly related to the fit to the enzyme’s active site, which prevents too early dissociation of the compounds.  相似文献   

12.
A series of piperazinyl-1,2-dihydroquinoline carboxylates were synthesized by the reaction of ethyl 4-chloro-1-methyl-2-oxo-1,2-dihydroquinoline-3-carboxylates with various piperazines and their structures were confirmed by 1H NMR, 13C NMR, IR and mass spectral analysis. All the synthesized compounds were screened for their in vitro antimicrobial activities. Further, the in silico molecular docking studies of the active compounds was performed to explore the binding interactions between piperazinyl-1,2-dihydroquinoline carboxylate derivatives and the active site of the Staphylococcus aureus (CrtM) dehydrosqualene synthase (PDB ID: 2ZCQ). The docking studies revealed that the synthesized derivatives showed high binding energies and strong H-bond interactions with the dehydrosqualene synthase validating the observed antimicrobial activity data. Based on antimicrobial activity and docking studies, the compounds 9b and 10c were identified as promising antimicrobial lead molecules. This study might provide insights to identify new drug candidates that target the S. aureus virulence factor, dehydrosqualene synthase.  相似文献   

13.
Novel isothiocyanate derivatives were synthesized starting from noscapine, bile acids, amino acids, and some aromatic compounds. Antiparasitic activities of the synthesized derivatives were tested against four unicellular protozoa, i.e., Trypanosoma brucei rhodesiense, T. cruzi, Leishmania donovani, and Plasmodium falciparum. Interestingly, seven isothiocyanate analogues displayed promising antiparasitic activity against Leishmania donovani with IC50 values between 0.4 and 1.0 µM and selectivity index (SI) ranged from 7.8 to 18.4, comparable to the standard drug miltefosine (IC50 = 0.7 μM). Compound 7h demonstrated the best antileishmanial activity with an IC50 value of 0.4 µM. Seven products exhibited inhibition activity against T. brucei rhodesiense with IC50s below 2.0 μM and SI between 2.7 and 29.3. Four primary amine derivatives of noscapine and five isothiocyanate derivatives exhibited antiplasmodial activity with IC50s in the range of 1.1–2.7 µM and SI values between 1.1 and 14.5. The isothiocyanate derivative 7c showed against T. cruzi with an IC50 value of 1.9 µM and SI 4. Molecular docking and ADMET studies were performed to investigate the interaction between active ligands and T. brucei trypanothione reductase active site. The docking studies showed significant binding affinity of noscapine derivatives to enzyme active site and good compatibility with experimental data.  相似文献   

14.
Listeriosis is considered as an important public health issue. Sortase A (srtA) is an enzyme with catalytic role in L. monocytogenes that breaks the junction between threonine and glycine in the LPXTG motif (a key motif in internalin A (InlA) that plays an important role in listeriosis). Inactivation of srtA was shown to inhibit anchoring of the invasion protein InIA. This is in addition to inhibiting peptidoglycan-associated LPXTG proteins. Therefore, it is of interest to inhibit strA using potential molecules. Here, we describe the design of an inhibitor with high binding affinity to srtA with the ability to prevent the attachment of srtA to the LPXTG proteins such as InIJ. A homology model of Listeria monocytogenes Sortase A was developed using MODELLER (version 9.12). We screened StrA to 100,000 drug-like ligands from the Zinc database using Molecular docking and virtual screening tool PyRX). Pharmacokinetic analysis using the FAFDrugs3 web server along with ADME and toxicity analysis based on Lipinski rule of five were adopted for the screening exercise followed by oral toxicity check using PROTOX (a server) for every 10 successive hits. The results from PROTOX server indicated that Lig #1 (with LD50 of 2000mg/kg) and Lig #7 (with LD50 of 2000mg/kg) have toxicity class 4 and Lig #3 (with LD50 of 14430mg/kg) has toxicity class 6. Subsequent modifications of these structures followed by FAFDrugs3 analysis for high bioavailability value selected Lig #7 according to Lipinski rules of five. Thus, Lig #7 with IUPAC name ((R)-4-{(S)-1-[(S)-2-Amino-4-methylvaleryl]-2-pyrrolidinyl}-1-[(S)-1-(ethylamino) carbonyl-propylamino] -2-propyl-1, 4- butanedione) is suggested as a potential candidate for srtA inhibition for further consideration.  相似文献   

15.
A small library of new class of dispiropyrrolidinyl-piperidone tethered indono[1,2-b]quinoxaline heterocyclic hybrids 7aj were synthesized employing multicomponent 1,3-dipolar cycloaddition strategy in [bmim]Br. The azomethine ylide employed is first of its kind and generated in situ from indenoquinoxalinone and l-tryptophan, a combination that has not been employed previously for the in situ generation of azomethine ylides. The synthesized heterocyclic hybrids 7aj were evaluated for their in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, therein compounds 7h and 7j displayed more potent AChE and BChE enzyme inhibition than the standard drug with IC50 values of 3.22, 2.01, 12.40 and 10.45 mM, respectively. Molecular docking studies have also been investigated for most active compounds that disclosed interesting binding templates to the active site channel of cholinesterase enzyme.  相似文献   

16.
Antibody-antigen interactions are representative of a broad class of receptor-ligand interactions involving both specificity and potential inducible complementarity. To test possible mechanisms of antigenantibody recognition and specificity computationally, we have used a Metropolis Monte Carlo algorithm to dock fragments of the epitope Glu-Val-Val-Pro-His-Lys-Lys to the X-ray structures of both the free and the complexed Fab of the antibody B13I2 (raised against the C-helix of myohemerythri). The fragments Pro-His and Val-Pro-His, which contain residues experimentally identified as important for binding, docked correctly to both structures, but all tetrapeptide and larger fragments docked correctly only to the complexed Fab, even when torsional flexibility was added to the ligand. However, only tetrapeptide and larger fragments showed significantly more favorable energies when docked to the complexed Fab coordinates than when docked to either the free Fab or a non-specific site remote from the combining site. Comparison of the free and complexed B13I2 structures revealed that atoms within 5 Å of Val-Pro-His showed little movement upon peptide binding, but atoms within 5 Å of the other four epitope residues showed greater movements. These results computationally distinguish recognition and binding processes with practical implications for drug design strategies. Overall, this new fragment docking approach establishes distinct roles for the “lock-and-key” (recognition) and the “handshake” (binding) paradigms in antibody-antigen interaction, suggests an incremental approach to incorporating flexibility in computational docking, and identifies critical regions within receptor binding sites for ligand recognition. © 1994 Wiley-Liss, Inc.  相似文献   

17.
The design of TRPV1 antagonists and agonists has reached a new era since TRPV1 structures at near-atomic resolution are available. Today, the ligand-binding forms of several classical antagonists and agonists are known; therefore, the specific role of key TRPV1’s residues in binding of ligands can be elucidated. It is possible to place the well-defined pharmacophore of TRPV1 ligands, conformed by head, neck, and tail groups, in the right pocket regions of TRPV1. It will allow a more thorough use of molecular modelling methods to conduct more effective rational drug design protocols. In this work, important points about the interactions between TRPV1 and capsaicin-like compounds are spelled out, based on the known pharmacophore of the ligands and the already available TRPV1 structures. These points must be addressed to generate reliable poses of novel candidates and should be considered during the design of novel TRPV1 antagonists and agonists.  相似文献   

18.
Despite of many diverse biological activities exhibited by benzimidazole scaffold, it is rarely explored for the urease inhibitory potential. For that purpose, benzimidazole analogues 1–19 were synthesized and screened for in vitro urease inhibitory potential. Structures of all synthetic analogues were deduced by different spectroscopic techniques. All analogues revealed inhibition potential with IC50 values of 0.90 ± 0.01 to 35.20 ± 1.10 μM, when compared with the standard thiourea (IC50 = 21.40 ± 0.21 μM). Limited SAR suggested that the variations in the inhibitory potentials of the analogues are the result of different substitutions on phenyl ring. In order to rationalize the binding interactions of most active compounds with the active site of urease enzyme, molecular docking study was conducted.  相似文献   

19.
We have synthesized oxadiazole derivatives (116), characterized by 1H NMR, 13C NMR and HREI-MS and screened for thymidine phosphorylase inhibitory potential. All derivatives display varied degree of thymidine phosphorylase inhibition in the range of 1.10 ± 0.05 to 49.60 ± 1.30 μM when compared with the standard inhibitor 7-Deazaxanthine having an IC50 value 38.68 ± 1.12 μM. Structure activity relationships (SAR) has been established for all compounds to explore the role of substitution and nature of functional group attached to the phenyl ring which applies imperious effect on thymidine phosphorylase activity. Molecular docking study was performed to understand the binding interaction of the most active derivatives with enzyme active site.  相似文献   

20.
A novel series of benzimidazole derivatives were prepared starting from o-phenylenediamine and 4-nitro-o-phenylenediamine with iminoester hydrochlorides. Acidic proton in benzimidazole was exchanged with ethyl bromoacetate, then ethyl ester group was transformed into hydrazide group. Cyclization using CS2/KOH leads to the corresponding 1,3,4-oxadiazole derivative, which was treated with phenyl isothiocyanate resulted in carbothioamide group, respectively. As the target compounds, triazole derivative was obtained under basic condition and thiadiazole derivative was obtained under acidic condition from cyclization of carbothioamide group. Most reactions were conducted using both the microwave and conventional methods to compare yields and reaction times. All compounds obtained in this study were investigated for α-glucosidase inhibitor activity. Compounds 6a, 8a, 4b, 5b, 6b and 7b were potent inhibitors with IC50 values ranging from 10.49 to 158.2 μM. This has described a new class of α-glucosidase inhibitors. Molecular docking studies were done for all compounds to identify important binding modes responsible for inhibition activity of α-glucosidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号